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EXECUTIVE SUMMARY

P A

Component degradatlon modelmg rncludes modelmg of occurrences of component degradatrons
and analyses of these occurrences to understand the degradatlon process and its 1mphmtlons ’I'he
degradatron modelmg that we dnscuss focuses on the analysxs of txmes of degradatlon and fallure'
occurrences to understand the agmg degradatxon xn components. Our prevxous paper® discusses the
basic concepts and the mathematical development of a simple degradation model. Using the
degradation modeling methodology, failure data on residual heat removal (RHR) pumps and service
water (SW) pumps were analyzed to detect indications of aging and to infer the effectiveness of
maintenance in preventing age-related degradations from transforming to failures. In this paper, further
applications and extensions of degradation modeling are discussed.

Additional applications of degradation modeling are carried out for air compressors, a
continuously operating component. We demonstrate that the analysis of degradation occurrences is
useful in understanding the aging process and the role of maintenance in that process. For the air
compressors, the failure rate and degradation rate show an early decreasing trend followed by a
significant increasing trend that indicates effects of aging. The failure rate, which is significantly lower
than the degradation rate in the first three years, increases faster in the later years, reaching
approximately the same value as the degradation rate at the end of the ten years of operation. This
behavior indicates the ineffectiveness of maintenance in preventing degradation from transforming into
failures as the air compressors age.

Another important application of degradation modeling approaches is to predict aging-failure
rate from degradation rate. Since aging-related failures, in general, pass through a degradation state
first, the degradation rate serves as a precursor of the failure rate. Increasing aging trend in the

degradation rate can signal future increasing aging trends in the failure rate. We study a simple linear

relationship between these two parameters considering any delayed effect that degradations may have



on failure occurrences. An example of an applica;ion using the data on RHR pumps shows a time-lag
of 2 years for degradation to affect failure oocur;'ences.

For additional app!icagions, extensions of degradation modeling are presented. The extended
models, which we are develéping, wiil eyfplicitly show the reliabilit)'v éffects of different maintenance and
test‘ingervals. differgnt maintenance and test efﬁcigncies, and different repair times. Thus, the extended

model will allow us to evaluate the reliability effects of different maintenance programs.
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1. INTRODUCTION

Thrs report presents the status of degradatron modelmg development in understandmg ‘the

eomponent agmg process and the role of mamtenance in mmgatmg that process Component

. .
¥ Coaeeiaet . IV

degradatlon modelmg as defined here includes modelmg of occurrences of component dcgradatlons and

analyses of these occurrences to understand the degradatron process and its 1mphcatrons

32 -

Our earlier report! presents the basnc concepts and the mathematlcal development ofa srmple
degradatlon model. In thxs modelmg approach dmdmg the operatlonal performance of a component
mto three states, normal operatmg state, degraded state, and farlure state, we establlshed relatrons

among these states using rates of degradation and failure occurrences. The relations were used to define

estimates)of 'the' effectiveness of maintenance in preventing degradations‘fr‘om' becoming failures.

- {-'[ s
.......

component degradatron rates and component fallure rates, all of them derived from plant-specxt‘ c data.
Degradation analyses were carried out for‘resldual heat removal (RHR) pumps and ‘emergency service
water:(SW') pumps‘-'stakndby "active” components.?Analyses' of degradatlon data for both these pumps
showed a "bathtub” curve for the degradatron rate where a dnstmct mcreasmg agmg trend was observed
as time progressed lnterestmg, pump fallure rates d|d not show any increasing trend for the same time

pen'od, * this 'demonstrating‘the' need ‘to‘l‘identify"a‘gin'g ‘trends throu'gh:.analvse’s" of componcnt

el e, L Coononr Ty o T o et O U T A

degradations. The applications also demonstrated how this modeling approach can be used to analyze

L - Coe sz e e e e e s D e ey
and assess the effectiveness of maintenance.

To explore further the apphcablllty of degradatlon modelmg approaches we analyzed a different
component ‘air compressor, usmg the methodology ‘defined in our earlier report’ “Air compressors,
contmuously operatmg component are dxfferent from standby actlve components studred in our prevrous‘
apphcatlons. Thus, the degradatlon modelmg analysrs of air comprcssors ‘shows the apphcabrhty ‘of the
approach‘ for an active componcnt under dilferent n'op:erating Gonditions.  Also, because thev are

.- PP R . .
re s . Lo .

PERENMY I
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continuously operating component, air compressors are expected to suffer degradatxons which are
detected and corrected; thus, makmg them ideal candidates for degradatxon modelmg analysns.

The degradatlon modeling approaches is an extension of standard reliability approaches where
only two states, normal operating state and failure state, are considered. By including an additional
state, degradation state, we obtam useful information on component agmg and on the role of
mamtenance in preventlng age- related fatlures. However, this modelmg requires addttlonal data whtch
can have large associated uncertainties. In this report, sensitivity analyses are performed to address the
uncer_tai_nties in the degradation modeling results due to inclusion of information on component
degradations.

The promising results_ohtained from the application of simple degradation models to standby
and continuously operating_co‘mponents ‘(R.HR pumps, SW pumps, and air oompressors) encouraged us
to :ex_pand‘this eoncept to study additional related aspects. The additional aspects studied here include;

a) _ relationship between degradation and failures,
_b) extension .otf mod:e.ling to show effects of different maintenance and test intervals, and
dit'fere‘nt rFepair times, and

) extensron of degradatton modelmg to mclude multiple degraded states. N
_ Understanding the relationshlp between dcgradattons and fatlures is important in aging studtes

and,can result in significant benefits i in defining maintenance strategles for controlling aging and in

conducting aging reliability and risk studies particularly when aging’failure data are sparse. In terms of

maintepance strategies, if degradation-failure relationship is known, then effective maintenance/

repair/reﬁxrbish_ment can heperiormed through monitoring of degradations, thus avoiding component

failures. For aging reliability studies, relationship between degradations and failure is important since

it"cfan be used to estimate failure rates from degradation.rates when failure data are sparse. In this

report, this important correlation between degradations and failures is statistically studied and the

concept of a delayed effect of degradation on failures is explored.
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Finally, the simple degradation model studied and applied so far uses only degradation and
failure occurrence times. The usefulness of the model can be enhanced by including additional relevant
test and maintenance related information whereby the effect of test and maintenance strategies, in terms
of test and maintenance frequencies, duration, and efficiencies, can be determined. Theoretical
development which extends the basic degradation model to include different t.cst and maintenance
interval, different test and maintenance efficiencies, and different repair times is discussed. Basic
framework for extending the model to multiple degraded states is also presented.

The report is organized as follows, Chapter 1 is the introduction. Analysis of air compressors
is present in Chapter 2. Chapter 3 discusses the uncertainty issues brought in by including degradation
information and the sensitivity analyses performed to study the impact of the issues on degradation
modeling results. Chapter 4 explores the relationship between degradations and failures and the
extension of the degradation modeling is presented in Chapter 5. The results and insights of this study
are summarized in Chapter 6. Appendices present air compressor data used in the evaluations and the

statistical evaluations conducted for the results presented in the main body of the report.



}2. | DEGRADATION ANALYSIS USING AIR COMPRESSOR AGING DATA
o In thls section, we present an apphcatron‘of a;e-related deéradatton and fax]ure data analysns
based on the component degradatron modehng approach descnbed in our earher report’. Here, our
objectnve isto explore the appheabnhty of degradatxon modelmg approaches for a contmuously operatmg
component, different from standby components studied prevrously. 'We selected an air compressor for
this analysis. The analysis approach is similar to that followed ;for the components studied in our
previous report’. o
21 Overview of Degradation Modeling?Appronches '

In this section, we a briefly summarize the degradation modeling approaches. Basically, we
present the relationships to be used in appl:ying degradation modeling to eomponent degradation and
failure data, the assumptions‘of degradation modeling, .and basic formulations of the modeling
approaches. Detailed mathematics of speci;ﬁc degradation modeling can be obtained from our earlier
report’, o o

To understand degradatlon modehng, we study a repairable component, i.e., a component that
is being repaired and maintained. The actxve components, pumps, valves, circuit breakers, and
compressors, are repairable components and are the foeus .°f this study.
For the simple degradation model studied, we make the following assumptions:
1. Degradation always preeedes' 'fa'ilure. | | |
2. When a component is repaired after a failure, the operational state of the component
reflects more restoration than when on-lme mamtenance is performed | .
3. o 'When mamtenance is performed followmg detection of a degraded eondltlon, the
: component is restored to a mamtamed state, Wthh reﬂects less restoration than when
repair is performed after a failure.
We call the state after r'epai‘r of afa;lure-the -64 state, the statc after:failure the "f" state; and

the one after maintenance the "m" state.
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We use the Marl;ov process approaches for degradation rx.xodeli-ng, because with these
approaches simplef rv;lédels\ can be constructed first and thén expanded later. t;) yield moré complex
models. Statistical am;lysisx is oouélcd to the models to estimate unknown paran;;tcfs fr;)m degradation
(}z‘t;tat The simplest model we present considers only one degraded state. Expanded modeiing can

include multiple-degraded states (Figure 2.1).

A
Operating State Operating State
" Measuraof
Performance
Degraded State 1
Degraded State 2
Degraded State -
Degraded State n
Failure State Failure State
Single Degraded ~ Mutiple Degraded

State Definition State Definition

Figure 2.1. Alternatives for degraded state definitions

2.1.1  State Repljesenltgtion of Degradation Modeling .

The Markov approqches of' .Qegradation modeling can be described by the state diagram for a
component (Figure 2.2). 'B’a‘sed'on o.urA assumptions, the compon;znt canbeina degfaded state (d-state)
through three processes:

a. the component reaches its first degraded state from a restored state (o-state),



. S
b. the oomponent undergoes recurrmg degradatron wnth no intermediate failure (it is

assumed that the component isina malntamed state (m-state) followmg a degradation),
and
c. the.oornoo{nentlundergoes degradatron fol‘l.o“;ing restoration resulting from a failure (f-
state)
The oomponent can fall only from a degraded state (.d-‘state‘) >However, itis assumed that maintenance
is performed every tlme a degraded state is detected Thus, a marntamed state (m-state) is reached

following a degraded state (d-state). For Markov modehng oonmderattons, these two states are

equivalent in this analysis.

-

e P o v, P -
P

) , CRal el
.7 'DM MD . -_

Ro

o-state: restored state d-state: degraded state
m-gtate: maintained atate f-state falled atate

EJ : transition probabillty trom i-atate to j-state

[ .
PR
.

;Figure 2.2. Markov state diagram component degradation modeling
(smgle degraded state)

S I

«
ot
~

2.1.2 TransitionuProbnbi'lities ;

The transition probabilities among the various states are as follows:

Pop probability that degradation occurs after the eornponent is restored, with

no failure before a degradation

2.3



= 1 because we assume degradation always precedes failure

PoMm = p;'obability that maintenance is carried out 6ﬁce a degraded state is
identified
Pyp = probability that degradation occurs after maintenaﬁce before a failure
occurs
PDF = Pyr = probability that failure occurs after maintenance (performed following
;_ietection of # degraded state), with no intermediate degradation
Porp = proiaaiailit;' that component is restored foilowing failure

= 1
Our interest lies in obtaining Pyp and Ppg.  Principally, Ppe describes the effectiveness-of
maintenance and the probability of transferring to a failed state once a degraded state is reached.
Similarly, Py, expresses tt}e_ prdbabilit'y of recurring degradation before failure.
2.13 Frequency of Degradation, Frequency of Failure, and Transition Prébnb_ilities
Frequency of degradation defines the frequency of degraded state, i.e., the number of degraded
states observed for a oofnponent per unit time. Similarly, the frequency of failure represents the failure

states observed per unit time.

Let
Wp(t) = the d'égff'iadation frequency at t
We(t) = the failure frequency at t

Developing balance equations from the rgngwal theory?, one can obtain the steady-state solution
that relates the frequency of degradation, ther frequency of failure, and the transition probabilities.
(Mathematical derivation is described in our earlier reportl.) Wy and W represent the steady state
degradation and failure freguencies.

Wp = W + WpPyp (2.1)

24



Expressed in terms of transition probabilities,
Pop = W/ wD (23)

Pyp = 1- WF/WD—I P,,F | | (24)
These expressrons define how the steady-state transntlon probabxlltles (Pm.- and PMD) can be

obtamed from the frequency of degradatlon and the frequency of fallure Usmg component rehablhty

data bases such as the N uclear Plant Rehabxhty Data System (N PRDS) or a plant-specxﬁc data base, one

. T

can determme WF and WD, and hence WF / W for vanous components These ratlos can also be

. 9

determined for various faxlure modes of a component to evaluate the type of mamtenance carned out

for a component
e y :‘.,_ s . B
The mterpretatlons of the steady-state solutrons are as follows

IR

1. | The larger the ratio of frequency of fallure and frequency of degradatron (WF / WD) the
Iarger is the probabthty that a faxlure wrll occur after degradatlon, PDF

2. f Fora gwen degradatlon frequency, WD, the larger the probabrhty, Pnp the larger is the
fallure frequency, Wr-'

3. The ratio W / Wy, is a measure of meffectweness of mamtenance m that it is equal to

.-(‘,37, [
2 1o

PDF However, smaller values of Pm_- can result in larger values of WF, if WD is larger

. Cy ‘. .
4. Another measure of effectlveness of mamtenance is the fanlure frequency, WF 1tself,

-

whnch is equal to WDPDF

The approaches presented above def' ne how mformatlon on degradatlon can be used to obtam

Lt e=
!

the charactenstrcs of degradatlon (frequency, the transrtlon probabllmes from degraded to farlure state

L8 ,'11 -

and £rom mamtamed to degraded state), and how the frequency of component fallure relates to such

charactenstlcs

~ n', -k N P RIS ST Y

2. 1 4 Agmg Effects on Degradatton Rate and Fatlure Rate

," TS F B DRI ARSI [ A §

The effect of agmg on component relrabrhty may be mamfested through elthcr increased

. s \ ”
.n'- : S

degradatron or mcrcased farlures, or both Gencrally, earher studles have focussed on increased failures

Syt
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due to aging. Here, the focus has been on degradations, along with an analysis of failures to seek a
relationship between the two.

| The degradation rate, Ay, is defined as the rate of degradatron occurrmg after malntenance
gwen that no previous degradation has occurred. Similarly, the fallure rate, App, is the rate of a failure
occurrmg after a degradatlon gryen that no previous failure has occurred.

The age- dependent AMD can be obtamed by observing the times of degradatlon. The trme-of
degradatlons t,, the. ,t is used to estlmate the parametric form of Ay,p(t). Similarly, time of failures is
used to estimate the parametnc form of Apg(t).

| ‘ .'W.hen times ol' lailure ot‘ the aged component are also present, along with the infonnatlon on
degradation. the former can be used to develop the age-dependent Apg, which can then be oompared
to 1\40 The dnfferent behavxor of ADF(t) and lMD(t) sxgmfy different types of effectiveness of
maintenance in the oomponent s agmg process. If dyp(t) shows a significant ag;ng effect as opposed to
ADF(t), then the mamtenance averts oomponent failure. Conversely, maintenance is ineffective if the
transmon probability, PMD. in the agmg process is higher than the steady-state value.

2.1.5 Assumptions and Limitations in the Methodology

The degradation modelmg presented in this section is the ﬁrstistep in deyeloping the component
a;g‘in.gv.reliability model‘ usmg data on degradation. The specific analyses of examples presented in the
ne;(t seetion also demonstrate the applieahility of the methodology and show how useful insights can be
derived from this approach Nevertheless, at this time, several assumptions ’for this simple model are
made, many of which wrll be dealt wnth as we make future extensions to the model and gam more
expenence with the analyses In tlus section, we discuss the assumptxons and limitations in the
methodology and thelr 1mpl|catrons in our results.

1. In the modeling presented, the component degradation is represented by a single-

dcgradatlon state. Degradatlons are generally continuous and not discrete as treated

in the model For thrs snmplcst model, the assumption is that a degradation state occurs
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when the degradation, which can be continuous, exceeds some threshold. Our objective

is to demonstrate how important insights relating to aging and maintenance can be

obtained by using degradation information in its simplest form. As we stated, more
-1,

extended models can be developed that allow multtple states of degradatton
2 : The model assumed that mamtenance is performed every time a degraded state is
detected. A degraded state as used in the model is a state in which degradation has
”: errceeded athreshold reduiring maintenance; 'fhus, a degraded state is associated with
a requirement for maintenance. The data used in the analyses are delmeated so that
o the tdentlﬁed degraded states are assocxated with rnatntenance However, we recognize
that eomponent degradattons can be ldentlf ed where no maintenances are performed

Extended models wrth multtple degraded states will be able to dlstmctly treat degraded

states whtch are not necessanly assocxated with mamtenance requtremcnts

X

RIANIAT

3. Maintenance as used in the‘ model is eorrectrve mamtenance, not preventatnve
maintenance. More t’requent oorrective Qﬁtn:éhéaeés;afe associated with more frequent
degradatlon occurrences exceedmg some threshold Nondetected degradatlons and
scheduled matntenances are not expllcntly treated by the model.

: 4. o Data reqmrements for appllcattons of degradatlon modeltng are more eomprehensxve

' because degradatlon data are requrred However, degradatron data are often

‘ unavatlal)le, and if avallable, they are often moomplete The tnterpretatlon of avatlable

.data for degradatton modelmg appllcatlon also needs to be systematlzcd Reallzmg the
dlfﬁculty in obtammg oomprehcnswe data, one of the ob]ectwes of this paper is 'to

« .

develop models whrch show how degradatlon data can be specnﬁcally used for

l— ....... ’ :
mamtcnancc If these specxt' c benef ts and uses of degradatlon data are presented then

: - o ORI ot
there will be more of an incentive to collect more accurate degradation data.

1



22 Definitions of Degrqdntiops

To analyze degradations, the degraded state of the component must first be defined so it can
be identified and analyzed. Definitions of the degrgded state can be at a gross level or at a detailed
level. Ata gross level, a component is described as degraded wheneve; any deterioration occurs which
does not cause loss of function. fﬁ}; operational performance of ghe component is divided into three
states: the normal opefgting state, ;he degradgd stafc. and thg failure state. An example of a gross
definition of degradation is that a component degadation occurs whenever corrective maintenance is
Vr_equir}ed,‘bt.x‘t‘ th_c;vcomponent has not failed.

‘More dctai’led modeling of deg;adations involves di\;iding the degadation space into multiple
degr;ldqq states. A given degraded state is then associated Qith a given range .ofycharacteristics of the
component or performances of the component. For example, detailed degraﬁed states for circuit
breakers can be dqﬁne‘ciVlba;ed on defined ranges for the pick-up/drop-out voltage, inrush/holding
current, and other mg@ura};le degradation characteristics.

The _advagggge of deﬁning more detailed degradation states is that we can accurately predict
‘i.rAx‘xpacts on the failure r?te of ’tvhe component. When aging occurs, t};e component generally progresses
through a series of degradation states before failure occurs. By analyzing and modeling this progression,
we can more accurately predict when failure will occur. For initial work, the gross definition of
degradation can be used, which basically equates the degradation state oqcurring whenever corrective
maintenance is required. Figure 2.1 illustrates the basic alternative for déﬁn_ing the degradation state.

Table 2.1 presents an eggmplg of component data analyses identifying degraded states, along
with failure states of the component. In this example, derived from the analyses of data for air
compressors, failure §tqt_es_apd degraded states of air compressors are distinguished based on engineers’
juggemept using tht;'_.ir)formation on failure effect and the identi‘i‘igd effected §uboomponent. In some
situations, judgements were used to determine \yhethgr the degradgtign was of the magnitude to be

defined as a failure. For example, in general, an oil leak at the piston rod seal can be a degraded state
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for an air compressor, but in the example in Tablc 2 1 the leak was of sufﬁcxcnt magmtudc to be ca]led

a faxlurc of the air compressor

+-Table 2.1. Typical Examples of Compressor Degradation Levels and Failure Mode and Effect

Compressor |  Failure | I " Degradation”
Subcomponent | Classification Failure Effect - - Failure Mode - Level .. .
. Bearings .....D Monthly preventwc ' N Low D
S S " | maintenance - '
~ . | bearings greased .
Filter D Monthly P.M. - filter Low D
| cleaned T B
I .Gasket |. -.D . QOil leak by gasket Gasket .. | Intermediate D
' deterioration
Jacket Heat D Corrosion deposits Mechanical Intermediate D
_Exchanger ... .| built up by aftercooler | debris; poor water )
T o o 0 T chemistry N R
"¢ Boltsand - | i D! Fractured stud on - =" | Mechanical *- ~. - .]. - HighD -
Fasteners spacer vibration
Pistons D Brass filings in high Mechanical wear | Hngh D
‘ : -| and low pressure .. ..-|,. . y N :
regions found durmg
| P.M.
. Piston F 1 0il leak at plston rod Mechanical wear F
o RS [N -t seal i oo UL, . N '
Lube Oil - . F » - | Pump seized and ... :| High temperature, -F
System became inoperable mechanical wear

-y N B - o a . B

23 Analysis Approach

The main objective of the analysis was to obtain the aging ‘failure rate and degradation rate
based on component age-related failure and degradation data, respectively.  These two parameters are
uscd to obtain the effectiveness of maintenarnce in preventing age-related failure.

For the analysis of air compressors,-aging data from only one of two BWRs were used. Based

on the statistical test, the aging data in the two available units were not compatible with each other

17 -
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(Appendix A). Therefore, the aging data from unit one was used to provide a data base from four
similar compressors. anﬁlarly, statisfieal tests were also conducted to justify the data pooling across the
four components.

The process of data collection (Appendix A) provides speeific degradation and failure times of
fo(xr 'sirnilai' compressors from one BWR. The data for each of the compressors individually were
insufﬁcient .to dete%mine the parameters (degradation rate and aging failure rate). Therefore, we
ainalyzed data from the group of components (i.e., four compressors). Similar to the analysis on RHR
oumps‘,statistical tests were conducted to justify the use of data across components.

(1) Mann-Whitney U ’I‘esﬁ

The Mann-Whitney U test was used in the analysis to identify components belonging to the same
population.

The four components in unit studied showed statistically ldentlcal distributions of times between
degradatxons (and fallures) 'l'hus, the aging data from across the four components in unit one is
combined for the analysns. | B

(2) Trend Testing and Identiﬁcagion'of Age-Group with Degradation and Failure Times °

The data obtained by the "data. oombining" methodl ‘were_ tested for time trends beforej
developing age-rela'ted degrndation and failure rates. Statistical tests were used to define oo'rn’ponenf
agc groups showmg similar agmg behavior. We observed that the first three years of the compressors
hfe showed a decreasing trend, and the last five years showed a increasing trend on both degradation
rate and failure rate.

2.4 | Aging Effects on Degradation

We analyzed the degradation data for the compressors with the following objectives:

(a) To identify age-groups where statistically significant time trends exist, and

(b). . To determine time trends and degradation rates, using regression analysis.
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The details of the statistical analysis are presented in the ‘appendiccs. The results and the
characteristics of estxmated degradatron rate are summanzed in Fxgure 2.3, which shows both the
'degradatlon rate ().d) and the loganthm of the degradatton rate (lnld) that charactenzed the air
compressors over ten years (prescnted as 40 quarters) Statxsttcal tests (Appendtx A) showed that the
degradation behawor across these components are snmllar, and taccordmgly, a generic degradation
charactensttc was studied. The age-dependent degradatron rate is based on approximately 240

degradatlon occurrences observcd for four compressors over the ten years of operatron

Degradation Rate 7\p (# per quarter) _ InAp
7.39 - 2
‘ ) . . . Estimated Degradation Rate
4.48 T — ——with"96% ¢onfldence bourds 1.5
Data Method - Combining
2.72 , —— —Quasi.Cubic spline fit.. . 4
1.00 _ e S 0
0.61 : -0.5
0.37p—--- -1
0.22|. _ -1.5
0.:12 C - 1 o 1 ) Y T [ [ ! -2
0 5 10 15 20-. . 25 .30 35 40

Age in quarters (3 month perlod)

anure 2.3 Age-dependent degradatlon rate (data on 4 air compressors)

I

The followmg observatxons can be made ‘£rom the agc-dependent degradatlon rate for the
underlymg air compressors | o

| '(5)' 'I'he degradatlon rate shows sngmf cant age-dependencc, the early life of the

compressors (the first five years) shows a statlstlcally significant decreasing

trend, and the later life (last five years) shows a statistically significant increasing

trend with the age of the compressors.
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(b) The increase in degradation rate, which is of interest in aging studies, is
significant.

(c) The 95% conﬁdence bounds for the degradatnon rate show that the uncertamty
in the estxmatxon is reasonably small. The large number of degradat:ons
observed in the component contributed to thns lower uncertamty.

25 Aging Effects on Failures
The agmg-fa:lure data for the compressors were also analyzed with the following objectnres
(a) To identify age-groups where statistically sxgmﬁcant time trends exist, and
(b) To determine aging-failure rates in the age-groups where time trends exist.
Figure 2.4jsho§vs' both tlre failure rate (4¢) and the logarithm of the failure rate (Ind,) for the air
COmpressors over ten years. 'l'he a'ée-dep'éndent failure rate presented is based on 25 failures observed
for four compressors over ten years of operation.
The following observations can be made from the aging-failure rate obtained for the air
COMPpressors:

(a) The aging-failure rate shows significant decreasing trend in the first two and a
half years (in 10 quarters), and an increasing trend for the last five years of the
component’s ten-years life.

(b) The bebavior of aging-failure rate is similar to the degradation rate in the early
two and one-half years, but differs after that.” The aging-failure rate was
generally lower (factor of 2 to 8) than the degradatxon rate and the difference
decreased W|th increasing age. The aging faﬂure rate reached about the same
level as the degradation rate at the end of the component’s ten years of

operation.
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(c) The 95% confidence bounds associated with aging-failure rate show higher
uncertainty compared {0 the dégradation rate due to the lower number of
’ _fiflilures observed.

2.6 Evnluat:ion of Maintenance Effectiveness

As discussed in our earlier report!, the degradation modeling approach estimates the

effectiveness of maintenance in preventing age-related failures. The transition probability from a

maintenance state to a failure state signifiés the ineffectiveness of maintenance in the simplified model
studied. The complement of maintenance ineffectiveness is maintenance effectiveness.

The maintenance effectiveness for the air combressors ﬁiswo.btained for each ten quarters of age.
The maintenance effectiveness (11 = qxce\il'énbt mai;n'tengncg",'?()_ = poor or no maintenance), as plotted
in Figure 2.5, varies between 0.3 and 0.9 for the first 30 quarters, buf |;s s;igniﬁcantly lower (about 0.1)
in the last 10 quarters, whicl:1 signifies the small i 'd:i;f'fcr'exicehlnvx‘ai’r'\'t'éhances made in preventing

degradations of components from transferring to failures.
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Failure Rate )\, (# per quarter) N '"Z\f
9 , -

Estimated Fallure Rate with
95% contidence bounds

4.48-— -~ o Data Method <~ Combining 7| 1.5
Quasi Cubic spline fit

272 - — 1

1.86} -1 .- — T-—- 0.5

1.00

0.61- k T / 4-0.5
0.371-— \ “// -1
0.22|——- \ . —{-1.

<L lo

pl iy \/ -1.5
0;14 _ L ! 1 3 1 1 t -2

0 5 10 15 20 25 30 35 40
‘ Age in quarters (3 month period)

Figure 2.4. Age-dependent failure rate (component: 4 air compressors)

Maintenance Effectiveness

~—Estimated Maintenance Elfactlvanassl
Data Method - Combining
08— = - -
0.8 U et n e
0.4 e e e e e
0.2F - —
0 ] 1 1
(o] 10 20 30 40

Age in Quarters (3 month perlods)
Figure 2.5. Estimated maintenance effectiveness (component: air compressors)
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3. SENSITIVITY ANALYSES OF DEGRADATION MODELING RESULTS

The degradatlon modelmg approach depends on the avallable data on component performance

Lol

and the interpretation of the data for use in thrs approach The ltmttatlons in obtammg the data and

A

the subjectivity mvolved in mterpretmg it have the potentlal to affect the results used in judgmg agmg
effects. In this sectlon, we present sensrtxvxty analyses to study the rmpact of several 1ssues on
degradatlon modehng results Sensrtmty analyses were performed for three aspects |

i) partxtlonmg of component .rel;abrhty‘ records (test and maintenance data) into

'
P EPEENCEE A

degradatron and farlure states

YL L Lt

©ii) uncertamty in degradatron occurrence ttmes and

i S

iii) 1mpact of component test frequency to detect degradatron and farlure occurrences.

3.1 Sensrtmty Annlysis on the Partltmning of Amnn-leure Data

$ . ‘~( . 'q.rﬂ

The partmomng of aglng-farlure data, from the engmeermg standpomt is the fundamental issue

Syt

of whether a component’s state is classrt‘ ed as degraded or failed. Analysrs of engineering data for
defining component degradatlon state and fallure state are dxscussed in Appendrx A,

i
b

The main objectwe of thls sensxttvxty analysrs is to analyze the sensxtrvrtres of degradatron

P U R vt
modelmg results to the uncertarntres in agtng-data partmomng mto degradatlon or farlure As stated,
because clear, detalled mformatnon is not always avallable to dct‘ ne the component state, subjcctmty

RN '

Wlll be mvolved in det‘ mng the state If thls process for defi nmg the component state can cause

srgmﬁcant vanatnon in the results obtamed through degradatlon modelmg analyses, then approaches

x,,‘ PR YTt

should be det‘ ned to account for uncertamtles in usmg the results of the analyses Processes can also
be defined to limit the uncertainties in defining the component state from the available data base. In

the next section, aging data on air compressors are used as a case study for this issue.
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3.1.1 Analysis Approach

Sensitivity analysis was performed by deterrnining aging failure rate, degradation rate; and the
maintenance effectiveness parameter for different data classfﬁcations obtained from the data evaluation
proeess. The analysis was perforrned based on the initially obtained data set.

The partitions of existing agmg-data obtained by redeﬁnmg the degraded and failure states for
sensntnnty evaluations weressomewhat judgmental For instance, the gasket leakmg problem of the air
COmPpressors was classified as a degraded state of the component in the original data base. Amblgulty
e:dsts, however, in the .sense that the gasket leakage problem up to a certain degree of severity will not
affect the required functional performance of the air compressor, but beyond that level of severity the
component will not be able to perform the requnred function, i.e., the oomponent is in a failed state.
Due to lack of detaxled mformatlon, clearly 1dentxfymg the component states is dlft‘ cult. Therefore, in
this sensntmty study, oomponent degraded states were re-evaluated and deﬁned as failure state where
clear judgement could not be made. The aging-data set obtamed after this partitioning and the
desen;ption of related partttioning criteria are presented in the Appendix B.

3. 1.2 Analysis Results on Sensitivity Partitioning of Aging-Failure Data

The same statlstrcal analysrs method was used on the data set obtam‘ed by repartitioning the
agmg-data for sensmvrty evaluatlon 'I'he details of data analysrs and statistical test results are presented
in Appendlx B. Since it was assumed that failure occurs through the process of degradations, the times
between degradation occurrenees rexnam unchanged regardless of the failure time partltlons Therefore.
throughout this sensitivity study the degradation rate is not affected by this repartitioning of component

states.
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Results of the analysns and general ﬁndmgs on the sensmvxty of data partmonmg are summanzed

as follows:

(a) | Statlstrcal Test for Data Combmmg o
'I'he statxstrcal test for data combmmg acrose eomponents: :wes conducted on the newly
partmoned data set. The results showed no srgmﬁcant dlfference for tne Mann-Whrtney U-Test on the
new data set compared to the initial data set. The statrstrcal tests still justified using data from unit one

across the four air compressors; Table B.3 in Appendix B gives the details of these results.

(b) - Trend Test Results and Identification of Age-Groups with Failure Times

The data obtained for this sensitivity evaluation were tested for time trends. 'No significant

differences in tlme trends between correspondmg age-groups eompared to the ongmal evaluatrons were

observed Tab]e 3. 1 presents the eompanson of statlstrcal parameters representmg the fallure rate trends

Le e

showing the effect of data partitioning.

Table 3.1.’ Sensitivity of Failure Time Trend on Data Partitioning

Aging Rate
uncertainty A uncertainty standard
T (5% error) | -Ina - |0 P2 ¢ (5% error) error
Before . | . I R T o .
15-40 0.1012 | 0.035 CL:0.0078 -3.696 | 0.007 CL:-6.22 0.035 1.398
. | cu01964 | | .. . CU:-1.163 . .
0-12 -0.349 0.005 CL:-0.551 1.079 0.07 CL:-0.118 0.005 0.878
. DRI | NN A ], CUD147 |« o ] » CU: 2,276 T I AP
After
1240 0.085 | 002 CL:0.015 -2.842 | 0.005 CL:4.743 0.02 1322
A Tl cuoass | | cu0939 | - e

P: Significance level



The results presented in Table 3.1 can be interpreted as follows. In the early age group (about
0-15 quarters), the component shows negatwe aging effects in both cases (before and after data
partition). However, the component shows a slightly lower negative aglng factor before data partnt:omng

rather than after partlttonmg In the later age group (around 15-40 quarters), the agmg factor before
data partttronmg (b 0. 1012) is sllghtly hrgher than the factor after data partrttonmg (b = 0.085). This
htgher factor shows that the agmg effect may be shghtly over estimated due to sub]ectmty in data-
partmonmg
(c) Aging Effect on Degradation
There were no changes found in aging effects over degradation rate due to data partitioning
because the degradation state remained unchanged following repartitioning for sensitivity evaluations.
(@) Aging Effect on Failures
The follownng sensrtmty observatlons can be made from the aging failure rate obtained for the
air eompressors, based on the newly partitioned data base:
i The aging-failure rate shows slightly different downward time trend in the first
10 quarters in that the failure rate obtained using the newly partitioned data
shows a relatively smaller downward time trend (a factor of 4.5 decrease)
compared to the previously obtained time-dependant failure rate (a factor of 7
decrease). - : |
ii. | In the last 15' to 20 quarters, no differences were found on the increasing time
trends between the two data sets obtamed by sensxtmty failure time partmonmg.
Fxgure 3.1 shows the sensrtmty of agmg farlure rate to the subjectmty in data partitioning.

(e) Sensmvrtv Effects of Data Partmomng on Mamtenance Effectiveness

The esttmated maintenance effecttveness based on the newly partitioned aging data was obtained
(Figure 3.2) by the same approach as before; the maintenance effectiveness varies between 0.7 to 0.85

for the first 20 quarters and then reaches approximately 0.1 in the last 10 quarters.
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Failure Rate 7\, (# per quarter) INA¢
7.39 — = . .. .. : — 2
N Estimated Fallure Rate with

4.48 95% confidence bounds ]

ata Method - Combinin
uas 8 b?c spline tit g

fter Data-Re-partitioning - ) 1
1.65 / ‘ 0.5
N4 _—

1.00 jnu Cu‘o Dan Farrltlonlna ‘ . /// (o]
S i iy -0.5

1.5

2.72——

0.61|- - -
.0.37 v// y
..0. . .5 1 .15 20 25 80 ' 85 i 40

Age in quarters (3 month penod)

,Dlta Scwrco 4 alr compressors combined
Figure 3.1. Sensitivity of age dependent failure rate
. due to subjectivity in data partitioning .

iMaintenance Effectiveness :=:: . . . . -~ T o
‘ ‘e Eatimated Maintensnce Effectiveness
Base Case Data Partitioning
0.8 — e - —. £Estimated Maintenance Ellectiveness
; ’ Alter Data Re<partitioning
) ————e Data Method = Combining
0.8 '
‘ e Ty
0.4}
0.2_ e JEREE PN 5 ‘l'
|
! . . L L > R . IR B IR
o 1 1 1
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Figure 3.2. Sensitivity of estimated maintenance effectiveness
in data partitioning
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The maintenance effectiveness has almost the same time trend as the one obtained from the
initial data set, except that the magnitude of the maintenance effectiveness (newly obtained) is decreased
about 25%. Such a decrease is apparently caused by the increase in component fallure rate obtained
from repartmonmg of the data Table 3.2 gives the details of comparison of the maintenance

effectiveness parameter.

Table 3.2. Sensitivity Companson of Data Partitioning
on Maintenance Effectiveness

Maintenance Effectiveness
Age Group/

Data 0-10 10-20 20-30 30-40
Partitioning (quarters) (quarters) (quarters) (quarters)
Before 0.781 0912. 0.587 0.345
After 0.684 0.843 0371 0.146

3.13  The General Conclusion on Sensitivity of Aging-Data Partitioning
The following conclusions can be made from the results of this sensitivity evaluation:
i. _ relatively small uncertainties on aging-data partitions will not significantly affect
" the aesults 'af).tained by using the degradation modeling approach,

ii. senéitivity( Vo:f failure—data partitions is reflected on the magnitude of the
estimated failure rate, whereas the effect of the time trends on both degradation
and failure rate was minimal. However, the engineering standard used in data
partitioning can have impact on the degradation modeling results, and

iit. the maintenance effectiveness was sensitive to data partitioning. Thus, defining
engineering criteria for data partitioning is important for applying degradation

modeling in maintenance decisions.
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3.2 Sensltivnty Annlysns on Uncertathof Degrndutlon Occurrence T'mes

RN - RN

In thls sectton, we present a sensntmty study on the uncertamty of degradatlon occurrence tlmes
The pnmary focus of thls analysrs is to mcorporate the uncertamtles present in the component

degradatlon ttmes used 1n the analysxs In practtce, partlcularly for standby components where the
component is tested at spec:ﬁed intervals to detect fallures or degradatlon, there can be dxfferences

between the tlme at whlch degradatton is detected and the tlme at Wthh 1t actually occurred. Thls
uncertamty was 1nvest1gated by mcorporatmg the undetected degradatlon occurrence times mto data
" n 3 s . RCRE 1 e .
analysrs of the degradatton modelmg method
] LA ety e

The sensmvnty study was camed out based on the data on RHR pumps (as used in our earller

o L. e wTTE Yot RS

report!). The followmg assumpttons were made to calculate undetected degradatlon occurrence times:

.........

(a) On the average, the uncertamty in degradanon occurrence time is one- half of the test

.t
RN

interval. o 4
| (b) Degradatlon occurrence ts a Poxssonhprocessﬁm nature, and consequently,‘the undetected
| | times between each degradatlon follow an exponentlal dtstnbutxon witha constant mean,
£ gl s
whnch is assumed to be the same as theldlstnbutxon of test mtervals

.\ -

(c) A Monte-Carlo srmulatnon techmque was used and a computer program was written to

generate the random sample for the undetected degradatton occurrence tlme 1ntervals

3 ER. i : . o

3.21 Annlysls Appronch

In thls sensmvxty analysxs, the tlme-dependent degradatton rate was determmed based on data,

. o T T T vr—'.

recalculated by mcorporatmg the undetected degradatlon occurrence tlmes The data were modlf ed

,,,,, -

AR PN Vo AR

accordtng to the assumptlons stated above, that 1s, the tlme mtervals between degradatton occurrences

s g PRI B A . . .
PN TRl ‘>1' . . .

in the ongmal data base were subtracted by the undetected times, whlch were generated randomly by

~rnl I . S oY

a computer program usmg Monte Carlo snmulatlon techmques

s ol LN IS R A N Lt

The statlstlcal analysxs method used in our earlier report' was applted on the new data set for

RHR pumps [Appendix C, Table C.1], which was obtained by |mposmg the uncertamty in tlmes of
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degradation occurrences. The uncertamty times (undetected degradation occurrence tlmes) were
randomly generated by a oomputer program, whxch assumed an exponenttally dtstnbuted random
vanable wnh a mean of (30/2 ) 15 days, ie., approxtmately 0.166 quarter, or half month In other
words an average of 15 days (half of the test mterval of one month) undetected time was imposed on
the initial data set as the uncertamty m the degradation occurrence time. Details of data modxﬁcation
and statistical test results are presented in Appendlx C.

Smce this sensitivity analysns was pnmanly focused on degradation occurrence times, only the
trme-dependent degradation rate and its agmg effect were analyzed and eompared with the xnmal results,
which do not include uncertamties m degradation occurrence tlmes. Results of sensitivity analysxs on
the uncertalnty of degradatlon occurrence for RHR pumps are summanzed as follow5'

(a) Trend Test Results and Identit’ cation Of Age- Group wnth Degradation Times
The data obtained by mcludmg of uncertamty in degradation occurrence times were tested for aging
trends. We found no srgmﬁcant dlfferences of time trends due to mcludmg uncertainty in degradation
oocurrenee times. The eompanson of statxstlcal parameters showmg the |mpact of uncertainty in
degradatlon occurrence times is presented in Table 3 3.

The statistical parameters in Table 3.3 show almost the same time-trendmg results in both cases
which shows that the sensntxvnty of uncertamty in degradation occurrences is not statistically significant.

| (b) Effect -on Degradation Rate, Failure Rate, and Maintenance Effectiveness
No changes were found in aging effect over the time-dependent degradation rate, because oi the
imposition of uncertainty in degradation occurrence times. Figure 3.3 gives the time-dependent
degradation rate over ll) years for RHR pumps in 3 plants. The imposed uncertainty on degradation
occurrence times resulted m shlftmg the occurrence intervals which moved in the same direction (i.e.,
the origmal time mtervals were all subtracted by a certain amount of uncertamty time, sxgmfymg that

a degradation may have occurred before the dectected time). However, this behavior, does not affect

the time- dcpendent degradation rate.
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Slmxlarly, the agmg effect as the faxlure rate rcmamed unchanged and thus, the mamtenance

-

effectxveness parameter was also insensitive to uncertamty in degradatlon occurrence txmes

R P

Degradation Rate Ap{ # per quarter)

IR 54.8 = In 9.,
33.12 o preeen —mem
09 T — - - Estimated Degradation Rate -
11’: g:_ L ‘ ‘ : . ' 95% confidence bounds 3.
° Data Method 1 ~ Comblnlng
7.3 — — S —Quasi Cublc-spline fit—~-———2
4.48— -
0.37

1.85 - " - ,with uncertainty in degradation times ... 1 R

ro0| 7 T

0.61 "' : i R . I
0.37

o.22f
O0.14 - —-
.0.08 }~——_without uncertainty_in_degradation_times \

gg; :‘ m__l_lncarulntg_ times - exponential with mean of 30 days -3

0.02 1 | \ -4
-0 . 10 - - 1,; 20 .. ... 30 » 40
Age in Quarters (3 month perlods)
Data source: RHR pumps in 3 plants

Figure 3.3.) Age-dependent degradation rate
with uncertainty of degradation times

Table 3.3. Sensitivity of Degradation Time Trend on the
Uncertainty of Degradation Occurrences

SLyaagsly Lo Ll

Aging Rate . Constant . . Model
Age - P
Data Group b Ina
Status (quarters) " uncertainty | | uncertainty | standard
b P, | (5%error) .| Ina P (5% error) P . error
| N NN S D N G Adbthar AL St S S it I St
o 020 -0.095 | 0.0006 ; CU:-0.0508 | 0.541 | 0.025 CU: 1.015 0.0001 1.234
‘Ignore © - Sontge o e T CLe0A39S ). vl s ] CLe 0066 0 L ]
Occurrence
Uncertainty 20-40 0.105 | 0.046 CU: 0.207 -4.161 | 0.012 CU:-7.325 0.045 1.287
CL: 0.0022 CL:-0.997 T e
0-20 <0.098 | 0.0001 CU:-0.0508 0586 | 0.018 CU: 0.1027 | 0.0001 1.259
Incorporate CL:-0.144 ' CL: 1.068
Occurrence
Uncertainty 2040 0.1037 0.05 CU: 0.204 <4.091 | 0.015 CU:-7.132 0.053 1.327
CL: 0.0013 CL:-0.913

P: Significance level



33 Sensitivity of Test Frequency to the Estimation_of Degradation_Frequency

The de‘gra'dations observed fn a time period is depcndént on the .numbcr of surveillance tests'
performed on t‘he component. | I-'{.owew./er, certain degradations a;n also be dbservéd vi?x obérating
parameters. By conducting surveillance testing at a frequency lower than the occurrence of degradation
frequency, occurrences of degradations can remain undetected. Therefore, we studied the correlations
between the observed dc‘:gi'éd.a't‘ic;n fféqﬁcncy and the test frequency. The analysis presented focusses
on investigating the sensitivity and functional relationship between these two parameters. The following
assumptions were made in dériving the correlation between degradation rate and test rate.

i. The_ number»of degradations observed in a-given time period follows a poisson process.
ii. Probability of observing a number of degradations in a total number of N tests follows
a binomial distribution.

iii. Degradation frequency is assumed to be time invariable in a fixed time period.

Let,
Py probability of observing a degradation in each test.
T: assumed test intewai.
A time invariant degradation rate (piecewise constant).
Ng number (\)fﬁtirpesr te;ié@ for degradation in time period (t,, t,).
W test frequency (or test rate). -
L: total time peﬁodlof observations.

) D.: number of degradations observed in time period of T. .
Based on the above assumptions, the Cumulative Distribution Function (CDF) of N, can be

derived as follows:
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=1 (3.1)
w, T
so,
-t
N =Int|Z2t] = Int {t-tpe )
= Int(L-w,) e )
O .~ v . . .AT‘ L»
E(D,) = Py~ Ny = (1-e7) =
-1 ‘ l )
- (1-e-’ff)1m[tz '] O | (33)
T
or,
E(D,) = (1-e™M) Lo, e
-2 , . (3.4)
= (l-c "') lnt[(tz-tl)wt] B .
Thus, the probability of observing number of D, degradations given Py, Ny, and L will be
P,(D, [Py Ngy L) .-
i (g) (l-e-lT).D.. e‘lT(N-b';) . rt ~‘;~ =i
n * * . N . »
(3.5)
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Hence,
the cumulative distribution function (CDF) of D, can be obtained as:

P(k s D,|P, N, L)

k
- (f;:) (1-e-iT)k ¢~4T0N-H) (3.6)

inl

The above expression (3.6) shows the probability of observing the number of degradations less
than and equal to D, in the time interval T with given degradation rate 4; probability of observing a
dégradation in each test (py); and the test frequency (w,).

The results of the sensitivity correlations between 4 and w, are plotted in Figure 3.4, where
complementary cumulative distribution function (CCDF) for observing degradations are plotted for six
different values of test frequencies. The figure shows that the estimated degradation frequency can be
ooi{sfdcrably affected by the test frequency, which indicates the need for incorporating the test frequency

directly into our degradation modeling approach.

CCDF of observing degradations (1-Pr)

1
Test freq.
\ &~ Wte20/yr
0.8 - - e
Test freq.
0.8+ - Wted/yr—.
0.4~ - ————
0.2 —-
o 1
(o) 5 10 15 20 25 30
# of Degradations
— Wte3/year - Wte8/year - Wte9/year
— Wte12/year - Wte15/year — Wte20/year

Figure 3.4. Sensitivity of test frequency to component degradation rate
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4. ANALYSIS OF DEGRADA’I'ION-FAILURE RELATIONSHIP - EVENT-COUNT BASED
APPROACH ’
In thls chapter, we present an event-oount based approach for data analysrs to study the

relatlonshrp between degradatrons and failures. This approach uses non-parametnc statrstlcal methods
R
to estlmate and seek. relatlons between degradatron and fallure rates based solely on the number of

observed degradatrons and fanlures in each umt tlme or age mterval
This approach provrdes a sxmple framework for explonng the relatlonshlp between degradatron

X"

and failure rate. Since aging-related failures, in general pass through a degraded state first, the

degradation rate serves as a precursor to the failure rate Increasmg agmg trend in the degradation rate
gt
can signal future i mcreasmg aging trends i in the farlure rate We study snmple lmear relationship between

these two parameters considering any delayed effect that degradations may have on failure occurrences.
In general disciplines thatc'a'r'i'bé‘ used to‘dev'elop' relationShips between the *degradation rate

and the fatlure rate mclude engmeenng, relrabllrty, and statxstlcal dlsc1plmes Engmeenng and relrabrhty

disciplines are requrred to develop the theoretical models between the degradatlon rate and failure rate.

- Statistical dxscrplmes are requ|red to estrmate unknown parameters and to vahdate the theoretical
models The relatronshrps between the degradatlon rate and farlure rate, whrch are studled here, are

among the simplest models to develop, they ,are consrstent wnth rehablhty and engmeermg

consrderatrons In the relatronshlps whrch are developed the degradatron rate is related to the fallure

4 .

rate by appropnate transmon probabllmes. These transrtlon probabrhtnes are obtamed by studymg the
eorrelatlons between occurrences of degradatlon and failures. They also include the effecttveness of
. t

) H . i 3 \ e
. t

mamtenance in controllmg the degradatlons before beoommg fallures T

“The data analysrs is the first step'in obtammg the necessary parameters for these relatronshrps

The relationships can be applied in several different ways.
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4.1 ‘ A Distribution-Free Statistical Test Approach for Data Combining

In this sectlon, a dxstributlon-free alternative of two-way Anova F testis demonstrated based on
the event-count data analysxs method. The analysis was carried out using the data on RHR pumps
presented in our earher report.l

Since the non-parametnc statxsncal test is used to check the data discrepancy for data combmmg
across the three plants, the ongmal agmg data set for the RHR pumps was reeonstructed as given 1n

Table 4.1 and 4.2, where the number of degradauons for each plant wnthm each year were counted and

grouped into a plant-by-age oontmgency table.

Table 4.1. Degradatlon & Failure Data Based on Counts
' (12 RHR pumps - 3 units)

Age Plant 1 Plant 2 Plant 3 Total
(Years) I a1 nfl | nd2 a2 nd3 | nB Nd | Nf
Cilst 5 0 13 - 1 1- 3 19 4
.~ 2nd 2. 0 -4 7 2 0 8 7.

| 3ed 9 1| 2 1 4 0 15 2

4th 4 0 3 0 0 0 7 0
Sth 6 2 1 0 2 0 9 2
“Ceth | 4 0 3 1 0 0 7 1

| 7th 2 0 .0 1 0 0 2 1
© 8th 1. 1 0 L0 2 -0 3 1

9th 1 0 0 0 14 0 15 0

10th 0 0 0 0 2 0 2 0

11th 0 0 0 0 5 0 5 0




Table 4.2. Cross-tabulation of Age by Plants for Data on RHR Pumps -
(A Distribution-Free Alternative of 2-Way Anova F Test)

PI

SR i ~ Row -

Ag:lam 1 2 3  Total

4] 1T 5 "13 19-

21 -2 +85 | 4. 8

3| 4 2 2 | 15

4 0 9 3 7

5.2 |41 .9 .
. 6| 0 6 3 7

71 0O 4 0 2

gl 2 2- 1 0 3

9| 14 1 0 15

10 2 0 0 2

11 5 | 0 0O | s
Column T |

Total 32 38 26 96

In Table 4.2, the variable Pl (j=1,2,3) for each column represents data from different plants,
and the variable t, (i = 1, 11)  for each'row represents data from different age groups. The effect
of the time unit selected for the age group on the sample size depends on the sparsity of the data set.
In this analysis, the aging data over the component life span of eleven years were divided into eleven

groups, where data within the time unit of one year were combined.



To test the homogeneity of aging data in different plants, in order to combine them to increase
the sample density, we used a chi-sqare test to check the followmg hypotheses:
(a) Do the plants (in terms of the number of events) appear to differ in the composition of
their age groups?
(b) If differences exist between numbers in any one row, would they be only due to the
random chances?
(c) Are the distributions of population from plants 1 through 3 identical?
The statistical hypothesis listed above, and the related test can be expressed mathematically as:
Hy: P(x = [PL) = P(x = t;) (4.1)
where,
H, is the null hypothesis representing the homoécneity of agiﬁg behavior in different plants.

The test statistic:

r ¢ “F.\2
Q,;z’:(qE) (4.2)

E; is the expected frequency for the ijth cell in Table 4.2

O; is the observed number of degradations in the jth sample (i.e., jth plant) belonging to

category i (i.e., age group i).

n;, denotes the total number of items of age group i in the combined sample,
n,; denotes the total number of items for plant j in the combined sample, and

n denotes the total number of observations.
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c r
ns= E n.j=.E n,, . ) S ) (4.4)
j=1 - i=l . . -

where r and c represent the number of rows and columns in Table 4.2. °

For a giQen type 1 error a, H, will be rejected at significance level a if:

1 4 [ .
Yy = > X hea ‘ (4.5)
i E; S

e e

Based on data in ""I"éb']é'jt}.z,' the above test was conducted at a siéniﬁcance level of a=0.05, which gives:

xz(r-n. (c-1). a i‘A'\rleo.z.o.os = 8141 > Q= 61.03 i (4.6)
that is, ‘
H, can not be reject;d ‘;t a=005 lcvel,whxch justlﬁescombmmg -d‘ata from RHR pumps from
3 plants for estimating degradation rate.

42 Estimation of Degradation and Failure Frequency Using Event Counts

Using the event-count based data set obtained by combining across the data from the 3 plants,
a point estimate method was applied to obtain the estimation of degradation and failure rate over each
year of the 10-year age period.We used a non-linear regression technique on the yearly point estimates
to obtain the approximate time-dependent .degradation and. failure frequency. The estimated
degradation and failure frequency are plotted on Figure 4.1.- The degradation and failure rate estimates
shown are consistent compared with the results obtained by the parametrical estimates given in our
earlier report!. . S s

SR ) ’ : B R R A LA DTN



Quarterly Degradation/Failure Rate

Total # of Events
25

2.08
1.88 Degradation Rate Estimated
By Nealinear Regressien
1.6} - -~ 20
1.8 Observed Degradation
1.28 |- 15
1.0¢
0.83| - — . 10
0.3
o.42 K = Observed Failure Rate ™. i : 5
> Az Estimated Failure Rate
o.21 - N :

0.00 1 - 1 1 1 1 0
0 4 6 8 10 12
Age (year)

Figure 4.1. Degradation & failure rate estimation
(event-counts based approach - Data on RHR pumps from 3 plants)
43 Analysis _of Correlation Between Degradation and Failure Frequencies - Time-Lag

Considerations

As we stated, the objective of degradation modeling is to develop relationships between the
component degradation rate and the component failure rate. These relationships involve predicting how
the component failure rate will change based on observations of the component degradation rate. Of
most interest is predicting aging trends in the failure rates based on observed aging trends and patterns
in the degradation rate.

If A denotes the failure rate, and 1; denotes the degradation rate, then the objective of
degradation modeling can be interpreted as developing relationships between 1, and Aq. If the symbol

"R" denotes these relationships then we may write:



M=RG) _ﬁwwu\.ﬁ‘w o ':i @7)

Thus, the objectlve of degradatlon modelmg is to find the relatxonshlp R

™ RN t,, ,|'..

Smce agmg-related fanlures, in general pass through a degradatlon stage first, the degradatlon

{ye o - .

rate servesas a precursor to the fallure rate. Increasmg agmg trends in the degradatnon rate can signal

S - , s

future mcreasmg agmg trends in the fallure rate Also, by recordmg the charactenstm of the
degradatnons, the seventy of the degradatxon rate can be determmed Increasmg seventres of the

degradatlon rate can also sngnal future increases in the fallure rate We, however, focused on relatmg

. L P, .
.‘ . f‘.

occurrence rates and drd not study the 1mpact of mcreased seventy of the degradatlon to fallure rate

at this time. Effect of mcreased degradatlon seventy can be studied by expanding the Markov modeling

Sy s PR

¢

approach to multiple degraded states supported by engmeenng cntena and‘ data to obtain the necessary
information from tests on component, maintenance, and operability records.

For our study, the relationship (5.7) is expressed as: = " .

A (t+1) = Cy A4(t) Ll o (4.8)

where,

Ayt) is the degradation rate at ti.me:(t) L

A{t+]) is the failure rate at time (t+1)

1 is the time-lag at which degradations impact failure occurrences

Cy is the eorretation coefficient bet\veeh deéradatioh occunences and failure occurrences

The above expression assumes a linear relationship where Cy,, to he‘-estimated:fro‘rh data
analyses, is similar to the parameter of maintenance ineffectiveness. The parameter | represents the
delayed effect because the component generally passes through a degraded state before experiencing

failures, and is also estimated from data.



We used the event-count based data analysis to determine the correlation coefficient as well as
the lagged time between degradation and failure frequencies Using the data in Table 4 1, the‘Kendall’
Rank Correlation analysxs method was employed to estimate the correlatron coefﬁcrent for each
mdmdual plant data, as wcll as the combmed data of the 3 plants A statrstrcal software package
(STATGRAPH) was used to calculate the correlatron coefficient for a large number of possible time- lag
values. Among all the calculated trme lag correlatxon coefficients, the correlation coefﬁcrent usmg a
trme lag of 2 years reached the maximum value at a significance level of a-O 029. The statistical results

of Kendall’s Rank Correlatlon coefﬁcrents are summarized in Table 4.3 and 'l'able 4.4.

Table 4.3. Kendall's Rank Correlatlon Analysns Results
"~ for RHR Pumps at 3 Plants

Correlation Analyses Between N and Ny,

Plant 1: Correlation Coefficient: 0.3570
Significance Level: 0.0139
Plant 2: Correlation Coefficient: 0.5429
Significance Level: 0.0005
Plant 3: Correlation Coefficient: -0.2067
Significance Level: - - 0.5134

3 Plant Combined:

N¢vs. Ng: Correlation Coefficient: ‘ 0.3721
Significance Level: 0.0692

N; = number of failures
N4 = number of degradations



Table 4.4. Kendall’s Rank Correlation Analysis Using Time-Lag Considerations
(Data on RHR Pumps from 3 Units)

No Time-Lag
Correlation Coefficient: 03721
Significance Level: *+0.0692
One-Year Time-Lag
Correlation Coefficient: 0.1826
Significance Level: 0.3966

Two-year Time-Lag

Corrélﬁﬁcjn Coefficient: 0.505 N
Significance Level: ~~ ~ ° 0.0294 - °

4.4 Estimation of Fnllurc Ratc from chradatnon Data T'me-Lag Rggressmn

One of the apphcatlons of degradatnon modelmg is to estlmﬁte the fallure rate from the
degradation rate of a component. - Here, using thetime-lag correlation coefficients obtained in the
previous section, the failure counts are estimated from degradations counts. - The lagged regression
technique was used to estimate the failure frequency based on the correlation coefficient and estimated
time-lag. A linear regression model was used,'although time-lag regression methods can use exponential
or other non-linear models depending on the data distribution properties. -. ..

- Analysis of data on RHR pumps' is presented as an example of .this application. Figure 4.2
presents the estimated failure frequency from the degradation frequency, and Table 4.5 shows estimated

parameters from the data used in obtaining the failure frequency.

e -
:



Quarterly Degradation/Failure Rate Total # of Events

2.08
Daaradat o et gt inated Use of Lag-time Correlation
o0 87 pontinesr Rogression for Fallure Rate Estimate
.67 oo\ A Ss— T
1.40 /Obun.d Degradation
1.26 1§ ‘
1.04
0.8 -4 10
0.83
o.42| - —45
0.21 ,-r~‘£'}E§tlmarod Failure Rate
3 e p——
0.00 1 P - 0
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8
Age (year)

.Figure 4.2. Degradation & failure rate estimation -
(event-counts based approach - data on RHR pumps from 3 units)

t

In Figure 4.2, the estimated failure rate in the last two years (age 9 to 11) is obtained from the
degradation rate. This estimated failure rate is obtained by using equation 4.8, where both the
correlation between degradation and failures and the delayed effects are incorporated. The correlation
coefficient and the 2-year time-lag were estimated using the first 9 years of data. The estimated failure
rate shows the increasing trend similar to the degradation rate, but lagged by 2 years. This estimated
failure rate is comparable to the failure rate obtained by assuming no failures during this period (age
9to 11). However, because of the increasing trend, the estimated rate starts becoming larger than that
obtained otherwise. As we discussed previously, estimating failure rate from degradation data can

significantly help risk-evaluation of aging, but the results need to be validated further.
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'i‘able 4.5. Esti.mau.:dA .Parametérs on Tlme-Lag Régressioh A'h;lysis
(Combined Data of RHR Pumps from 3 Units)

. Obtained Regression Model: Ng = -0.112 + 0.0942N,
Coefficient:  0.0942 at significance level: - 0.05
Constant: -0.112 at significance level: - 0.453 -
R Squared: '42.2% (indicates 42.2% of the total sample
e o -variation is explained by the model) . ..
Correlation Coefficient (N vs. Ng):-  0.649
Model is Significance at Level: . . .. 0.0582

- Standard Error of Estimation: . .. 0.677

45 Applications of the Degradation Rate-Failure Rate Relationship

Once the relationship between the degradation rate and the failure rate is determined, it can
be applied in several important ways. We studied one application (estimation of component failure rate
from degradation rate), but other important applications can be squied with potential advantages. Some
are summarized below. .

1. The component failure rate can be estimated from degradation data. This estimation
greatly increases the accuracy of the failure rate estimation for reliability and risk
evaluations, and allows the failure rate to be estimated even if there is no failure data.
If failure data exists, the estimate of the failure rate from the failure data can be
optimally combined with the estimate from the degradation data.

2. Aging trends in the component failure rate can be estimated from aging trends in the
degradation rate. This estimation is one of the most powerful applications of the

degradation rate-failure rate relationship. Aging trends, which are identified in
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degradation data, can be input into the relationship to predict the aging trend in the
failure rate. The determined aging-dependent faiiure rate in turn, can, be input to
reliability and risk models to predict the resulting, impact on the reliability and risk.
3. Degradations can be monitored for their reliability and risk impacts. Alert levels and
warning levels can be designed to monitor degradation to indicate when the failure rate
is too high or is significantly increasing.
4. Maintenance can be monitored for its reliability and risk effectiveness. This again
immediately follows from the degradation rate-failure rate relationship. The degradation
rate-failure rate relationship which is determined through degradation modeling, is a
function of the maintenance program. If the degradation rate as determined from the
data on corrective maintenance and preventative maintenance implies that the failure
rate is too high or is significantly increasing, then the maintenance is ineffective. If the
failure rate is maintained at an acceptable level, then the maintenance is effective from
areliability and risk standpoint.
"The accuracy and extent to which degradation rate-failure rate relationship can be determined
are critical in demonstrating these applications. These applications can provide important inputs in
maintenance decisions and aging evaluations, because in the past, degradations and maintenances have

not been explicitly related to the failure rate, except in special cases.
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5. EXTENSIONS OF DEGRADATION MODELING THEANALYSIS OF PROGRESSIONS OF

O

DEGRADED STATES

5.1 acl_(gro nd and anuc Concepts

’I‘he prevxous degradanon models that were deveIOped mvolved mtegral equatxons The
— .
mtegral equatlons expressed the degradatton rate and fallure Tate (faxlure frequency) of a oomponent

.

ata ngen trme in terms of the degradatlon rates and fallure rates at earher txmes multtphed by

appropnate transmon probablhtles These mtegral equatxons, whlch are basrcally balance equations,

were used to obtain solutions for the degradatlon rate and fallure rate for glven cases. The

T P HEETRIVN ‘:",
degradatlon rate and failure rate were also used to define measures of malntenance effectlveness
L. b

Our present work extends the prewous degradatlon modelmg by presentmg models whxch )

t T s S N R AR st ,f\,‘ L s e

expltcrtly show the 'rehablhty effects of different mamtenance and test mtervals different
maintenance and test efﬁcxenmes and dxfferent repalr tlmes Th:s work also allows the rellabxhty
effects of different mamtenance programs mcludmg mlmmal mamtenance programs and

comprehensxve oondmon momtonng programs tot b-e' evalttated | The extended degradatlon models
also allow multiple degraded states instead of a single degraded state. For example, the multiple
degraded states can be associated with different degrees of degradation or a given degraded state
can be dssociated with a particular piecepart of the component failing or 'degrading. A given

-

degraded state can also be assocxated wrth a partlcular degradat:on mechamsm or failure mechanism.

- e e <.

The extended degradation models, which are presented, include ;the previous models as
special cases. However, the extended models'are however presented in"terms of ditt‘erential
equations. The previous models can also be presented in terms of differential equation models by
simply differentiating the integral equations. The differential equation épproach allows the models
to be extended to cover multiple degraded states and to include detailed test, maintenance, and
repair characteristics. The differential equation approach also allows standard and powerful Markov

model approaches to be applied to obtain specific results when particular data are input.
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52 anlc Approach

A stralghtforward, yet powerful approach for analyzmg aging and degradatron is to analyze
degraded state progressions. This analysis consists of two steps: 1) classrfymg components degraded
states and 2) identifying transition rates between the individual states The transition rates give the
rate of transfer from one state to another From the transition rates, component reliability
characterrstrcs as a function ot' age can then be determined by standard Markov state modelmg
techniques®?, but apphed to degradatron analyses. This report describes the approaches as applred
to degradation analyses |

In the simplest case, which i is generally modeled in probabilistic risk analyses (PRAs), the
component is assumed to have only two states, a farled state and a successful operating state;
intermediate degraded states are not exphcrtly modeled. Let 0 denote the operatmg state and 1
denote the failed state The transmon matnx, which contains the transition rates by which the
component can transfer from 0 to 1 and vice versa, is then constructed.

For the two-state model (1=failed, O—operatmg), the transition matrix is the following.

Final o
State 0 1
Initial
State
0 0 A
1 B 0

5-2



The quantity, 4, is the component failure rate, which is the rate for transferring from an
operating state (0) to a falled state (1) in a given unit of txme ’l'he quanuty, i, is the repalr rate,

which is the rate for transfernng from a falled state (1) back to an operatmg state (0) ina umt of

time. The entnes in the O, 0) and (1 1) positions of the transmon matrix are zero since there is no

. ‘A’

change in state.

The failure rate, 4, and repair rate, p, or their equivalents are estimated to determine the
associated oomponent rellablllty charactenstm The faxlure rate, l can be estlmated as one over the

v e o -
e

mean time to fatlure TF,

A= — (5.1)

R R I S R TR . - .
where T is estimated as the average of the observed times to failure. The repair rate, u, can be
estimated as one over the mean time to repair Tr,

v
el

= O c T e - T e (52
B T (52)

where Ty is estimated as the average of the observed repair times.

Once the failure rate and repair rate are estimated, the eomponent t;navailability and other |
reliability quantities can be determined using state balance equations (which are termed R
Kolmogorov's equations). For example, the probability, p(t), that the component is in a failed state
at time t+dt, which is the component unavailability, is given by the balance equation,
p(t+dt) = p(t)(1-pdt) (53)

+ (1-p(t)}A dt



This balance equation can be expressed in words as:

Probability that = .Probability that | . Prc‘)bability‘that
the ;omponent is | vtl.1'c combénent is repair is not
do;vn at t+dt do;vn att corr;plcted in t to t+dt
+ Probabilit'y‘that . Probability that
lthe oomponent is the component fails
up at t in t to t+dt 54)

As observed in the above equation, the repair rate, p, is such that when multiplied by a small
increment of time, dt gives the probability of repair being completed in that increment of time when
the component is déwn. One minus this’ quantity, i.e. 1-pdt, gives the prébability of the repair not
being completed. The failure rate, 4, is such that wﬁén multiplied by a small increment of timclz,bi‘.e.,
Adt, gives the probability of the component failing in the increment of time given the component is
initially up.

Expanding p(t+dt) one then obtains:

p(t)+ % dt =p(t)-p(t)pdt +Adt - p(t)idt (5-5)
or
2 +(u+d)p=4 (5-6)
dt '
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which is a standard first-order differential equation and can be solvedby standard techniquesv to give:

p(t) = —(1 —e@enty - S S (57)

In PRASs, the steady-state or asymptotic value is used, where t goes to infinity ():

-] . R A ST ST T 3.8
) = 2 ~ 58)

53 Incorporation of a Component Dggraded State

In addition to the success state and falled state assume that one degraded stated also is

.4,

eonsndered for the component. Let the three states be denoted as 0,1 2

0= operating state (good‘ as new; etate)--' ' o (5.9)
1= degraded state (a sxttgle degraded state) o - A ' (5.10)
2= failed state (5.11)

The transition matrix can then be constructed as:

Initial Final

State State 0 1 e 02
0 0 A A2
1 Mo A1 M2
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The transition rates are defined by:

Aot

the transition rate of going from an operating state (0)

to a degraded state (1)
the transition rate of going from an operating state (0)
to a failed state (2) without intermediate degradation

being detected

the transition rate of maintenance correcting a degraded

state (1) to an operating state (0)

the transition rate of going from a degraded state (1) to

another degraded state (1) without intermediate failure

the transition rate of going from a degraded state (1)

to a failed state (2)

the transition rate of repair from a failed state (2) to

an operating state (0)

the transition rate of repair from a failed state (2) to

a degraded state (1)

5-6

(5.12)
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::Note that we included a transition rate, 4,;, which allows transitions from a.degréded state to
another degraded state; for example after maintenance has been performed.

For applleatlon, the transmon rates need to be translated into quantmes which can be
mterpreted by engmeers and can be estlmated £rom data or engmcermg expenence One such

":"~ L S T

translatxon is to deﬁne the transmon rates in times of average times of occurrences:

Aot 'T‘;TOI = average'time to a degraded state’ from an operational state ©(5.19)
o1
- .1.02=_1_;'I‘02 = average time to catastrophic failure from an operational state without
Te,
mtermednate degradatlon oecumng (or bemg detected) (5.20)
'110=7r1—;T10 = average maintenance detection time plus duration time for restoring the
10
degraded state (1) to as good as new state (0) (521
Ay =._1.;’I‘ll = average time from a degradation occurrence to another degradation
Ty
occurrence (without an intervening catastrophic failure or replacement
occurring) (5.22)
,1.,2=L;Tlz = average time from a degradation occurrence to a catastrophic failure
le PN P T
" occurrence without the degradation being corrected = T(5.23)
}.20=._1_;T20 = average repair time in which as failed state is restored to as good as new
Ty :
state S (5.24)



1

™ =,r_;'l‘21 . = average repair time in which a failed state is restored to a degraded

21

state. (5.25)

These average times, (Ty,, Tg,, €tc.,) can then be estimated from data or from engineering

experience. The above transition rate definitions can also be specialized for given situations, such as:

Ay = 0: . allcatastrophic failures are preceded by a degradation (5.26)
A = O maintenance restores the component only to a degraded state

- (as good as old) (5.27)
Ay = 0 maintenance restores the component to as good as new (5.28)
Ay = 0 repair. restores the component to as good ;s new. (5.29)

Also, the average times (T, Ty, etc.,) can be expanded to identify more detailed factors and

contributions;

P
Ag=moMO_ (530)
Tim+Ty
Ty = average maintenance detection time
Ty = average maintenance duration
Pyo = the fraction of time that the maintenance restores the degraded state to as good as new

;'11 =

- (5.31)
Tin+ Ty + Ty
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e, I

Tim = average time from a degradation occurrence to a maintenance action
Ty = average mamtenance duratlon
Tw = average tlme from a mamtenance eompleuon toa degradatlon occurrence w1thout
mtervenmg catastrophxc fallure
P IR S Lo o (532)
Tim+Tm+ Ty
Ty = average tlme from a mamtenance to a catastrophxc faxlure without another degradatlon
oocumng or bemg detected (T M and TM deﬁned as above)
P.
p ) (533)
T
Tr = average repair time
P,, = fraction of time that repair restores the component to as good as new
P
Ay =2 ; (534)
P,, = fraction of time that the repair restores the component to a degraded state

The above quantities can be estimated from maintenance and failure data and from

maintenance procedures. The reliability characteristics of the component, including the age

59



dependent failure rate and age-dependent unavailability, can then be determined using balance
equations and standard differentiai equatibn techniques. These féliaﬁility char#éteristics, in turn, can
be used in reliability and risk evaluations. Because the transitioﬁ rates are express‘ed in t;:'rms of
basic degradation and maintenancel cﬁéfactcristics, there is a direct relationship between the
degradation characteristics, the maintenance program charactcri;tics, and the resulting reliability and
risk implications.

54 Incorporation of a Maintenance State

To explicitly identify when the component is in maintenance, a maintenance state can be
defined and can be added to the transition matrix. Let the maintenance state be denoted by M.
The transition matrix is given below showing the added transition rates involving the maintenance

state M.

Initial Final
State State 0 1 M 2
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The additional maintenance transition rates are given by:

Ay = transition rate for an operauonal component bemg placed in mamtenance (thls could be
) ' (R -~

considered as scheduled preventxvc mamtenance, or can be set to zero 1f such occurrences are rare)

(5.35)
Ay = transition rate for going from a degraded state to a maintenance state (5.36)
=.TL;TIM : = average time from a degradation occurrence to a maintenance action
Amo = tranmsition rate for going from a maintenance state to an operational state (5.37)
P
= Mo (5.38)
Ty o o .
Pyo = fraction of time the maintenance restores the component to as good as new
Ty = average maintenance duration
P
Apgy = ok o - : 1 (5.39)
TM . B
Py = fraction of time that the maintenance restores the compohent to 'a'degraded state
P
Appy = 2 R - SRR . 1(540)
Ty -
e 7.””-‘:. . -v‘r..'f',. oot PR
Py, = fraction of time the maintenance causes the component to be failed ,
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55 Resolving Additional Degradation States

For additional degraded states 1, 2... k, one must now define the transition rates from the
other states to 1, 2,...,k, the transition rates among 1, 2,...,k, and the transition rates to the other
states. In terms of the transition matrix, this amounts to incorporating appropriate additional

columns and rows for the degraded states:

Initial Final A
State State 0 1 2 ek k+1
| 0 0 My Mz e M Aokt
1 Mo Ay A2 e Mx Mgy
2 Mo 531 Mz e Mx Axe
;C Mo My Mo e Mk Mknr
ktl Me410 Al A1z e Mak O

In the above matrix, 0 is the operational state with no degradation, and k+1 is the failed
state.  The additional transition rates need to be estimated by expressing them in terms of average
times of occurrences of events and fractions of times specific outcomes occur.

5.6 Incorporating Effects of Surveillance Tests

When failures are not detected until surveillance tests are performed, then the transition

rate, A,,, from a failed state (2) to an operational state (0) can explicitly account for surveillance tests
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which are performed. If the transition rate, 4, is defined in terms of the average time from a failed-

state to an operation state then:

/1.20=.1_,1_;'I'20 = the average time from a failed state to an operational state (5.41)
20

Now T, can be expressed as

oo O A S e

where, ) )

Tu=averagetlme te defeetj thefaxlure(theavcrageundetected txme) | } . ' | (5,43-)
and | )

TR=ave.rage.re'pairtimew o o ) | (5.44)

PRI PR N [

For a oonstant fan]ure rate (1 e. oonstant transmon ratc), when the component does fall itis

O O N P PO

equally lnkcly to fall in the 1nterval T between tests. Then

Ty = TR | o - T (545)
, ‘
L



Hence,

Ty = TR + Ty (5.46)
and
1
e 547
A TR+Ty G4

Thus, the transition rate, A,,, explicitly contains the surveillance test interval. Consequently,
the component failure probabilities and component unavailabilities, which are determined from the
transition rates, contain the effects of the surveillance test. It should be noted that the above
fo‘rm‘ulas, including the test intervals, also apply to a general multistate model as described in the
px;evious section, where 4,, is r’eplaced by the more general tra'rlxsition rate, A, .4 ¢» and where k+1 is

the failed state.

5.7 Calculation_of Component Reliability Characteristics Including the Component

Unavailability

As we indicated, using the transition matrix, the probability that the component is in any
given state at a given time can be determined. These state probabilities allow all the component
r.elliabil~ity characteristics -to be determined including the component failure rate anld the component
unavailability. This section reviews the basic approaches that are used to determine the state. Let
p;(t) be the probability that the component is in state i at a given time, where i is any state such as
the operational state, a degraded state, or a failed state. Then, the general balance equation for

pi(t+dt) is:
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Cpt+dt)= X gt dt+p()(1-Adt) o s o (548)
b

where 1 is the transition rate from state j to state x and the sum 1s over all states ] that can transfer

.o (R

. The rate 1 is the sum of all transntlon rates out of state l,

= %1& - et " .:“.A,'.:: Tl <1 :_:2} .- ' .. - ) ' (5.49)

T TR S L

’~r-£,-";"’ . S e . . .
Expandmg p,(t-i-dt) to ﬁrst order, Equatlon (2 49) becomes the ﬁrst order dlfferentlal equatlon,

[
dere

- - +

,;';-.dp‘ e e U R L S F o SN TP RPLILE ST LN " C
_a_il-o-lipi: Epj(t)lji . - : (5.50)-

e - [ .. e ce

T PN RV L RIS S -

Thns set of dlfferentlal equatlons for all the states i can be solved by standard dlfferentlal

B A R X B L"{"“' it “r

equation techmques The results are the state probablhtles p,(t) asa funct|on of tlme t for all states

The unavanlablllty of the component in partlcular, is the state probabthty pz(t) (or pkﬂ(t) in

. A . Cre s te s
R I { P L A

the more general case) which is the probability that the component isin a fatled state at tlme t.

FYTIRA B

The component failure frequency is the probability that the component isin an operatlonal state and
then fails per unit time. Hence, the failure frequency is given by p (t)q,, where p.(t) is the
probability of being in an operation state, and 4, is the transition rate of going to a failed state.

The probability that the component is in a degraded state of time, t, is given by q,(t), where d is the
degraded state identifier. Other reliability characteristics can be determined similarly and can then
be used as inputs to reliability and risk evaluations.

58 Incorporation of Aging Effects

Whenever degraded states are identified and included in the transition matrix, the resulting

component failure rate, which includes the transitions through the degraded states, is age-dependent.

\ -
VE,
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The failure rate is age-dependent even when the individual transition rates are constant and time
independent. Thus, by classifying degraded states and defining the associated transition rates, one
has a straightforward way of analyzing aging effects on the component failure rate and other
reliability characteristics. The transition rates also include degradation characteristics and test and
maintenance program characterietics; thus, reliability is directly related to these characteristics.
The transition rates can also be modified to analyze the effects of different aging
management programs. For example, if the test and maintenance program does not replace
degraded parts, but only assures that the component is operational, then the transition rate for
restonng the oomponent to as good as new can be taken to be zero (1 €., Ao = 0, where 1 is the
degraded state, and 0 is the good as new, operational state). This sntuatlon represents a mmlmal.
maintenance policy and resulting component reliability characteristics can be determined for given
degradation characteristics. Additional maintenance activities can be analyzed by modifying ihe
maintenance characteristics and associated transition rates. The effects of maintenance can be
modeled in more detall by c]aeSIfylng different degraded states and defining the transitions
assocxated with the mamtenance procedures. Furthermore, pxeceparts of the component can
furthermore be mdmdually modeled by defining transition rates for each piece or part and obtaining

the resulting state probabllmes.
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6. = SUMMARY B

Our previoiss report! describés the basic concepts and épplicaiio‘h"s of degradation modeling for
aging amilysis‘:of standby active components. “This }epért presents more applications and extensions
of degradation modeling approaches to ‘study ‘the effects of aging in components and the role ‘of
maintenance in controlling the effects of aging. ;A'i‘I.CI"e',. degrad;iion niédelihg ‘approa'che's;‘aré applied in
studying the aging effects and maintenance:éffé;ti;}éii;zgs' of cohifﬁi;éixsly operatirig oomponénts (air
compressors).  Sensitivity evaluations are performed to study the effects of uncertainties on the
degradation modéling results, and also, the mathematical modeling is extended for studying reliability
effects of maintenance strategies  and for interfacing with pro.t;ai)ili‘stic risk “assessment ' (PRA)

BN
.

evaluations.
a) " Applicition of Degradation Modeling to a Continuously Operating Component

The ébf)‘limti‘c)n‘df‘ degradation modeling approaches to a continuously operating component (air
compressors) shows the usefulness of this madéling'appro:iéh in studying aging effects and the role of
maintenance in'this type of component. ‘Analyses of degradation and failure data of air compressors
using degradation modeling approaches show that aging effects ‘are evident in both degradation and
failure occurrences. - In this ¢ase, both ‘ratés 's'ffoi\i”la'g"ihgv effects; however, the faster increase in the
failure rate compared to the degradation rate indicates the ineffectiveness of maintenance, which is
reflected in the evaluation of maintenance éffectivéness. The decline in'maintenance effectiveness with
age signifies that'mainténanice'is effective in préventing age-related degradations from failures.

b} * Sensitivity Analyses of Degradation Modeling Results **

Sensitivity evaluations were performed to evaluate the effect of three factors:” a) ‘engineering
evaluation of failure data, i.e., subjectivity in classifying degraded vs. failure state of a component, b)
uncertainty in degradation occurrence time available from plant records, and c) the effect of test
frequency. Results of sensitivity evaluation show that the effects of data partitioning is not significant.

The subjectivity involved in the data evaluation does not change the overall trend in the results.

6-1



Similarly, the effect of uncertainty in degradation occurrence time is also not significant. However, we
observed that the estimated degradation rates can be influenced by the frequency at which tests are
performed to detect degradations or failures. The effect of test frequency is probably pronounced
because of the single degraded state in the modeling. The extensions of degradation modeling presented
in this report includes test frequ‘er.lcx'and‘also, multiple degraded states.
¢) _ Relation between Degradation and Failure Frequency
Understanding the relationship between degradations and failures is an important aspect in the

degradation modeling approaches. Knowledge of relationships between degradations and failures will
help define the maintenance activitievs‘necessary for preventing degradation-caused failures and can 'be
used in risk-evaluations of aging. In this report, an event-count based approach to data analysis is
presented to study correlations between degradation and failure frequencies. We used this approach
to discover if there were delayed effects of degradations on failures. For the specific component studies
(RHR pumps), a lag-time of 2 years was observed between degradation and failure occurrences.
Existence of such lag-times, which are expected to be component specific, can be beneficial for deciding
the maintenance activities that are necessary to mitigate the effects of aging. Additional applications
will be needed to demonstrate the validity of the existence of time-lag between degradations and failures.
d) = Extensions of Degradation Modeling

. Our present work extends the previous degradation modeling by presenting models which
explicitly show the reliability effects of different maintenance and test intervals, different maintenance
and test efficiencies, and different repair times. This extension will allow us to evaluate the reliability

effects of different maintenance programs.

6-2



REFERENCES

P.K. Samanta et al., "Degradation Modeling with Application to Aging and Maintenance
Effectiveness Evaluation,” NUREG/CR-5612, BNL-NUREG-52252, March 1991.

A.T. Bharucha-Reid, Elements of the Theory of Markov Processes and Their Applications,
McGraw Hill, New York, 1960.

H.L. Tijms, Stochastic Modeling and Analysis, John Wiley and Sons, New York, 1986.
L. Kleinrock, Queueing Systems, Vols 1 and 2, John Wiley and Sons, New York, 1975.

M. Villaran et al., "Aging Assessment of Instrument Air Systems in Nuclear Power Plants,
NUREG/CR-5419, BNL-NUREG-52212, January 1990.



'APPENDIX A: AGING DATA EVALUATION OF AIR COMPRESSORS

N DR . R SR

.. . ‘ R A - . Loy PR R
Al Briel' Description of Air Compressors’

A

Axr compressors used in l.nstrument and service air systems in nuclear power plants are either
positive displacement or nonpositive displacement types, called oontmuous ﬂow and dynamlc
compressors. The reciprocating-piston compressor is the most common posmve displacement type
because of its hlgh-pressure capablhty,\ablhty to d1s51pate the heat of oompressxon, and versatility. Air
is compressed by the altemate filling and compressnon of a cylinder by the recxprocatmg ‘motion of a

f, ‘ T

piston. The rotary motton of the crankshaft dnven by and electnc motor, dxesel or 'some other prime
rnover, is translated via the eonnectmg 'rod 1nto the reernrocatmg motxon of the _piston wtthm the
cylinder. On the intake stroke, the piston moving downward in the cylinder creates a negative pressure
across the spring-loaded intake valve causing it to open. Intake air is drawn through the ﬁlter/s{il‘e_ncer
into the cylinder. When the piston reaches the bottom of its stroke, the dif.ferential.oressure across the
mtake valve is less than the spnng force pushing to close the valve. Therefore, the lntake valve closes
and the compressron portlon of the cycle begms As the plston moves upward into the cylinder bore,
reducing the volume as it travels, air pressure and temperature increase. When the pressure differential
across the discharge valve exceeds the spring pressure holding it closed, the valve opens. The volume
of hot compressed air is then driven into the system via the discharge manifold as the piston continues
to the top of its stroke. Once the piston reaches the top of its stroke, the differential pressure across

the discharge valve drops below the closing force of the spring and the valve closes, completing the cycle.

A2 Engineering Evaluation of Air Compressor Aging Data

Testing and maintenance records on air compressors were analyzed to obtain the aging data for
degradation modeling. In this cvaluation, the first step was to identify whether the condition of the

component indicated an age-related problem. Every test and maintenance record was inspected and

"The description of air compressors is reproduced from Villaran et al.’,
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categorized as de(ﬁn‘ed" in v'JI'ayble A.l. The age-related problems are.classiﬁed as N, D, or F; non-aging
problems include human errors in performing the maintenance or testings (H), affecting component
performance (E). Table A.2 illustrates typical examples of each category for an instrument air
compressor, and Table A3 )presents a typical failure mode and effect analysis defining various levels of

qggl'adz_ltion (low, intermedia}e, and high).

Table A.1. Categorization of Component Failure or Maintenance Data
Aging-Related Problems
N: No component degradation. No maintenance was performed.

D: Definite degradation in the component Maintenance was performed to repair the
degraded condition. s

F: Severe degradation in the component. Immediate maintenance was required.
Non-Aging-Related Problems

H: Component degradation due to 2 human error.

E: Degradation of components other than the prime component being evaluated.

Maintenance was performed to correct the degradation, which if not corrected, may
have had a deleterious effect on the prime component.



4
; pra————

“Equipment No.

Date -

-~ " Description - -~ ---

Pﬁmarj

?

‘Subcomponent -

Table A.2. Analysis of Maintenance Log for an Tnstrument Air Compressor

Fallure .
Classxﬁcatlon

1K107A

4/07/80

Quarterly PM: outer bearmgs
greased with EP #2

[}

Bearings

1K107A

12/10/87

Inst. a air cylmder leakmg

Replaced worn oil wiper
ring. The shaft was also

‘worn.’

.| Mechanical

1K107A

Semi-annual 1.A. P.M.
inspected and cleaned motor.’

No loose :bolts, cracks, worn -
-parts, or excessive grease. All
‘'satisfactory.”

- Motor-- -

2K108B

- .-Compressor has cxcessxve oil -

léak. Removed and™

'| reassembled packing; 1t was ’

installed backwards. "~ |

Operates satisfactorily. * - -

" Mechanical ;

T2K107B

" S5/4/83 "

Monthly P. M Replaced

‘intake filter.’

" Filter ~




Table A3. Typical Examples of Degradation Levels and Failure Mode and Effect on Compressors

Compressor Failure S ' Degradation -
- Subcomponent | Classification Failure Effect Failure Mode Level
Bearings D Monthly preventive Low D
maintenance -
bearings greased
Filter D Monthly P.M. - filter Low D
cleaned
Gasket D Oil leak by gasket Gasket Intermediate D
' deterioration ’
Jacket Heat D Corrosion deposits . Mechanical Intermediate D
Exchanger built up by aftercooler | debris; poor water
_ , chemistry
Bolts and D Fractured stud on Mechanical High D
Fasteners : spacer vibration .
Pistons D Brass filings in high Mechanical wear High D
and low pressure
regions found during
- P.M.
Piston F Oil leak at piston rod | Mechanical wear F
- : seal '
Lube Oil F Pump seized and High temperature, F
System became inoperable mechanical wear

A3 Aging Data on Air Compressors

Aging data on air compressors are obtained by analyzing plant maintenance records for two
units. Since the units are different ages, data for each unit covered different periods: 36 quarters for
unit one and 20 quarters for unit two (Table A.4). This table contains the observed dates for
degradations and failures. Table A.5 presents the failure data where only the observed failure times are
recorded. As these tables show, significantly more information on component aging is obtained by

focussing on degradation data.
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Table A.4. Air Conipre;SEi }Agmg Data: Degradation and Failure Times

(2 Nuclear Units)

‘Mo" Dv Yr Pt Comp SEVIY DSCP : Tij Ti  .Agp
1~ 24 -8 1.1 D. BRGS : 0.64 064 1
4.7 "8 1 1° D! BRGS : 081 - 146 1
725 T80 1" 1% D' BRGS . 120 266 1
9 ' -2 8 1 -1° D BRGS 041  -307 1
122 3 80 17’1 DT MECH 101 - 408 1
12° 30 “8 1 -1 D:  BRGS 030 438 1
3 17 81 1715 D JKTHX 0.86 523 1
4 24 81 1517 D BRGS - 041 564 1
6 2 81 1-- 1" D: BRGS - :0.64 629 1
8 24 81 1 1 D: COMPR 069 - 698 1
9 ‘29 81 1.4 D. BRGS . :0.39 737 1
1m- s B1 1570 D. FLTR 0.40 777 1
1 4 82 1 1: D BRGS 066 842 1
1 25 82 1.1 D  COMPR. 023 866 1
4 ‘14 8 1 .1 D  MECH 1088 953 1
1 2 '8 1 ‘1.~ F  COMPR *307 -1260 1
3 9 '8 11> D COMPR. <054 1314 1
1 19 8 1:"1. F  COMPR- .344 1659 1
4 30 8 121" D COMPR ‘112 1771 1
11 16 "84 1.1 D MECH 218 1989 1
117 -8 1:. 71 F COMPR 068 2057 2
7712 78S 11 D  UNLOA 194 2251 2
7 15 '8 1 "15> F  UNLOA ~0.03 2254 2
122 27 <gs | K F COMPR 180 2434 2
4 17 .86 1 01 D  MOTOR 122 2557 2
11°- 24 86 S | D MECH 241 2198 2
1 L 87 170w D  LUBOIL - 046 - 2843 2
3.9 87 1 1 F  LUBOIL 071 2014 2
7 2.8 1..11 D COMPR 0126 - 3040 2
12° 10 87 171> F  COMPR 176 3216 2
127 17 - 787 1.5 .1 D COMPR 008 3223 2
2 15 7 "s8 1.0 D GASKE 064 328 2
4 1 88 17701 D GASKE . 051 333 2
6 201" 8 1"""1 D UNLOA 1089 3428 2
1° 14 ' 88 1" 1 D GASKE . 159 3587 2
11 26 719 17 2 D  COMPR 129 . 129 1
1 13- .8 1 V2 D MECH - 0.52 181 1
‘1 24 - 80 1 2 D BRGS ©012 . 193 1
‘1 31° -8 1 '2 ‘D COMPR 0.08 201 1
‘4° 7 - 80 1 2 ‘D "BRGS .. 073 274 1
725 80  1i02 D -BRGS - 120 394 1
12° 30 - 80 172 D :BRGS 12 567 1
1 27 8l 12 -F LUBOIL  :. 030 -- 597 1
4 24 81 1 2 D BRGS 097 693 1



Table A.4. (Cont’d)

Mo Dy Yr Plit Comp SEVTY DSCP Tij Ti  Agp
5 s 8t 1 2 D COMPR 0.12 706 1
6 2 8t 1 2 D BRGS 0.52 758 1
8 26 81 1 2 D MECH on 820 1
9 29 81 1 2 D BRGS 037 866 1
11 5 8t | 2 D FLTR 0.40 906 1
1 4 82 1 2 D BRGS | 0.66 9Mm 1
20 12 82 1 2 F MECH 042 1013 1
2 2 82 1 2 D COMPR 013 1027 1
4 23 82 1 2 D  MOTOR 066 1092 1
6 21 82 1 2 D COMPR 064 1157 1
4 25 84 1 2 D COMPR 738 1894 1
5 28 84 1 2 D COMPR 037 1931 1
7 25 84 1T 2 F JKTHX 063 1994 1
10 17 85 1 .2 D COMPR 491 2486 2
4 17 86 1 2 F BRGS 200 2686 2
8 18 86 1 2 D MECH 134 2820 2
11 24 86 1 2 D MECH 107 2927 2
6 11 87 1 2 D LUBOIL 219 3146 2
12 17 87 1 2 F COMPR 207 3352 2
9 8 88 1 2 D COMPR $290 3642 2
9 17 83 1 2 F COMPR 010 3652 2

2 88 1 2 F UNLOA 017 3669 2

6 88 1 2 F COMPR 004 3673 2

7 88 1 2 D MECH 001 3674 2
8 10 79 1 3 D BRGS 0.10 010 1
8§ 14 79 1 3 D COMPR 0.04 014 1
0 2 79 1 3 D GASKE 0.76 09 1
2 80 1 3 D BRGS 139 229 1
3 27 "8 1 3 D  JKTHX 033 262 1
4 7 80 1 3 D BRGS 0.11 273 1
6 27 80 1 3 D BRGS 0.89 362 1
7 25 80 1 3 D BRGS 031 393 1
8 1 80 1 3 D COMPR 007 . 400 1
10 18 80 1 3 D JKTHX 086 - 486 1
10 20 80 1 3 D MECH 0.02 488 1
12 30 80 1 3 D  MOTOR 0.78 566 1
3 17 81 1 3 D LUBOIL 0.86 651 1
3 2 81 1 3 D FLTR, 0.11 662 1
4 24 81 1 3 D BRGS 0.30 692 1
6 22 81 1 3 D MECH 0.64 757 1
9 29 8t 1 3 D BRGS 1.08 864 1
11 5 81 1 3 D FLTR 0.40 9204 1
1 4 82 1 3 D BRGS 0.66 9270 1
2 24 82 1 3 D COMPR 056 1026 1
7 2 82 1 3 D BRGS 163 1189 1
10 2 82 1 3 D COMPR .00 1289 1
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Table A4, (Cont'd)

Mo "Dy Yr ' Pit Comp SEVIY 'DSCP_ ~"Tij ~ "~Ti ~ Agp
4 4 8 1 3. D. MECH , 181 1470 .1
4. 2 8 1 :3.. D COMPR 020 1490 1
10 221 8 1 3--. F- COMPR 199 1689 1
12 -12 83 1 ..3 D .- MECH 057 1746 1
1 20 8 1 ;3 . D GASKE 042 1788 1
1 2 84 1 -3.. D_. MECH 007 1794 1
11 ..16 84 1 3. D FLIR , 32 2117 2
+1-217 .8 1 .3 D _ GASKE 079 2196 2
.2:..27 8 1 , 3 D MECH , 033 2229 2
-4 30 :8 1 .3., D. COMPR 070 2299 2
4 17 8 1..3 .. F- BRGS 386 2684 2
4..27 8 1 ,03.-. D UNLOA 411 3096 2
7 23 .87 1 .°3. D, COMPR 096 3191 2
10 2 -8 1 3., D.. COMPR 077 3268 2
3 31 .8 1 3,- D- MECH 199 3467 2
‘10, :6 8 1 _ 3 D. MECH 206 3672 2
7.3 79 1 .4 F. COMPR 068 068 1
8. 10 7 1.-4. D.: BRGS 010 078 1
10 2 79 1 -.4, F_ LUBOIL 058 136 .1
10 1 79 1 .,4. D . COMPR 010 146 . 1
2 2 8 1 . -4 D  COMPR . 123 269 1
2.-27 ,80 1 .4 . D. BRGS 028 297 1
3,27 '8 1 4. D~ ITHX 033 330 1
4 -7 .8 1 .4, D. BRGS . 011 341 1
6 .24 8 1 .4.. D. LUBOIL = 086 427 .1
6. 21 .80 1 .4-. D BRGS 003 430 1
7..25 .80 1 .. 4., D, BRGS 031 461 1
1 6 .8 1.4~ D, MECH 112 573 1
12 30 -8 1 .,4.; D, BRGS 060 633 1
33 .8 1 .4. D. FLIR 070 703 1
3 17 8 1.4, D, LUBOIL., 016 719 1
3 27 .8 1.,-4-. D. FLTR . oI 730 1
4. 24 .8 1,4, D_- BRGS 030 760 1
6 22 8 1 .. 4., D, BRGS = 064 824 .1
7 28 8 1 4 . D, GASKE . 040 864 1
7 29 81 1! -4 , D COMPR 001 866 1
8 14 .8 1 .4 D. COMPR 017 .88 1
9° 29 8 1 4. D BRGS 050 932 1
10 .6 .8 1 4.. D . MECH 008 940 1
m 5 .8 1 .4 D. FLTR 032 972, 1
1 4 82 1. 4,. D, BRGS 066 1038 - 1
1 25 ,8 1 .4, D. COMPR, 023 1061 1
4..23 .8 1 ,-4, D MOTOR. 098 .1159. 1
5 24 8 1 _..4. D MECH 03 119 1
7 1 8 1-.4., D MECH 041 1234 1
7 2 82 1 4 D BRGS ~ 022 1257 1



Table A.4. (Cont’d)

Mo Dy Yr Pit Comp SEVIY DSCP Tij Ti  Asp
1 20 83 1 4 D COMPR 1.9 145 1
3 15 83 1 4 F BRGS 0.61 1517 1
4 4 83 1 4 D MECH 0.21 1538 1
7 25 83 1 4 F COMPR 123 1661 1
7 2 84 1 4 D COMPR 394 2056 2
11 16 84 1 4 D MECH 129 2184 2
3 28 85 1 4 F MECH 147 2331 2
6 10 85 1 4 D GASKE 080 2411 2
12 1 8s 1 4 D GASKE 190 2601 2
12° 6 85 1 4 D MECH 006 2607 2
1 10 86 1 4 D COMPR 038 2644 2
32 86 1 4 F MOTOR 088 2732 2
4 2 86 1 4 F UNLOA 024 2757 2
15 87 1 4 D COMPR 282 3039 2
7 2 87 1 4 D UNLOA 197 3236 2
2 3 88 1 4 F GASKE 234 3470 2
7 1 88 1 4 D UNLOA 164 3634 2
7 15 83 1 4 D COMPR 016 3650 2
3 2 83 2 1 F COMPR 0.56 0.56
5 4 83 2 1 D COMPR 0.69 1.24
7 13 83 2 1 D JKTHX 0.77 2.01
8 16 83 2 1 D JKTHX 0.37 238
10 2 83 2 1 D MECH 0.51 2.89
4 25 84 2 1 D MECH 226 5.14
6 4 84 2 1 F MECH 0.43 5.58
6 27 84 2 1 F MECH 0.26 5.83
12 1 84 2 1 F FLTR 1.91 1.74
7 8 85 2 1 D JKTHX 221 9.96
1 7 86 2 1 D COMPR 199 1194
10 27 86 2 1 D UNLOA 322 1517
2 5 87 2 1 F JKTHX 1.09 1626
2 1n 87 2 1 D MECH 008 1633
6 2 87 2 1 D UNLOA 144 1778
1 29 87 2 1 D JKTHX 174 1952
2 8 838 2 1 D MECH 099 2051
3 31 88 2 1 D UNLOA 037 2088
3 2 83 2 2 F COMPR 0.56 0.56
6 8 83 2 2 D COMPR 1.07 1.62
12 2 83 2 2 D COMPR 2.14 n
3 5 84 2 2 D MECH 0.82 4.59
5 30 84 2 2 F COMPR 0.94 553
10 22 84 2 2 D COMPR 158 7.11
2 6 85 2 2 D MECH 1.16 827
7 8 85 2 2 D MECH 1.69 9.96
11 1 85 2 2 D GASKE 126 1121
s 27 86 2 2 F GASKE 229 1350



NOTE:

Table A.4. (Cont’d)

Mo Dy Yr Pit Comp SEVTY DSCP Tij Ti  Agp
! L T A .2 4 R o
1 13 87 2 2 F MECH 251 1601
2 12 87 2 2 D  COMPR 032 1633
3 31 87 2 2 D MOTOR 054 1688
4 30 87 2 2 D UNLOA 032 1720
7. 6 87. 2 2 D COMPR .. 073 1793
s - 4114 8 " -2.-2. D -UNLOA -— -309---2102
10 26 8 2 2 D .. . GASKE 213 2316
1 8 8 2 2 D° " UNLOA 013 2329
n 14 '8 2 2 D" "COMPR, 007 2336
2 29 8 2 3 D . COMPR 036 036
4 16 ‘84 2 3 D~ ,COMPR 0.52 0.88
-7 20 84 2 3 D. 'MECH" 1.04 192
17 8 8 2 3 D.. 'MECH. 387 5.19
1 9 '8 2 3 D ' GASKE 1001 1580
6 4 8 2 3 D .. GASKE 161 1741
n 2 8 2 3 D __MECH. 191 1932
10 23 84 2 4 F’ " COMPR 272 22
"3 4 8 2 4 F  MOTOR, 1.68 440 -
4 19 '8 2 4 D~ UNLOA 0.28 468"
'S 6 '8 2 "4 D  / COMPR" 019 . 487
7 8 8 2 -4 D" UNLOA " 069 . 556
19 8% 2 4 D ' | GASKE 2,01 7.57
1 14 '8 2 4 D, ' UNLOA 006 | 762 .
'8 8 8 2 4 D' ~'COMPR 227 9.89
1 29 8 2 4 D . "MOTOR' 190 1179
10 3 ‘8- 2 ' D . UNLOA' 271 1450
1 21 8° 2 4 D... . .COMPR 1271 1577
7 27 8 2 4 D ' UNLOA 200 1177

BRGS - bearings
MECH - mechanical
JKTHX - jacket heat exchanger

COMPR - compressor

UNLOA - unloader
GASKE - gasket
LUBOIL - lubrication oil

FLTR - filter

TaL T
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T3 - Time intervals of observed events

T' - Age at which an event is observed

Yi - Reciprocal of T

Table A.5. Compressor Aging Failure Data (Unit 1; 4 air compressors)

Mo Dy Yr Pit Comp SEVIY DsSCP FTij Fui Yi LeYi
7 31 79 1 4 F COMPR 0.68 0.68 147 0.386
10 2 79 1 4 F LUBOIL 0.68 1.36 1.47 0.386
1 27 81 1 2 F LuUBOIL 597 597 0.17 -1.787
2 12 82 1 2 F MECH 4.16 10.13 0.24 -1.426
120 83 1 1 F COMPR 126 12,6 0.03 -2.534
3 15 8 1 4 F BRGS 13381 15.17 0.07 -2.625
1 19 84 1 1 F COMPR 399 16.59 0.25 -1.384
7 2 83 1 4 F COMPR 1.44 16.61 0.69 -0.365
10 2 83 1 3 F COMPR 16.89 16.89 0.06 -2.827
7 2 84 1 2 F JKTHX 9.81 19.94 0.10 -2.283
1 17 8s 1 1 F COMPR 3.98 2057 0.25 -1.381
7. 15 85 1 1 F UNLOA 197 2254 0.51 -0.678
3 &8s 1 4 F MECH 6.7 2331 0.15 -1.902
12 27 85 1 1 F COMPR 1.8 2434 0.56 -0.588
4 17 86 1 3 F BRGS 9.95 26.84 0.10 -2.298
4 17 86 1 2 F BRGS 6.92 26.86 0.14 -1.934
3 29 86 1 4 F MOTOR 4.01 2732 0.25 -1.339
4 21 86 1 4 F UNLOA 0.25 27.57 4.00 1.386
3 9 87 1 1 F LUBOIL 48 29.14 0.21 -1.569
12 10 87 1 1 F COMPR 3.02 3216 0.33 -1.105
12 17 87 1 2 F COMPR 6.66 3352 0.15 -1.896
2 3 a8 1 4 F GASKE 713 347 0.14 -1.964
2 17 88 1 2 F COMPR 3 36.52 0.33 -1.099
10 2 88 1 2 F UNLOA 0.17 36.69 5.88 1772
10 6 88 1 2 F COMPR 0.04 36.73 25.00 3.219

F‘I‘;i - Time intervals between observed failures

FT; - Age at which an event (failure) is observed

FY, - Reciprocal of FT4
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Ad Statistical Test Results fo'r; Comblnlng b'r Air -éompressorsxglng' Data'

The Mann-Whntney test for the. agmg data of air oompressors of two available nuclear umts

rejcctcd the null hypothesrs of 1dent1cal samples (based on comparlson of average ranks and srgmt' cance

level of 0. 05) ‘Table A 6 presents the results for’ the au' oompressors in the two nuclear umts Srmrlarly,
f ! RN ’

l

the test was carried out for the four air compressors within unit one, where the null hypothesis of

P A

ldentrcal samples was not rejected

;
!

Therefore, the degradatron behawor of the four air compressors in umt one belonged to the
:same populatron, and they were oombmed to buxld the data base for air compressors Table A7
.. . 1 . i
fpresents the test. results for combmmg the four components m unit one.
‘ e 4 po
' . |

[ . .. .- M P [ e - - et

"Table A.6. M-W :Test Results for 2 Units

! Air Compressor Aging Data
Average # of Average | ~ , #of
Rank of | Valves of | Rank of - Valves of | | -
. Comparison . Ist | . 1st .| -2nd .. 2nd ., | Total |  Test | -
of Samples Samples Sample Samples Sample obs Statistic Z | P
plant 1 97.617 - 154 127.18 56 210 3.116 | 000183
plant 2° S . N I [T IR L
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Table A.7. Statistical Test Results for Air Compressors in Unit 1

— —
Average # of Average # of
Rank of | Valves Rank of | Valves of Test
- Comparison | 1st of 1st 2nd 2nd Total Statistics |. . a.
of Samples | Sample | Sample { Sample | Samples obs zZ Value
“component 1- | 3689 | 35 31.97 33 68 -1.019 | 03083
component 2 : : . _
component 1- 39.21 35 34.96 38 73 -0.85 0.395
component 3
component 1- | - 4896 |- 35 36.93 - 48 - 8 -1.241 | 025
component 4
component 2- 3573 | 33 36.24 38 71 0.098 0.92
component 3 _
component 2- 43.89 33 39.01 48 81 -0913 0.361
component 4
component 3- 46.71 38 40.96 48 86 -1.057 0.291
component 4

AS Regression Analysis to Obtain Agihg Rates

_ For the agci-groups showing significant trend with time, regression analysis are performed to
obtain the aging rates. For degradation data, decreasing trend is defined for the 0-20 quarters, and
increasing trend is defined for the remaining life: 20-40 quarters. The degradation and failure rate

parametérs, a and 3, are presented in Table A.8 and A.9, respectively.

A-12
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(4 compressors; data combined)

Table A.8. Estimated Results for Degradation Rate Analysis

Data Use Age Intervals Aging Rate b ’ Constant ¢na Model
Method
Estimated Significant Uncertainty Estimated Significant Uncertainty Significant Standard
Parameter Level (5% error) Parameter Level (5% error) Level Error of
Estimate
Data 0-20 0.071 0.0003 CL: -0.107 1.33 0.0001 CL: 0.986 0.0003 0.945
Combining (quarters) CU: -0.0337 CuU: 1.679
20-40 0.06 0.073 CL: 0.005 -1.626 0.074 CL: -3.423 0.0735 1.046
(quarters) CU: 0.115 Cu: 0.17
Table A.9. Estimated Results for Failure Rate Analysis
Data Use Age Aging Rate b Constant ¢na Model
Method Intervals
Estimated Significant Uncertainty Estimated Significant Uncertainty Significant Standard
Parameter Level (5% error) Parameter Level (5% error) Level Error of
Estimate
Data 0-15 -0.233 0.024 CL: -0.409 0.435 0.386 CL: -0.934 0.025 0.584
Combining (quarters) CU: -0.055 CU: 1.804
15-20 0.1012 0.035 CL: 0.0078 -3.696 0.007 CL: -6.22 0.035 1.398
(quarters) CU: 0.1946 CuU: -1.163




APPENDIX B: STATISTICAL RESULTS FOR SENSITIVITY ANALYSIS IN

 PARTITIONING OF AIR COMPRESSOR DATA.

B.1 Database Obtained from Sensitivity Partitioning of Compressor Aging Data

Table B.1 presents the aging data on'air oompressors.’based on the sensitivity data partitioning
of failure severity. The fallure data partltloned from degradatlons were expressed by a character variable
"CRITC" (the "*" shows a partmon from degradatxon to fallure, and the "&" ‘shows a partmon from

i

failure to degradation). Table B.2 gives the agmg failure data set, obtamed from the data in Table B.1.

B.2 Statistical Test Rcsults for Data Combming Using partitioned Agmg Failure Data

'I'he Mann Whltney test for the agmg data of the four compressors m unit one was conducted
using the data set obtamed after the sensxtmty data partltlomng The null hypothesxs of identical
samples (based on oompanson of average ranks and sxgmﬁcance level of 0 05) was not rejected. Table

B3 presents the results for the statnstlcal tests
Ha o

.- L
0

L
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Table B.1. Compressor Aging Data for Sensitivity Partitioning

Mo Dv  Yr Pit Comp SEVIY CRTC DSCP . Tij Ti FTij Fii
1 24 80 1 1 D BRGS 0.64 0.64

4 7 80 1 1 D BRGS 0.81 1.46

7 25 80 1 1 D BRGS 1.20 266

9 2 80 1 1 D BRGS 0.41 3.07

12 3 80 1 1 D MECH 1.01 408
12 30 80 1 1 D BRGS 0.30 438

3 17 81 1 1 D JKTHX 0.86 5.23

4 2 81 1 1 D BRGS 041 5.64

6 22 81 1 1 D BRGS 0.64 629

8 24 81 1 1 D COMPR 0.69 6.98

9 29 81 1 1 D BRGS 039 137

11- 5 81 1 1 D FLTR 0.40 177

1 4 82. 1 1 D BRGS 0.66 8.42. .

1 25 82 1 1 F COMPR 0.3 8.66 8.66 8.66
4 14 82 1 1 D MECH 0.88 9.53

1 20 83 1 1 "F COMPR 307 1260 3.94449 126
3 9 83 1 1 D COMPR 054 13.14

1 19 84 1 1 F COMPR 344 1659 399 1659
4 30 84 1 1 D COMPR .12 1.1

11 16 84 1 1 D MECH 218 1989

1 17 85 1 1 F COMPR 068 2057 398 2057
7 12 85 1 1 D UNLOA 194 2251

7 15 85 1 1 F UNLOA 003 2254 197 2254
12 27 85 1 1 F COMPR 180 2434 1.8 2434
4 17 86 1 1 D MOTOR 122 2557

11 24 86 1 1 D MECH 241 2798

1 5 87 1 1 D LUBOIL 046 2843

3 9 87 1 1 F LUBOIL 071  29.14 48 2014
7 2 87 1 1 D COMPR 126 3040

12 10 87 1 1 F COMPR 176 3216 302 3216
12 17 87 1 1 D COMPR 008 3223

2 15 88 1 1 F GASKE 064 3288 072 3288
4 1 88 1 1 D GASKE 051 3339

6 2 88 1 1 D UNLOA 089 3428

11 14 88 1 1 F GASKE 159 3587 299 3587
11 2 79 1 2 D COMPR 129 129

1 13 80 1 2 D MECH 0.52 181

1 24 80 1 2 D BRGS - 0.12 1.93

1 3 80 1 2 D COMPR 0.08 2.01

4 7 80 1 2 D BRGS 0.73 2.74

7 25 80 1 2 D BRGS 1.20 3.94

12 30 80 1 2 D BRGS 172 - 567

1 7 81 1 2 F LUBOIL 0.30 5.97 597 5.97
4 24 81 1 2 D BRGS 097 6.93

5 5 81 1 2 D COMPR 0.12 7.06
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Table B.1. (Cont’d)

- Fli-

"Mé Dy Yr TP Comp SEVIY  CRTC "DSCP - Tij FTij
6 2 - 8 .1 2 D . ..  BRGS 052 758
8 2 8 1 2. F .+ MECH 071 829 . 232 829
9 29 81, 1 2 D . BRGS 037 866
11 5§ 8::1 2. D FLTR 040 906 .
1 4 8 .1 2 D BRGS 066 971
2 12 8: 1 2. F = MECH . 042 1013 . 416 . 1013
2 24 g2.- 1 ;2 F: COMPR .~ 013 1027 014 1027
4 23 8 1 .2; D, ., MOTOR 066 1092
6 21 8---1 2. D -~ . COMPR 064 1157
4 25 8 1 2. D, COMPR .. 738 1894 .
s 28 &4 .1 2 D- COMPR 037 1931 ..
7 25 8 1 2 F... -, JKTHX 063 1994 - 981 1994
10- 17 8 .1 2. D .- COMPR . 491 2486 .
4 17 8 .1 2: D &  BRGS 200 2686 .
-8 18 . 8 -1 2. D=~ ;-  MECH 134 2820 ..
1n 24 8% -1 2 D .. MECH 107 2927
6 11 87 .1 2 D .....- LUBOIL = 219 3146 ,.
12 17 8 1 2 F .. . COMPR . 207 3352, 666 3352
9 8 8 -1 2 F'.. '* COMPR . 290 3642, 29 3642
9 17 8. -1 .2 F . COMPR 010 3652 . 01 3652
10 2 8. 1 2 F . UNLOA = 017 3669 017 3669
10 6 8 1 2 1 COMPR . 004 3673 004 3673
10 7 8- --1 2. D MECH | 001 3674,
8 10 7 ;1 3 D BRGS | 010 .010" .
8 14 9.1 3 D COMPR,~ 004 014 .
10 2 79, 1 3 F *  GASKE 076 . 090 09 0.90
2 27 8 - 1 .3 D - BRGS . 139 229 . :
3 27 8 -1 3 D . JKTHX - 033 . 262,
a4 7 8 1 3 D - BRGS 011 2737
6 27 8.-1 .3 D BRGS 089 362
7 25 8 -1 3 D BRGS = 031 393
8 1 80 1 .3 D . COMPR .. 007 400
10 18- 8 1 ;3 D . JKTHX 0 086 486
10 20 8 1 3 D).... MECH ., 002 488,
12 3 8 .1 3 D;:...-~ MOTOR 038 566
3 017 8 -1 3 D .. LUBOIL . 086 651
3 027 81 1 3 D. - FLTR =~ 011 662"
4 24 81--c 1 .3 D ... BRGS 030 . 692,. .
6 2 81-- 1 .3 F,...* MECH . 064 157" 667 7.57
9 29 8., . 1 -3 D - BRGS . 108 |, 864
1m s 8t 1t .3 D FLTR - 040 9047
1 4 8 1 3 D .. , BRGS 066 970
2 o 8.:-1 3 D, COMPR 056 1026,
7 2 8 -1 -3 D .. BRGS 163 1189
1o 21 82 -1 .3 D, COMPR 100 1289 "
4 4 g8 1 3 F *  MECU 181 1470 713 1470

.



Table B.1. (Cont’d)

Mo Dy Yr Pit Comp SEVTY CRTC DSCP Tij Ti FTij Fti
4 22 83 1 3 D COMPR 0.20 14.90
10 21 83 1 3 F COMPR 1.99 16.89 2.19 16.89
12 12 83 1 3 D MECH 0.57 17.46
1 2 84 1 3 D GASKE 0.42 17.88
1 2 84 1 3 D MECH 0.07 17.94
11 16 84 1 3 D FLTR 322 21.17 -
1 27 85 1 3 D GASKE 0.79 21.96
2 27 85 1 3 D MECH 033 2229
4 30 85 1 3 D COMPR 0.70 2299
4 17 86 1 3 D & BRGS 3.86 2684 -
4 27 87 1 3 D UNLOA 4.11 3096
7 23 87 1 3 D COMPR 0.96 3191
10 2 87 1 3 D COMPR 0.77 32.68
3 A 8 1 3 D MECH 1.99 34.67
10 6 83 1 3 D MECH 206 36.72
7 31 79 1 4 F COMPR 0.68 0.68 0.68 0.68
8 10 79 1 4 D BRGS 0.10 0.78
10 2 79 1 4 F LUBOIL 058 1.36 0.68 1.36
0 1 79 1 4 F * COMPR 0.10 1.46 0.1 1.46
2 2 80 1 4 D COMPR 1.23 269
2 27 80 1 4 D BRGS 028 297
3 27 80 1 4 D JKTHX 033 330
4 7 80 1 4 D BRGS 0.11 34
6 24 80 1 4 D LUBOIL 0.86 4.27
6 27 80 1 4 D BRGS 0.03 430
7 25 80 1 4 D BRGS 031 4.61
11 6 80 1 4 D MECH 1.12 5.73
12 30 80 1 4 D BRGS 0.60 633
3 3 81 1 4 D FLTR 0.70 7.03
3 17 81 1 4 D LUBOIL 0.16 7.19
3 27 81 1 4 D FLTR 0.11 7.30
4 A 81 1 4 D . BRGS 030 7.60
6 22 81 1 4 D BRGS 0.64 8.24-
7 8 81 1 4 F * GASKE 0.40 8.64 7.18 8.64
7 29 81 1 4 D COMPR 0.01 8.66
8 14 81 1 4 D COMPR 0.17 882
29 29 81 1 4 D BRGS 0.50 9.32
10 6 81 1 4 D MECH 0.08 9.40
u 5 81 1 4 D FLTR 032 9.72
1 4 82 1 4 D BRGS 0.66 10.38
1 25 82 1 4 D COMPR 0.3 10.61
4 2 82 1 4 D MOTOR 098 1159
5 24 82 1 4 D MLECH 0.34 11.93
7 1 82 1 4 D MECI! 041 12.34
7 2 82 1 4 D BRGS 0.22 12.57
1 20 8 . 1 4 D COMPR 1.99 14.56

B4
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Table B1, (Contd) . ~ .
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Pit Comp SEVTY CRTC DSCP Tij Ti ITij Fti

15 T17 T8 F 7T U U BRGS U061 T1517 1 7653 1517
«+MECH . 021 1538 - i
,oCOMPR . 123 1661 144 1661
- ~.COMPR -, 394 2056 k .
< "MECH = 129 2184 .. .

s, MECH 147 2331 67, 2331

*,;-.-GASKE 080 2411 08 2411
- GASKE . 190 26.01 :
.y MECH . 006 2607
- -COMPR 038 2644 ‘
--»MOTOR . 088 2732, 321 2732
- UNLOA | 024 2757 . 025- 2157

,.COMPR , 282 3039 . B
:UNLOA - 197 3236 ;

.3+ GASKE 234 347 - 713 347
. »COMPR .. 016 3650
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Table B.2. Failure Data after Sensitivity Modification

(4 Components Combined)

Mo Dv Yr Plit Comp SEVTY DSCP FTij Fti Acp Md
125 82 1 1 F  COMPR 8.66 866 1 *
1 20 83 1 1 F  COMPR 3.94 1260 1
1 19 84 1 1 F  COMPR 399 1659 1
1 17 8 1 1 F  COMPR 398 2057 2
7 15 85 1 1 F UNLOAD 1.97 254 2
12 27 8s 1 1 F COMPR 1.80 2434 2
3 9 87 1 1 F  LUBOIL 430 2914 2
12 10 87 1 1 F  COMPR 3.02 3216 2
2 15 88 1 1 F  GASKET 0.72 328 2 *
114 8 1 1 F - GASKET 299 3587 2 ¢*
1 27 81 1 2 F LUBOIL 597 597 1
8 2 81 1 2 F  MECH 232 829 1
2 12 82 1 2 F  MECH 4.16 1013 1
2 24 82 1 2 F  COMPR 0.14 1027 1 °
7 25 84 1 2 F  JKTHX 9.81 1994 1
12 17 87 1 2 F  COMPR 6.66 3352 2
9 8 83 1 2 F  COMPR 2.90 3642 2 *
9 17 88 1 2 F  COMPR 0.10 3652 2
10 2 88 1 2 F UNLOAD 017 3669 2
10 6 88 1 2 F  COMPR 0.04 3673 2
10 22 79 1 3 F  GASKET 0.90 090 1 *
6 22 81 1 3 F MECH 6.67 757 1 ¢
4 4 83 1 3 F  MECH 713 1470 1
10 21 83 1 3 F  COMPR 2.19 1689 1
7 31 79 1 4 F  COMPR 0.68 068 1
10 2 79 1 4 F  LUBOIL 0.68 136 1
10 11 79 1 4 F  COMPR 0.10 146 1 ¢
7 28 81 1 4 F  GASKET 7.18 864 1 *
3 15 83 1 4 F  BRGS 6.53 1517 1
7 25 83 1 4 F  COMPR 1.44 1661 1
3 28 85 1 4 F  MECH 6.70 2331 2
6 10 8s 1 4 F  GASKET 0.80 2411 2 *
3 29 86 1 4 F  MOTOR 321 2732 2
4 21 86 1 4 F  UNLOAD 025 2157 2
2 3 88 1 4 F  GASKET 713 3470 2



Table B.3. M-W Test Results for Data Counting of the Four Air Compressors
(aging failure data was portioned)

Average # of Average # of

Rank of Valves | Rank of | Valves
Comparison of 1st of 1st 2nd of 2nd | Total Test «

Samples Sample Sample | Sample | Sample obs | Statistical Z | Values

Component 1- 113 10 9.7 10 20 -0.566 0.571
Component 2
Component 1- 73 10 8 4 14 0.212 0.8
Component 3 ,
Component 1- 122 10 9.91 11 -0.81 21 0.417
Component 4
Component 2- 6.9 10 9 4 0.777 16 0.436
Component 3
Component 2- 10.25 10 11.682 11 0.493 21 0.622
Component 4
Component 3- 9.625 4 741 11 15 -0.784 0.433
Component 4




APPENDIX C STA'I'ISTICAL RESULTS FOR SENSITIVITY ANALYSIS ON

UNCERTAINTY IN DEGRADATION OCCURRENCE TIMES

C.1 Datahnse for the Sensitiwtv Analysis of Uncertainty in Dezmdation Occurrence Times

v

Table C. 1and C2 present the agmg data for the RHR pumps and air compressors The data

was obtained after i nmposmg the uncertamty of degradatlon occurrence tlmes The uncertamty time

I

mtervals were assumed to be an exponentlally dnstn’buted random variable with a mean of 15 days.
, -



Table C.1. Units RHR Pump Data Combined with

Uncertainty of Degradation Times

Mo Dv Yr Plant Comp Swty  Tij Ti Unecrt T Tij
5 1 80 sasl a D 133 133 0.257 1.08 1.08
1 15 81 sasl a D 288 421 0.017 419 N 312
3 16 8 sasl a - D 473 8.94 0.025 892 4.73
10 28 8 sasl a D 247 1141 0.522 10.89 1.97
9 8 83 - sasl .a D 350 1491 0.148 14.76 3.87
2 17 4 sasl a D 1.82 16.73 0.165 16.57 181
7 1 3 sasl a D 1.49 1822 0.233 17.99 1.42
7 2% 8§ sasl a D 433 2256 0.181 2238 4.39
5 12 B0 sasl b D 146 146 0.033 1.42 1.42
1 15 81 sasl b D 276 421 0.132 4.08 266
3 16 8 sasl b D 413 894 0.008 8.94 4.86
10 28 82 sasl b D 247 11.41 0.266 1115 221
3 17 83 sasl b D 1.60 13.01 0328 12.68 1.54
4 18 84 sasl b F 4.40 17.41 0.037 17.37 4.69
7 26 85 sasl b D 5.14 2256 a.101 2245 5.08
3 10 86 sasl b D 254 25.10 0.142 24.96 2.50
1 9 87 sasl b F 338 2848 0.262 28.22 3.26
5 10 88 sasl b D 5.40 3388 0.469 3341 519
6 7 80 sasl c D 173 1.73 0334 1.40 1.40
1 15 82 sasl c F 6.53 8.27 0.364 7.90 6.50
3 16 8 sasl c D 0.63 8.94 0.033 8.91 1.01
10 28 82 sasl c D 247 1141 0.200 11.21 230
2 38 83 sasl c D 3.50 1491 0.450 14.46 325
6 8 84 sasl c D 3.06 17,97 0.126 17.84 3.38
8 7 84 sasl c D 0.66 18.62 0.039 18.58 0.74
7 26 85 sasl c D 393 2256 0.682 21.87 .29
2 2 87 sasl c D 6.18 28.73 0.141 28.59 6.72
4 25 80 sasl d D 1.27 1.27 0.030 1.24 1.24
5 12 80 sasl d D 0.19 1.46 0.047 1.41 017
3 16 82 sasl d D 149 8.94 0.019 8.93 7.52
10 28 82 sasl d D 247 1141 0339 11.02 2.10
12 15 82 sasl d D 0.52 11.93 0.002 11.93 091
3 17 8 sasl d D 1.08 13.01 0.120 12.82 0.96
4 18 84 sasl d F 4.40 17.41 0.042 17.37 448
5 5 84 sasl d D 0.19 17.60 0.055 17.54 0.18
6 29 84 sasl d D 0.60 18.20 0.445 17.76 0.21
7 26 85 sasl d D 436 22.56 0.079 2248 472
7 28 86 sasl d D 4,08 26.63 0.065 26.57 4.09
1 4 83 sas2 a D 0.03 0.03 0.000 0.03 0.03
8 25 8 sas2 a F 257 . 260 0.162 2.44 24
11 8 83 sas2 a D 0.81 341 0.406 3.01 0.57
2 2 84 sas2 a D 0.99 4.40 0.083 4.32 1.31
8 7 84 sas2 a F 2,06 6.46 0.161 6.29 1.98
5 8 8s sas2 a F 307 9.52 0.026 9.50 .20
1 16 86 sas2 a D 281 1233 0.113 12.22 272
4 19 88 sas2 a F 9.14 2148 0.105 21.37 2.15
1 4 83 sas2 b D 0.03 0.03 0.000 0.03 0.03
7 28 8 sas2 b D 227 2.30 0.005 229 226
n 8 83 sas2 b D L1 34 0.358 3.05 0.76
6 19 84 sas2 b F 251 5.92 0.345 5.58 2.52
8 2 84 sas2 b F 0.48 6.40 0.354 6.05 047
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Table 'h(:f.'l'."(Cor.lt’:cll) .

i Comp

,.n_‘

T

Mo Dy~ Sy Tij Tif
~1 30 -8  sas2  -b- D - 609 1249 0213 1228 623
2 11r.-86 sa2 . b, D 012 1261 0166 1245 017
3 24 87 .sas2 ;b D.. 453; 1714 0491 16.65 421
12 17 .-87 -sa2 b D, 292 2007 0151 - 1992  -326
"2 4. 88 sa2 b D . 058 2064 0015 20.63 0.71
1 4 .8 sa2  :c. D, 003, 003 0014 002 002
2 1 83 sas2 ¢ D 030 033 0129 020 0.19
3 a4 8 sas2 c D 037 070 0038 0.66 0.46
s 25 83 sas2 ¢ D 0.90 160 0124 148 081
9 271 8 sas2 ¢ D 136 296 0057 2.90 142
2 16 84 sas2 ¢ D 1.60 456 0028 453 163
5 16 84 sas2 ¢ D 1.00 556 0.004 555 1.02
8 15 84 sas2 c F 0.99 654 0367 6.18 0.63
3 7 8 sas2 ¢ D 230 884  0.067 8.78 2.60
2 3 8 sas2 c F 1584 2469 0147 2454 156
1 4 8 sas2 d D 0.03 003 0.000 0.03 0.03
1 1 8 sas2 d D 0.08 011 0013 0.10 007
4 12 8 sas2 4 D 101 112 0131 0.99 089
3 5 8 sas2 d F 364 477 0180 459 3.60
8 2 84 sas2 d D 163 640 0274 6.13 154
8 15 84 sas2 d F 0.14 654 0045 6.50 037
9 20 84 sas2 d F 039 693 0219 611 021
3 7 8 sas2 d D 191 884 0234 8.61 1.90
12 17 87 sas2 ¢ D 1122 2007 0008 2006 1145
8 1 M duan a D 1.00 100 0268 013 0.73
2 5 duan a F 138 238 0084 2.29 1.56
12 15 75 duan a D 417 654 0013 653 424
9 20 76 duan a D kB! 9.66 0316 9.34 281
11 21 7  duan a D 068 1033  0.09% 1024 0.90
12 2 7  dum a D 039 1072 0073 10.65 041
1 16 79  duan a D 839 1911 0005 19.11 8.46
3 16 8  dum a D 1283 3194 0020 3192 1282
6 3 8  dum a D 086 3280 0623 3218 0.25
10 23 8  dum a D 156 3436 0217 34.14 1.96
2 25 8  dum a D 141 3577 029 3547 133
3 3 8§ duan a D 820 4397 0041 4393 8.46
7 1 8  duan a D 537 4933 0150 49.18 526
4 23 7 duan b F 397 397 0047 392 392
12 18 78 duan b D 1478 1874 0019 1873 1481
3 10 8  dun b D 1313 3188 0389 3149 1276
4 4 8  duan b D 027 3214 0002 3214 0.65
S 1 8  dum b D 030 3244 0120 3232 018
6 8 8  dum b D 041 3286 0042 3281 0.49
8 1 8  duan b D 059 3344 0055 3339 0.58
10 23 8  dum b D 091 3436 0445 3391 0.52
2 9 8 duan b D 123 3559 0079 35.51 1.60
3 1 8 duan b D 836 4394 0065 4383 837
4 23 8  dumn c D 3236 3236 0152 3220 3220
10 23 8  duan c D 606 3341 0162 3825 6.05
3 1 85 duan c D 553 4394 0406 4354 529
9 14 M duan d F 148 148 0161 132 132
3 18 7  duan d D 6.16 763 0026 7.61 629
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Table C.1. (Cont’d)

Mo Dv Yr Plant Comp Svty Tij Ti Unert T Tif’
11 4 76 duan d D 251 10.14 0.113 10.03 242
] 1 8 duan d D 2230 324 0.105 3234 2231
10 23 82 duan d D 191 3436 0.170 34.19 1.85
12 1 8 duan d D 0.42 34.78 0.184 34.59 0.41
1 1 8 duan d D 039 3517 0.005 35.16 0.57
1 1 & duan d D 4.06 39.22 0358 38.86 3.70
3 1 85 duan d D 472 43.94 0.345 43.60 473
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Table C.2. Aging Data with Uncertainty Timeé\bfLDegradation Occurrences
(4 Compressors Combined)

Yr Plt Comp SEVTY DSCP T C T Unert T - Tf

Mo Dy

12 80 1 1 D " BRGS" ; 064 064 - 0.043 0601 - 0387
47 80 1 1 ‘D - BRGS 081 ' 146 0.003 1.453 * 0.851126
7 2 80 1 1 D BRGS,_ 120 266 0.004 2.651 * 1.198648
9 2 8 1 1 D  BRGS '’ 041 307 0.087 - 2.900 - 0.248753
12 3 8. 1t 1 'D °'MECH' 101 - 408 0.025 4.053 - 1.152969
12 30 8 .1 1 ' D _ "BRGS 10.30 438 - 0.027 4350 ° 0297311
317 817 "1 1, D ' JKTHX - 08 - 523" 0.039 5194  0.844084
4. A 817 1 1 "D “_BRGS' ‘041 5.64 0030 * - 5.614 1-0.419928
6 2 8 "t 1, .D _"BRGS'' 064 ' 629 0.024 - 6.265 © 0.650769
8 24 88 1 1. "D .COMPR ;069 ~ 698 0.005 6.972 --0.707233

929 8t 1 1 .. D -BRGS, ' 039 737 0.022 7345 " 0372376
1m s 8t "1 1 D FLTR ».0.40 .77 0001 - 7.765 - 0.420662
1. 4 82 1 1 ' D' “BRGS ' 066 ' 842 0.044 8378 -0.612544
1 25 & 1 1.7 F_ ‘COMPR 023 866 0.055 8.601 -0.222923
4 14 82 1 1 D _ MECH 08 - 953 -0.006 9.527 0.926321
12 83 1 1° F :'COMPR '307 1260 0017 12583  3.056038
3 V] 8 1 1 D COMPR 054 - 1324 0.024 13121 0537528
1. 19 8 't 1 F "; COMPR 344 1659 '0.044 16545 - 3.424386
4" 30 84 1 1 D~ COMPR R RIS VA 0.078 176337  1.08788
a1 716 84 1 1 D ‘MECH 218 7 1989 0.013 19876 224299
117 8 1 1 F - 'COMPR 068 2057 10.056 20511 - 0.63507
7 12 8 1 17 D' 'UNLOA 194 - 2251° 0.061 22450 193941
715 8 1 1 F . UNLOA ' 003 * 2254 0.005 22539  0.088485
12 27 8 .1 1 F ' COMPR 180 2434 10.033 24311 177219
4 17 8 .1 1 D 'MOTOR ' 122 ' 2557 0.075 25492 1.180518
11 24 8 1 1 D ""MECH‘-' 241 - 2798 -0.021 27957 - 2.465128
B 87 1 1 D  “LUBOIL“- '046 ~ 2843 0.007 284277 0.469974
3.9 87 1 1* F 'LUBOIL: ‘071 = 2914 0.114 29.031° 0.604018
7 2 87 1 i D ,' COMPR - 126 3040 - 0.023 30377 134576
12 10 8 1 1° F - COMPR ' 176 =~ 3216 0.019 32137 1.76038
12 17 87 1 1 D - COMPR ‘008 3223 0.005 32228 0.091432
2 15 8 1 1, F :GASKE: 064 3288 0.008 32870 0.64149
471 8 1 1° D' ~GASKE-' 051 3339 0.003 33.336°" 0.515809
6 21 88-"1 1" D'f- UNLOA " 089 3428 - 0.065 - 34213° 0827231
1 14 8 1 1 - F " GASKE '159°' 3587 ' 0.000 35866 1.653388

.12 7 1 2 D 'COMPR' ' 129 129 10020 S1269 12689
1" 13 8 1 2 D - MECH“'0s2" 181 0.007 1.804 ~ 0.535133
1 24 80 1 2 ' D BRGS - 40.12 ©1.93 - 0,009 71924 0.120063
1. 3 8 1 2 ' D COMPR - ‘o.os G201 1 0.014 1928  0.003653
4 7 80 1 2°° D ' BRGS™'073 274 0.013 2731 0.803461
7 25 8% 1 2 - D" BRGS“ 120 394 © 0.011 3.934 . 1.202385
1277 .30 8 1 2 D " BRGS " 1727 567 ! 0.007 - '5.660 1726497
127 8t 1 2 F " LUBOIL '~ 030" 597 0.025 5941 0281125
4 ‘2 8t~ 1 2" D--° BRGS 097" 693 0027 6906  0.965109
s s 8 1 27- D "COMPR ‘012”7 706 0.028 6889 -0.01743
6 22 81 1 2 - D ' BRGS:*" 052-' 1758 0.014 7563 0.675057
8 2 81 1 2 F' ' MECH - 071 829 0.027 - 8262 0.69801
97 29 g 1 2 D *° BRGS'' 037 866 " 0.004 ".8651 0339204
1 s 81- 1 2 D °* FLTR- 040 906 " 0019 1.9.037 0385473
1 4 2 1 2 D BRGS 0.66 9.71 0.018 9.694  0.656376

L
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Table C.2. (Cont’d)

C-6

Mo Dy Yr Pt Comp SEVTY DSCP Tij Ti Uncrt N Tif
2 12 82 1 2 F MECH 0.42 10.13 0.028 10.105 0.411369
2 24 82 1 2 F COMPR 0.13 10.27 0.031 10.236 0.131136
4 23 82 1 2 D MOTOR  0.66 10.92 0.001 10921 0.685238
6 21 82 1 2 D COMPR  0.64 1157 0.060 11.507 0.585759
4 25 84 1 2 . D .COMPR . 738 18.94 0.058 18887  7.37981
5 28 84 . 1 2 D COMPR. 037 19.31 0.059 19.252 0365176
7 25 84 1 2 F JKTHX 0.63 19.94 0.036 19.909 0.656851
100 17 85 1 2 D COMPR 491 24.86 0.136 24719 4.810583
4 17 86 1 2 D BRGS 200 26.86 0.082 26774 2054185
8 18 86 1 2 D MECH - 134 28.20 0.025 28175 1.401126
11 24 86 1 2 D MECH 1.07 29.27 0.002 29.264 1.089402

.6 1 87 1 2 D LUBOIL . 219 31.46 0.002 31453 2189168

12 17 87 1 2 F COMPR 207 33.52 0.002 33520 2066468
9 8 8 1 2 F COMPR .. 290 36.42 0.021 36.401 2.880877
2 17 88 1 2 F . COMPR - 010 36.52 0.006 36516 0.115179
10 2 83 1 2 F UNLOA 017 36.69 0.021 36.668 0.152233
10 6 88 1 2 F COMPR  0.04 36.73 0.009 36.724 0.0557
10 7 83 1 2 D MECH 0.01 36.74 0.005 36.740 0.015898
8 10 79 1 3 D BRGS 0.10 0.10 0.001 0.099 0.0993
8 14 79 1 3. D COMPR  0.04 0.14 0.061 0.144  0.045084
100 22 79 1 3 F GASKE 0.76 0.90 0.011 0.889 0.744387
2 27 80 1 3 D BRGS 139 229 0.025 2264 1375531

.3 27 80 1 3 D JKTHX 033 262 0.034 2588 0323765
4 7 80 1 3 D BRGS 0.11 273 0.028 2.567 -0.02139
6 27 80 1 3 D BRGS 0.89 362 0.002 3.620 1.053382
7 25 80 1 3 D BRGS 031 393 0.022 3911 0291321
8 1 80 1 3 D COMPR  0.07 4.00 0.030 3970 0.058566
10 18 8 1 3 . D JKTHX 086 486 0.046 4810 0.839903
10 20 80 1 3.- D MECH 0.02 4.88 0.003 4.870 0.06032S
12 30 80 1 3 D -MOTOR 0.78 5.66 0.037 5.619 0.748785
3 17 81 . 1 3 D 'LUBOIL 086 6.51 0.039 6.472 0853134
3 27 81 1 3 D FLTR o1l 6.62 0.001 6.621 0148775
4 24 81 1 3 D BRGS 0.30 6.92 0.023 6.899  0.27817
6 22 81 1 3 F . MECH 0.64 757 0.045 7522 0.622927
92 2 81 1 3 D BRGS 1.08 8.64 0.014 8.630 1.108383
11 5 81 1 3 D FLTR 0.40 9.04 0.002 9.042 0411818
1 4 82 1 3 D BRGS 0.66 9.70 0.053 9.647 0.605071
2 24 82 1 3 D COMPR 056 10.26 0.016 10240 0.592317
7 2 82 1 3 D BRGS 1.63 11.89 0.012 11.877 1.637091
10 21 82 1 3 D COMPR = 100 12.89 0.001 12838 1.011333
4 4 83 1 3 F MECII 181 1470 0.003 14.697 1.808582
4 22 83 1 3. D COMPR 0.20 14.90 0.028 14.733  0.036787
10 21 83 1 3 F COMPR 1.99 16.89 0.036 16853 211924
12 12 8 1 3 D MECH 0.57 17.46 0.050 17.406  0.553112
1 2 84 1 3 D GASKE 0.42 17.88 0.007 17871 0.465188
1 2 8. 1 3 D MECH 0.07 17.94 0.014 17.861 -0.0098
11 16 84 1 3 D FLTR 322 21.17 0.005 21.162  3.300546
1 27 85 1 3 D GASKE 0.79 21.96 0.003 21948 0.785952
2 27 85 1 3 D MECH 033 22.29 0.003 22286 0.338031
4 30 85 1 3 D COMPR  0.70 2299 0.065 22924 0.635342
4 17 86- 1 3 D BRGS 3.86 26.84 0.000 26844  3.920055
4 27 87 1 3 D UNLOA 4.11 30.96 0.020 30,936 4.091558
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Table C.2."(Cont'd)

Yo,

Plt Comp SEVTY DSCP. Tij

- :

Tif

COMPR

C-7

Mo Dy Yr Uncrt Ti
7 23 87 1 3 D COMPR 09 3191 0.007 31904 0.968467
10 2 ..8 1 3 D COMPR 077 3268 0.009 . 32669 0.764507
3 31 8 "1 '3 D “MECH -‘199 ' 3467 0074 34593 1923948
10 6 8 1 3 D _ MECH _ 206 3672 C0013 36709 2116499
7 31 19 1 4 F COMPR 068 068 0011 " 0667 T 0.6669
8 10 9 1 4 D ~"BRGS ‘010 078 . 0.007 0.771  0.104275
10 2 79 1. '4 F ''LUBOIL " '058 ! ‘136 0.025 1330 0.558903
10 11 19 1 4 F _'COMPR 010 i 146 0.027 T 1429 °0.098442
2 2 8 1.. 4 ... D..COMPR ~123 ° 269 . 0068 2621 1192614
2 27 8 1. 4. D .-BRGS .028 297 0.014 2953 0331677
3 27 80 1. 4 D JKTHX 033 330 0027 . . 3273 0320232
4 7 -8 - 1 -4 D- - BRGS - 011- - 341 . 0004.. . .3407 0.133649
6 .24 80 . 1" 4 D < LUBOIL <086 427 0.019 - 4248 0841029
6 27 80 1: 4 D BRGS 003 , 430 - 0018 4282  0.034654
, 7 25 80 "1.7 4™ "D ""BRGS " 031 461 © - 0028 4.583  0.300258
1176 80 1 4° D ! MECH “112 57 0.031 - 5703 1.120025
12 30 80 1 4 D BRGS 060 633 0001 . - 6332 0629682
"3° 3 '8t 1 4 D~ FLTR ~ "070 . - 7.03 70.060 6.974 -+ 0.641314°
3 17 811 4. D FLUBOIL 016 . 719 0.058 : 7131 0157588
3 27 81 1 4 D FLTR 011 ; 730 0059 - . 7241 0.109621
4 77247 781 17774 T DT TBRGSTTT030 377760 T 0036 7564 0323517
6 22 81 17 4 D ~ BRGS ‘064 824 0136 " 8108 0543917
7 28 81 1 4 F _GASKE _ 040 864 0082 '~ 8563 0454185
7,2 8 1 4 D COMPR 001 8.66 0.025 | 8.630 0.067793
8 14 81 1 4 D 'COMPR 017 . 882 0.002 8.820 0.189402
-9 29 .8. 1: 4 D - BRGS 0S50 932 . - 0002 ° 9320 0500279
10 6 8t 1 4 D MECH 008 940 0.002 9398  0.07758
1m s 8t 1 4 D FLTR 032  97M2 0.021 9.701 0303099
1 4 82 1 4 D BRGS 066 1038 0.006 10371 0.670734
1 25 82 1 4 D COMPR 023 1061 0.021 10590  0.218904
4 3 2 1 4 D MOTOR 098 1159 0.009 11579 0.989033
5 24 82 1 4 D MECH 034 1193 0.005 11929 0349231
7 1 82 1 4 D MECH 041 1234 0.001 12344 0415178
7 2 g2 1 4 D BRGS 022 1257 0.028 12400 0056262
1 20 8 1 4 D COMPR 199 1456 0.011 14544 2144321
3 15 8 1 4 F BRGS 061 1517 0.025 15142 0597753
4 4 8 1 4 D MECH 021 1538 0.034 15344 0201542
7 25 8 1 4 F COMPR 123 1661 0.072 16539  1.195037
7 20 8 1 4 D COMPR 394 2056 0.002 20553  4.014729
11 16 8 1 4 D MECH 129 2184 0.022 21823 1269099
3 28 8 1 4 F MECH 147 2331 0.030 23281  1.458566
6 10 8 1 4 F  GASKE 080 2411 0.046 24.065 0.784347
12 1 8 1 4 D GASKE 190 2601 0.008 26.004 . 1.938102
12 6 8 1 4 D MECH 006 2607 0.014 25983 -0.0202
1 10 8% 1 4 D COMPR 038 2644 0.039 26405  0.422115
3 2 86 1 4 F  MOTOR 088 2732 0.001 27321 0915442
4 21 8 1 4 F  UNLOA 024 2157 0.023 27541 0222614
1 S 87 1 4 D COMPR 282 3039 0.045 30344 2800704
72 g7 1 4 D UNLOA 197 3236 0.014 32342 199721
2 3 8 1 4 F  GASKE 234 3470 0.002 34698 2356262
701 8 1 4 D UNLOA 164 3634 0.053 36292 1.5939%
7 15 .8 1 4 D 016  36.50 0.016 36434

0.192317
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The Mann-Whitney test for the aging data with uncertainty times incorporated were conducted

Comparison of Statistical Test Results for Data Combining on RHR Pump Aging Data

for the RHR pumps and air compressors, respectively. Table C.3 and C.4 present the test results.

Table C.3. Con'xparison‘ of Test Results on Data Combining for RHR Pumps

. Averigé #of Average # of
Uncertainty . Rank of | Valves Rank of Valves
Times Comparisons 1st . of 1st 2nd of 2nd Total Test R
Considerations of Samples Sample Sample Sample Sample obs Statistical Z | Value
plant 1- 36.30 38 37.75 3s 73 0.287 0.77
plant 3 .
 Before plant 2 - 3L.14 37 4217 35 72 223 0.03
e plant 3
plant 1 - 36.13 38 57.94 35 73 0.359 0.71
plant 2 :
plant 1- 36.15 38 3791 35 73 0.347 0.727
plant 3 .
. Afer plant 2 - 315 34 4225 3s 69 2,07 0.082
plant 3
plant 1 - 445 36 312 7 73 -1.63 0.07
plant 2




Table C.4. Comparison of Test Results on Data Combining for Air Compressors

Kruskal-Wallis analysis of CMPUNCRT.T; by Comp

With Incorporation

Level Sample Size Average Rank
1 35 88.2857
2 33 78.2727
3 38 78.0789
4 48 68.6458

of Uncertainty Times

Test statistic = 3.95496

Significance level = 0.266369

Kruskal-Wallis analysis of CMPUNCRT.T;; by Comp

Level Sample Size Average Rank
1 35 88.9571
2 33 77.2727
3 38 78.5921
4 48 67.5938

Without Incorporation
of Uncertainty Times

Test statistic = 1.54586

Significance level = 0.671726




