COMMISSION BRIEFING SLIDES/EXHIBITS

BRIEFING ON DIGITAL INSTRUMENTATION AND CONTROL

JULY 18, 2007

Digital I&C – Industry Perspectives

July 18, 200,

Amir Shahkarami Sr. VP Engineering & Technical Services Exelon Corporation

Topics

2

- Objective
- Communication
- Project Plan
- Conclusions

REI

Objective

- Safety-focused application of digital technology
 - Design certification
 - Current operating plants
 - New plants

NM

- New facilities
- Stable, predictable and timely licensing process
 with realistic guidance
- Enhance plant safety, availability and reliability

Communication

NEI Digital I&C and Human Factors Working Group

- Reports to industry Chief Nuclear Officers
- Participate on the Digital I&C Steering Committee
- **Coordinate with NEI New Plant Working Group**
- Major vendor participation
- Integrated, focused attention to ensure safety
 - focused, stable and predictable licensing process

Project Plan

Disciplined Framework

- Issue scope and definition
- Deliverables
- Milestones
- Accountability
- Integrated approaches to resolution
- Fundamental tool for management oversight and coordination

Conclusions

- Progress has been made
- Project plan provides a framework going forward
 - Integrate lessons learned and other improvements
- Maintain focused management attention during the longer term

Digital Instrumentation & Control – EPRI Role

July 18, 2007 Chuck Welty Technical Executive Electric Power Research Institute

Acronyms

- EPRI Electric Power Research Institute
- I&C instrumentation and control
- R&D research and development
- MCR main control room
- PRA probabilistic risk assessment
- HFE human factors engineering
- ANT advanced nuclear technology
- SER safety evaluation report
- PLC programmable logic controller
- ASIC application specific integrated circuit
- FPGA field programmable gate array

CCF – common-cause failure

EPRI Digital I&C R&D

- Substantial past/ongoing activities on digital I&C, MCR, risk and human factors
- Guided by extensive utility advisory structure
 - Expertise I&C, PRA, HFE and ANT
- Several products with SERs
- Basis for industry technical positions
- Areas of information exchange and interaction with NRC

EPRI has substantial expertise and proven capabilities

EPRI R&D on Digital I&C

- Licensing digital upgrades
- Verification & validation
- Electromagnetic interference
- Commercial devices PLCs, ASICs, FPGAs, wireless, etc.
- Control room/human factors
- Defense-in-depth and diversity
- Applying risk methods

1992-2004
1992-1998
1992-
1993-

2001-2002-2002-

© 2007 Electric Power Research Institute, Inc. All rights reserved.

4

Current EPRI Support

- Defense-in-depth and diversity
 - Use design and diversity for CCF protection
- Risk-informed methods
 - Existing methods provide insights to focus design and review efforts
- Human factors
 - Bases for minimum inventory of interfaces, computerized procedures, graded HFE design approach
- Ongoing evaluation of operating experience

Future EPRI Activities

- Interaction with NRC Research has not been as extensive as it could be – we want to help improve this
- Interim Staff Guidance documents are only a start – our advisors expect us to continue to work with NRC to resolve the issues completely

Digital Modernization Hurdles and Solutions

7-18-07

Ken Brown Vice President Invensys

About Invensys

- Invensys PLC 30,000 employees, in 60 countries
 - Invensys Process Systems (IPS)
 - Comprised of Foxboro, Triconex, Wonderware, Simsci-Esscor, Avantis, Validation Technologies
- IPS is presently providing input to the industry working groups and the NRC

Digital Instrumentation and Control Issues in the Nuclear Industry

- Diversity, Defense in Depth D3
- Risk Informed Digital I&C
- Operator Training
- Cyber Security
- Lessons Learned from other Industries

Diversity, Defense in Depth

- IPS install a highly available, highly reliable Triple Modular Redundant (TMR) controller for Reactor Protection and ESFAS with a diverse digital controller I/A series
- Use technology to solve this issue not challenge the license base or operation position

Diversity, Defense in Depth

- Invensys and our customers need a workable and understandable position on issues of concern – causing confusion and delays
- Common Cause Failure extensive diagnostics and a highly developed platform substantially reduce this risk

Risk Informed Digital I&C

- Consultative teaming relationship
- TMR technology deployed on safety, mission critical, and life critical systems
- This technology currently supports High Probabilistic Reliability Analysis numbers
- Need to evaluate and take credit for methodologies used in other countries and industries

Operator Training

- TMR, Fault Tolerant, High Diagnostic systems allow for minimal training for Operations
- Can be used on Important To Safety and Safety Related applications minimizing training

Cyber Security

- Invensys is committed to industry leading cyber security initiatives
- Utilize Wurldtech Securities Achilles Level 1 assessment test as Cyber Security benchmark

Lessons Learned from other Industries

- Triconex is by far the most trusted safety system in the continuous process industries
- Make obsolescence "Obsolete
- Provide Digital Commercial Off The Shelf Technology (COTS) Solutions under a 10CFR Appendix B program
- IPS safety platform meets safety criteria for Hydro Carbon Industry and Rail Signaling Industry

Conclusion

- We are pleased with the progress being made by the recent working groups
- Facilitate technology transfer from other
 Mission Critical / High Reliability industries

10

 Staff should continue to develop consultative relationships with key technology providers

Conclusion

- IPS encourages the staff to engage I&C design early in COL phase for new builds
- IPS is committed to the industry, to help resolve I&C issues, on existing and new plant designs to accelerate the renaissance of nuclear power

AP1000

Digital Instrumentation and Control

July 18, 2007 Cynthia McGinnis Westinghouse Electric Company

AP1000 Design Certification Finality

- Functional Design
- Applicable codes and standards
- Basic architecture
- Diversity/Defense-in-Depth
- Minimum Inventory
- Diverse Actuation Functions
- Design Acceptance Criteria

AP1000 I&C Design and Licensing Efforts

- Plant Simplicity Drives I&C Safety System Simplicity
 - One-time component actuation
- Common Q Platform
- "Simple" digital I&C implementation
- Technical Reports
- Existing requirements and Guidance remain applicable

Fundamentals the Same as Operating Plants

- Functional Basis Simplistic and Transparent
- Architecture Basis
 - Divisional Independence
 - Safety/Non-Safety Separation
 - Isolation
- Communications and Architecture driven from operating plant design and experience
- Analog to Digital Implementation does not impact Fundamental Philosophy

AP1000 I&C Evolutions

- Diverse Actuation Functions
 - Functionality resolved in Design Certification
 - Separate sensors/actuators from those used by the Safety System
 - New Plant (clean sheet) flexibilities
- Priority for safety system actuation
- Cyber Security Issues
 - AP1000 Technical Report
 - Consistent with NEI-04-04

AP1000 Licensing Efforts

- Design Certification resolved many I&C issues for the AP1000 Design
- Technical Reports/DCD Revision 16 to resolve I&C DAC
- NRC interactions to establish sufficient information for reasonable assurance
- Simplistic digital I&C application results in acceptable use of existing regulatory requirements and guidance

AP1000 Licensing Efforts

- Development of Cyber Security Plan
 - TR is developed and submitted
 - Continued work with Industry and Staff to resolve the issues/concerns
 - Consistent with NEI-04-04
- Westinghouse-proposed schedule for resolution by Spring 2008

Conclusions/Comments

- Design Certification resolved many I&C issues for AP1000
- Existing NRC regulatory requirements and guidance sufficient to evaluate AP1000 I&C safety system
- Licensing basis for I&C in the design certification rule
- Propose to resolve I&C DAC in DCD amendment currently under NRC staff review
- Result in elimination of the DAC from the AP1000 Design Certification Rule upon successful NRC reasonable assurance conclusion
- Operating plant upgrade issues different

DIGITAL I&C & Grid Operations

July 18th 2007 Tom Bowe PJM Interconnection bowet@pjm.com

PJM's MISSION

- Maintain the safety, adequacy, reliability and security of the bulk power system
- Create and operate a robust, competitive, and non-discriminatory electric power market
- Ensure that no Member or group of Members has undue influence

2

RTO = Regional Transmission Operator

PJM's Area of Operations

PJM RTO (Post-integrations)

Generating Units Generation Capacity Peak Load Annual Energy Transmission Miles Area (Square Miles) Customers Population Served States (+ D.C.)

1,400 170,807 MW 144,000 MW 648,000 GWh 55,000 186,000 21 Million 50+ Million 13 states + D.C.

3

⊇JM Confidentia ©2003 PJM

Generation System Operator

Transmission System Operations

PJM does not Control anything, but it is our access to our members' data that allow us to make the decisions that protect the grid

5

PJM Confidential ©2003 PJM

Back-Up Capability

- We Must Maintain Situational Awareness
 & a Wide Area View
 - Y2K
 - September 11th 2001
 - August 14th 2003
- PJM exists on its data streams

- Multiple and Diverse Communication Paths
- Digital I&C Provides for Greater Visibility and Flexibility
- Creative Training

Cyber Security

- Starts with Defining "What is Critical?"
- If everything is critical than nothing is . . .
- Must also define the "Electronic Perimeter"
 - Defense in Depth
 - Network Segmentation
- Conduct Independent Vulnerability Assessments
- NERC Critical Infrastructure Protection Standards (CIP 002-009) and/or ISO 17799

PJM's Advanced Control Center Concepts

- Visualization with a focus on human factors and role vs. function based displays
- The evolution of intelligent event processing and intelligent agents
- Improvements in control through advanced algorithms, improved visualization, advanced look ahead, modeling of heuristics.
- Synchronized control centers for rapid recovery

COMPUTING SUBSYSTEMS (Safety and Reliability Challenges)

July 18, 2007

Homayoon Dezfuli, Ph.D. Manager, System Safety Office of Safety and Mission Assurance NASA Headquarters

Role of Computing Subsystems

- Perform safety-critical and mission-critical functions
 - Power management
 - Telemetry
 - Data and information handling
 - Communication
 - Hardware automation and control
- Have contributed to several spacecraft accidents
 - Software data specification errors
 - Software design specification errors

What is NASA Doing?

- Improving system engineering (SE) processes to better handle hardware/software, software/human and software/software interfaces and design trade studies
- Improving software assurance processes
- Exploring the applicability of risk assessment techniques to risk-inform the SE and software assurance processes

Challenges for Risk-informing Software Safety

- Need: Ability to predict (or bound) with a given level of confidence the likelihood of mission failure due to latent software defects to support
 - Risk management decisions (e.g., designing SW testing regimes for risk significant configurations)
 - Risk acceptability decisions (e.g., showing that a probabilistic safety criterion is being met)
- Based on results to-date, it appears that a combination of techniques is needed to satisfy this need

Exploratory Ideas

Risk management decisions

- Application of scenario-based accident modeling techniques to identify system-critical configurations, flight mode changes, and flight transients
- Risk-informed testing regimes
- Risk acceptability decisions
 - Assignment of initial reliability levels (ranges) based on attributes such as design complexity, and SW quality V&V process considerations (risk classification of software elements)
 - Adjustment of reliability levels based on V&V and riskinformed test process findings (updating of initial reliability levels)
- Continue focused research
 - Beneficial to work with NRC

Briefing on Digital Instrumentation and Controls Update on New Reactors Update on Digital Research Platform

July 18, 2007 Luis Reyes Executive Director for Operations

Acronyms

ABWR	Advanced Boiling Water Reactor
------	--------------------------------

ACRS Advisory Committee on Reactor Safeguards

APWR Advanced Pressurized Water Reactor

- BWR Boiling Water Reactor
- COL Combined License
- D3 Diversity and Defense-in-Depth
- DC Design Certification
- DOE Department of Energy
- EIS Environmental Impact Statement
- EPR Evolutionary Power Reactor
- EPR Evolutionary Power Reactor
- EPU Extended Power Uprate
- ESP Early Site Permit
- ESBWR Economic Simplified Boiling Water Reactor
- FPGA Field-Programmable Gate Array
- FPL Florida Power & Light Company
- FY Fiscal Year
- GDC General Design Criteria
- I&C Instrumentation and Control
- INPO Institute for Nuclear Power Operations
- IT Information Technology
- LLTF Lessons Learned Task Force

NFPA	National Fire Protection Association
NMSS	Office of Nuclear Material Safety and Safeguards
NRC	Nuclear Regulatory Commission
NRO	Office of New Reactors
NRR	Office of Nuclear Reactor Regulation
NSIR	Office of Nuclear Security and Incident Response
NUREG	technical report (<u>Nuclear Reg</u> ulatory Commission)
OGC	Office of General Counsel
PRA	Probabilistic Risk Assessment
PWR	Pressurized Water Reactor
RAI	Request for Additional Information
RES	Office of Nuclear Regulatory Research
RG	Regulatory Guide
RIS	Regulatory Issue Summary
SRM	Staff Requirements Memorandum
SRP	Standard Review Plan
SWP	Strategic Workforce Planning
TVA	Tennessee Valley Authority
TXU	Texas Utilities Energy Corporation
SER	Safety Evaluation Report
SGI	Safeguards Information
TWG	Task Working Group

Agenda

Introduction

Readiness for New Reactors Digital I&C Research Platform Digital I&C Steering Committee Diversity and Defense-in-Depth Highly-Integrated Control Room Digital Risk Assessment L. Reyes W. Borchardt R. Croteau J. Grobe M. Mayfield M. Cunningham M. Cunningham

Readiness for New Reactors

William Borchardt Office of New Reactors

New Reactor Licensing Applications

An estimated schedule by Fiscal Year

New Reactor Infrastructure

- Approved Rulemakings: Part 52 and Limited Work Authorizations
- Finalized Regulatory Guide 1.206
 "Combined License Applications for Nuclear Power Plants"

New Reactor Infrastructure

- Completed final wave of staff transfers from NRR
- Populating Licensing Program
 Plan
- Developed Combined License application acceptance review guidance

Pre-application Activities

- Pre-Combined License interactions and site visits, and application readiness assessment visits
- Public outreach
- Design Centered Working Group meetings
- International interactions
- Orders imposing safeguards information protection requirements

Research Platform

Rick Croteau Office of Nuclear Regulatory Research

Test Facility

- Develop a defined set of concepts

 Input from interested stakeholders
 - Investigating other similar facilities
- Conduct a public workshop
 - September 6 & 7 technical issues
 - September 11 non-technical issues
- Prepare Commission paper
 - Results of workshop
 - Recommendations on path forward

Digital Instrumentation and Controls Steering Committee

Jack Grobe Office of Nuclear Reactor Regulation

Background

- November 8, 2006, Commission briefing
- December 6, 2006, Staff
 Requirements Memorandum
- January 12, 2007, memorandum established the Digital I&C Steering Committee

Key Challenges

- Assuring predictability through refined Regulatory Guidance
- Anticipating future needs
 - Evolving technology
 - Industry priorities
- Improving stakeholder interactions
- Expanding domestic and international interactions

Digital I&C Future Workload

Operating reactor modifications

- Design Certification
- Combined License
- Fuel-cycle facilities

Structure of Project Plan

- Defined problem statements under each Task Working Group
- Developing Interim Staff Guidance (near-term)

- Interactive effort with industry
- Revise Regulatory Guides and industry standards (long-term)

Stakeholder Interactions

- Conducted 30 public meetings with the industry since November 2006
 - 5 Public Steering Committee meetings
 - 25 Public Task Working Group meetings
- ACRS interactions
- Expanded domestic and international interactions

Michael Mayfield Office of New Reactors

- Common-cause failures are credible
- Current guidance has been successfully used
- Staff is working to improve existing guidance

- Seven key issues being addressed:
 - Adequate diversity
 - Operator action
 - Component vs. system level actuation
 - Effects of common-cause failures
 - Common cause failure applicability

- Echelons of defense
- Single failure

- Development of Interim Staff Guidance is well underway
 - Acceptable diversity and defense-in-depth criteria
 - Criteria on remaining issues under internal review

- Path forward
 - -Issuance of Interim Staff Guidance
 - Continued interaction with industry
 - Update Regulatory Guides and Standard Review Plan

Highly Integrated Control Room—Communications and Risk Assessment

Mark Cunningham Office of Nuclear Reactor Regulation

- Communications issues
 - Between safety divisions
 - Between safety and nonsafety equipment

24

 Staff is working to improve guidance

- Four key technical areas
 - Inter-divisional communications
 - Command prioritization
 - Multi-divisional control/display stations
 - Network configuration

Improved guidance on schedule

 Inter-divisional communications
 Command prioritization

- Continuing interactions
 - Multi-divisional workstations
 - Non-safety workstations for safety indication and control
 Network configuration
Highly-Integrated Control Room—Communications

- Path forward
 - Issuance of Interim Staff Guidance
 - Continued public interaction with industry

28

- Update Regulatory Guides and Standard Review Plan

Digital Risk Assessment

- Expanding Use
 - Risk insights in design certifications
 - Risk-informing regulatory practices

29

 Staff is working to develop guidance

Digital Risk Assessment

- Risk insights
 - Information sources
 - Industry white papers
 - NRC research
 - Operating experience
- Path forward
 - Continued public interactions with industry
 - Develop Interim Staff Guidance

Digital Risk Assessment

- Risk-informing regulatory practices
 - State of technology
- Path Forward
 - Continued public interactions with industry
 - Develop guidance

Summary

- Steering committee is functioning effectively
- Project plan is in place
- Interim Staff Guidance is being developed
- Stakeholder interactions
- Strong industry support
- Staff is on-schedule to complete near-term deliverables