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RESEARCH INFORMATION LETTER 1001:  
Software-Related Uncertainties in the Assurance of Digital Safety 

Systems—Expert Clinic Findings, Part 1 

Executive Summary 
This research information letter (RIL) transmits knowledge about uncertainties in assurance of 
digital safety systems associated with software1 and other manifestations of complex logic 
(e.g., field-programmable gate array (FPGA)). The purpose of this transmittal is to support the 
judgment exercised in licensing reviews of complex digital safety systems. This knowledge was 
acquired through an expert elicitation activity2 conducted by the U.S. Nuclear Regulatory 
Commission (NRC), Office of Nuclear Regulatory Research (RES), Division of Engineering (DE) 
(hereafter referred to as NRC/RES/DE). 

Uncertainties in the assurance of digital instrumentation and control (DI&C) systems for safety 
functions in a variety of application domains are increasingly emanating from systemic causes, 
as in software. In order to learn from experiences outside of the commercial nuclear power plant 
(NPP) industry, such as defense, space flight, commercial aviation, medical devices, 
automobiles, telecommunications, and railways, NRC/RES/DE elicited knowledge from experts 
with safety-critical software and systems research experience in these application domains. 
NRC/RES/DE employed the Pacific Northwest National Laboratories (PNNL) as a neutral 
elicitation agent. PNNL interviewed over 30 experts spread across seven countries (United 
Kingdom, Sweden, Germany, Canada, United States, Australia, and New Zealand), from which 
a diverse group of 10 was charged with the following objectives in a 2-day clinic: 

• Identify limitations in the current state of practice (i.e., sources of uncertainty) that make 
software assurance heavily dependent on expert judgment. 

• Identify the evidence that is needed to assure software for safety more effectively, based on 
best practices in other application domains. 

• Identify knowledge gaps to be filled (i.e., areas in need of research and development) to 
enable more consistent reviews and to reduce judgment-based variation. 

Highlights of the expert clinic findings are summarized below. 

1. Summary of Current State 

DI&C system safety assessment will continue to require high-caliber judgment from a diverse 
team3 commensurate with the complexity of the system and its development process and 
environment, as in systems containing complex software or other manifestations of complex 
logic. In order to exercise reasonable judgment, the team will review the types of evidence4 

                                                
 
1 Although the expert elicitation activity was targeted to focus on uncertainties in software assurance, the findings are 
applicable more broadly to potential defects in the DI&C system attributable to engineering mistakes or defects in 
engineering tools. 
2 This activity was part of the NRC’s 2010–2014 DI&C research plan. 
3 A diverse team should be composed of individuals with complementary attributes (e.g., thought processes, 
communication styles, and competence) needed to perform the assigned task, including education, training, and 
experience in different domains and disciplines. 
4 Also see Appendices A.1–A.6. 
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identified in this report, integrated with reasoning to demonstrate5 that the remaining 
uncertainties will not adversely affect system safety. In the absence of such demonstration, 
there should be diverse defensive measures6 independent from digital safety systems using 
complex software, other implementations of complex logic, or products of software-intensive 
tools. 

2. Seek Diverse Complementary Evidence to cover gaps and uncertainties 

Because of the complexity7 of the digital systems8 being proposed in new licensing applications 
in the USA, claims of complete certitude about safety assurance would not be credible. To the 
extent that complete certitude of assurance cannot be obtained from product verification alone, 
a combination of different types of evidence9 is recommended for complete coverage, 
complementing or filling the respective gaps and uncertainties, including diversity to improve the 
confidence in the coverage. No single approach (testing alone or process audit alone) can 
provide adequate assurance. It is necessary to integrate the evidence, with supporting 
arguments, to demonstrate reasonable assurance of safety. This RIL refers to this evidence-
argument-claim integration structure as a “safety demonstration framework10”; some current 
uses of an evidence-argument-claim integration structure are known as an “assurance case” or, 
for a complete system, a “safety case” [1]. 

3. Complexity 

Increasing complexity, among other issues, increases the potential for hidden or unsuspected 
dependencies or couplings, including interference. Establishing criteria (e.g., architectural) for 
avoiding unnecessary11 complexity will support reducing uncertainty resulting from system 
complexity. 

4. Interference 

Demonstration of noninterference of system, subsystems, or elements is important; there is a 
need to establish criteria (e.g., architectural). 

5. Change Impact Analysis  

Analysis of the impact of change on safety assurance is difficult, especially as the DI&C 
systems and their development processes become more complex.12 A complete understanding 
of all dependencies, the awareness of change in any dependency factor, and the analysis of its 
effect are all necessary. Architectural constraints will support such analysis. 

                                                
 
5 See Section 4 Safety Demonstration 
6 This recommendation is consistent with and supportive of current NRC diversity and defense-in-depth policy. 
7 relative to electromagnetic relay logic 
8 especially, with runtime software exhibiting dynamically altering behavior, with interconnections across elements of 
different degrees/levels of qualification and interconnections across redundant elements. 
9 e.g. expert group reviews to validate requirements and constraints; verifying satisfaction of design constraints or 
rules; model verification; analysis; simulation; coverage-based testing; process audits. See Table 2. 
10 See Section 4 Safety Demonstration 
11 "Everything should be made as simple as possible, but no simpler"—Albert Einstein. 
12  For example, as electronic hardware becomes obsolete (unavailable or unmaintainable) sooner, platform software 
correspondingly changes more often. The cumulative effect of a series of small or subtle changes becomes 
progressively more difficult to analyze. 
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6. Architecture 

System-constraining criteria13 and software architecture can reduce complexity, assure freedom 
from interference, reduce the interaction of different sources of uncertainty, reduce the impact of 
change, and improve verifiability. Thorough reviews can assure correctness in deriving 
architectural constraints and specifications from quality of service properties, such as safety, 
reliability, and robustness. It is recommended that reviews also examine whether assumptions 
about the environment are validated. 

7. Tool-Automated Processes 

Software development technology is headed toward automation of routine, well-defined, 
repetitious, or tedious tasks through tools such as for automatic generation of code, automatic 
generation of test cases, and automated testing. However, any such tool, by itself, should not be 
accepted14 as the sole contributor of evidence for safety assurance, without published formally 
defined semantics and certification and qualification of their correctness and fitness for purpose. 
Although such tools can eliminate the possibility of mistakes that people make in routine tasks, 
tools can also add new defects15 in ways that are outside the intuition and experience of the 
designers and regulators. When tools are used in a chain of transformations from various levels 
of abstract representations to executable code, evaluation of the chain, as a set, for semantic 
consistencies across transformations is recommended.In the current state of the art, in addition 
to certification and qualification of tools, diverse evidence, such as independent checks of the 
tool outputs or complementary evidence from various process activities16, supports providing 
adequate coverage. 

8. Follow-On Expert Elicitation Activities 

Recognizing that the scope of these problems is large and their resolution a long-term 
endeavor, it is recommended the NRC  undertake similar expert elicitation activities with more 
domain-specific information,17 engaging specific expert groups for topics such as assessment 
and audit of tool-automated, tool-assisted processes for development, verification, and 
assurance. In order to focus the expert knowledge on problems being experienced or foreseen 
in the NRC (see [2]) and for regulatory improvement, these activities would benefit from  
including experienced NRC licensing reviewers. Thus, the resolution of these problems will be 
an iterative, evolutionary process, with commensurate growth in knowledge and active 
engagement of the stakeholders

                                                
 
13  In scope of the NRC DI&C research plan [2], Section 3.1.5. 
14 In contrast, consider the example of tools used in creating logic targeted for FPGAs. Tools developed for non-
safety consumer products are being used for safety applications without commensurate qualification guidance. On 
the other hand, it is economically prohibitive to develop tools for safety-critical applications from scratch. 
15 New defects may possibly result in new system failure modes. 
16 e.g. regression tests; verification of compliance with design constraints, implementation constraints, coding 
standards, etc.. 
17 Domain-specific information might include representative system configurations, platforms, and applications. 
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1. Introduction 
This RIL is the first in a series of three (RIL-1001, RIL-1002, and RIL-1003) that collectively 
respond to the DI&C-relevant part of the Commission’s staff requirements memorandum 
(SRM) M080605B, “Meeting with Advisory Committee on Reactor Safeguards,” dated June 26, 
200818 [3], which asked the staff to do the following: 

• Report progress in identifying and analyzing DI&C failure modes (to be addressed in 
RIL-1002, “Identification of Failure Modes in Digital Safety Systems and Analysis for 
Systemic Causes—Expert Clinic Findings, Part 2” [4]). 

• Discuss the feasibility of applying failure mode analysis to quantification of risk associated 
with DI&C (to be addressed in RIL-1003, “Feasibility of Applying Failure Mode Analysis to 
Quantification of Risk Associated with Digital Safety Systems—Expert Clinic Findings, Part 
3” [5]). 

1.1 Context: State of Maturity of Knowledge in These Topics 

These challenging issues can be addressed in long-term research, in collaboration with 
international regulatory researchers from other safety-critical application domains. The “NRC 
Digital System Research Plan FY 2010–FY 2014,” dated February 26, 2010 (referred to 
hereafter as “DI&C research plan”) [2], is structured to address these long-term research issues 
in an iterative, evolutionary manner, with several interrelated research activities, such as 
operational experience, analytical assessment, knowledge management, and probabilistic risk 
analysis. Figure 1  Lower half illustrates these inter-relationships, including the expert elicitation 
activities, being reported herein, and addressing the requirement from the Commission, 
depicted in the upper half of Figure 1. 

                                                
 
18 SRM M080605B resulted from the June 5, 2008, Advisory Committee on Reactor Safeguards (ACRS) presentation 
to the Commission about its review on DI&C issues. 
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Figure 1  How the expert elicitation activity supports SRM M080605B 

1.2 Organization of This Letter 

Section 2, “Background,” summarizes the generic issues that led to the SRM and this research. 
The main part of this RIL focuses on understanding the nature and sources of the uncertainties 
that make software assurance difficult even in a high-quality environment (e.g., process, 
architecture, organization, culture, and competence). Section 2 notes that, in this high-quality 
context, additional evidence would support reducing the extent of these uncertainties, and it 
connects some of these topics to corresponding International Electrotechnical 
Commission/International Organization for Standardization (IEC/ISO) and Institute of Electrical 
and Electronics Engineers (IEEE) standards.19 

The understanding of the nature of uncertainties provided by this RIL establishes the knowledge 
platform for RIL-1002 [4], which will discuss failure mode analysis in the presence of such 
uncertainties.  

Building on the information in these two RILs, RIL-1003 [5] will discuss the feasibility of applying 
failure mode analysis to quantification of DI&C system-failure likelihood resulting from software, 
other implementations of logic, other types of mistakes in the engineering of DI&C systems, 
defects in the tools used to produce the work products, and such other systemic causes. 
 

                                                
 
19 NRC regulatory guides reference many of these IEEE standards. 
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Baseline for discussion of uncertainties: The experts were focused on discussing 
uncertainties that are not well understood. Well-known sources of defects or uncertainties 
about the presence of defects were excluded from the scope of their discussion. For that 
purpose, this discussion of uncertainties is predicated on the assumption that DI&C systems 
and their elements satisfy the conditions and criteria outlined in Appendices A.1  Baseline 
Process–A.6  Safety Demonstration Framework to this RIL. It is not implied that the 
assumption holds for current DI&C systems, their elements, or their development 
environments. 

Even in a high-quality environment as outlined in Appendix A to this RIL, there are many 
uncertainties in the verification and validation (V&V) of a DI&C system. Section 3, “Uncertainties 
in Verification and Validation of DI&C Systems,” identifies these uncertainties, the limitations to 
overcoming these uncertainties, and recommendations to address these limitations. One of 
these recommendations is a logically structured organization of the claims, evidence, and 
arguments that establish their relationships, as introduced in Section 4, “Safety Demonstration.” 
With the recommended evidence-integration R&D, it is the kernel of the approach to evaluate 
the resultant effect of the uncertainties identified in this RIL. Uncertainties in the V&V of a 
system arising from the use of tool-automated processes are addressed in Section 5, 
“Uncertainties Associated with Tool-Automated Processes.” Uncertainties in the V&V of a 
system arising from change of any kind are addressed in Section 6, “Unknown Effects of 
Change.” The limitations of the state of the art discussed in Sections 2–6 are also treated as 
knowledge gaps to be filled with further research. Section 7, “Miscellaneous Research 
Recommendations,” includes additional long-term research recommendations. Section 8, “Next 
Steps,” identifies some immediate next steps. 

The glossary includes definitions of terms as used in this document. Supporting references 
provide more detail and contextual information about the conclusions and recommendations. 

Appendix B outlines the elicitation process employed in this study. 

2. Background 
SRM M080605B [3] was triggered by ACRS concern [6] that attempts to quantify the likelihood 
of DI&C system failures might not yield useful information for safety assurance reviews because 
little is known about how digital systems fail. The background of this controversy is provided 
below, explaining the genesis of this study through the expert elicitation activity. 

2.1 Differences in Judgment-Based Evaluation 

In the safety review of software in a DI&C system, there are differences among various 
stakeholders’ evaluations, partly driven by subjective differences in judgment. For example, in 
DI&C safety-related protection systems with four redundant trains to protect against hardware 
failure, but with identical software in each train, some stakeholders claim that the software is not 
a safety-significant common cause of failure because it has been developed with defensive 
measures, such as static allocation of computing platform resources. In contrast, the regulatory 
staff holds the position that the evidence to support this claim is not sufficient to provide 
reasonable assurance that these systems can perform adequately in service, leading to an 
expectation for a diverse defensive alternative.20 

                                                
 
20 For example, Finland’s regulatory authority (STUK) seeks an actuation system not involving software. 
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2.2 Research on DI&C System Probabilistic Risk Assessment 

The NRC’s digital system research plan [2] addresses probabilistic risk assessment (PRA) 
methods and supporting data for digital systems.  An important research need is to establish a 
commonly accepted basis for incorporating the behavior of software into digital I&C system 
reliability models for use in PRAs21.  To address this need, the NRC sponsored a review of 
quantitative software reliability methods that might be used to support reliability modeling of 
digital systems of nuclear power plants [8].  Current NRC work in this area is focused on 
applying one or two candidate methods to an example digital protection system in a proof-of-
concept study. 

2.3 Challenges with Incorporating Software Behavior into Reliability Models 

Two principle challenges to incorporating software behavior into digital I&C system reliability 
models are (1) the limited data from operational experience in the NPP industry and (2) the 
expected large uncertainty associated with the use of expert judgment.  While the NRC’s digital 
system research plan includes projects that attempt to address these challenges for the 
purposes of PRA, NRC/RES/DE staff believe that these challenges limit the usefulness of 
quantifying software reliability for the express purpose of supporting licensing reviews of 
complex digital safety systems (i.e., in reaching a reasonable assurance conclusion), therefore 
complementary NRC/RES/DE research addresses the question, “How can we extend the 
knowledge needed in reviewing software for likelihood of fault?” 

2.4 Search for Alternative Qualitative Approaches for Software Assurance  

Related to the challenges identified above, as they pertain to performance of licensing reviews, 
the vastness and nature of the uncertainty space, as identified in this study, precludes the 
possibility of identifying a relatively complete set of credible failure modes in software and in 
obtaining a statistically significant amount of observational data.  This points to  an analytical 
approach to support licensing reviews of safety system software.  Accordingly, NRC/RES/DE 
sought other perspectives, focusing on the following question: “Are there systematized, 
analytical, qualitative approaches to informing the assurance process for systemic causes 
potentially leading to DI&C system failure?” Because experience with digital safety systems in 
commercial U.S. NPPs is limited relative to the issues underlying the concerns in 
SRM M080605B [3], NRC/RES/DE sought knowledge from other application domains through 
an expert elicitation activity (described in Appendix B to this RIL). The process was designed for 
the elicitation to do the following: 

• Be supported with evidence, appropriately qualified for its degree of validity.22 

• Synthesize complementary individual knowledge and apply qualitative reasoning. 

• Use collective judgment to integrate and apply this knowledge to the NPP domain. 

• Identify reasons for differences across experts (e.g., different underlying assumptions). 

                                                
 
21 See the relevant discussion in the Ref. 7 chapter titled, “Safety and Reliability Assessment Methods.” 
22 Appendix B  Expert Elicitation Process,” establishes the integrity of the process, thereby supporting the validity of 
its results. 
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3. Uncertainties in Verification and Validation of DI&C Systems 
Baseline for discussion of uncertainties: This discussion of uncertainties is predicated on the 
assumption that DI&C systems and their elements satisfy the conditions and criteria outlined 
in Appendices A.1–A.6 to this RIL. It is not implied that the assumption holds for current 
DI&C systems, their elements, or their development environments. 

This section identifies sources of uncertainty in the verification and validation of DI&C systems, 
limitations to the state of the art, and recommendations to help reduce the uncertainties. 

It is not credible that DI&C systems being considered for NPP safety functions are fully verified 
and validated because the combination of input space23 and system-internal state space is too 
large (i.e., the systems are too complex) [9].24 The uncertainty space is too large; to provide 
reasonable assurance of safety requires verification closer to certitude, in a manner that is 
based on safety goals25 and oriented objectively.26 Even a single defect27 in software could have 
unforeseen consequences. All such individual defects, latent in the operational software, can 
combine in a large number of unforeseen ways and increase the potential for significant system 
failure. 

Keeping in mind that preconditions identified in Appendices A.1–A.6 to this RIL will help reduce 
the confounding effect of interacting process variables, the rest of this discussion identifies 
additional conditions under which DI&C system verifiability can be improved to reduce 
complexity, improve analyzability, and reduce uncertainties. 

Figure 2 depicts (with “?” symbols) that uncertainties exist in each phase of the system and 
software development lifecycles, including uncertainties associated with the use of tools and 
with any change affecting any of the process variables mentioned in Appendix A.1, “Baseline 
Process,” to this RIL. In the figure, the size of the “?” symbol is a broad-brush indicator of 
relative uncertainty at this time. The statement, “each anomaly or uncertainty by itself seems to 
be insignificant,” is applicable in general to any source, but the combined effect can be 
unexpectedly significant. Safety Demonstration in the presence of the various uncertainties is 
difficult. 

                                                
 
23 The size of the input space precludes coverage through testing alone. Analytical verification techniques at the 
design phase may provide coverage of the input space, but not coverage of uncertainties in the transformation of the 
design into operational code – see Section 5 and Appendix A.5. 
24 In a concurrent execution of multiple software components, a particular interleaving of events may produce the 
conditions under which a [fault] is uncovered, but it may be extremely difficult or impossible to reproduce that 
particular interleaving in a testing environment [RK, CW, DJ]. 
25  It is assumed that the goal of NPP safety (prevention of unwanted release of radioactivity into the environment) is 
fully allocated to the DI&C safety system for the following reasons. The DI&C safety system in a NPP is an 
independent layer of defense, with the intent to cover for uncertainties and lack of certitude in the other layers. Thus, 
no credit is assumed from any other layer of defense. Although the NPP has four redundant trains of equipment, the 
DI&C systems are identical; the redundancy is ineffective in the software. Because design certification for DI&C 
platforms, tools, and processes is given without any constraint on the application environment, it is assumed that the 
same elements could be replicated for different NPP functions, entailing vulnerability to the same defects, 
weaknesses, or deficiencies. 
26  Rather than in a prescriptive manner. 
27 no matter how “small” 



 

 Page 11 
 

 

 
Figure 2  Integrating the effect of uncertainties in software assurance is difficult 

Figure 3 shows some major sources of uncertainties, elaborated in Table 1, and the evidence  
that can   reduce their impact, partly elaborated in Table 2. 
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Figure 3  Uncertainties in V&V and evidence needed to reduce their impact 

Traditional verification techniques do not address uncertainties about the environment, 
requirements, or interference—these uncertainties have to be addressed through better 
validation of the requirements, including derived requirements and constraints, and through 
assumptions about the environment. 

Evidence proving that a system element does not interfere with another, for example, through 
an architecture that avoids unnecessary complexity and allows only well-behaved interactions, 
is conducive to demonstration of correct integration (see A.4  Baseline Architecture”). 

For those uncertainties addressable through verification, the issue boils down to coverage. 
Traditional testing of the final code is not enough by itself. Complementary forms of verification 
of earlier work products in the development lifecycle support improved coverage . 
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Table 1  Major Sources of Uncertainties in the V&V of a DI&C System and Its Software 

ID# Source of Uncertaintya Remark 

1 Assumptions and constraints concerning the application and 
its environment, including inputs 

Better validation will reduce 
uncertainty, e.g., through reviews 
by diverse groups of experts 

Research is needed in domain 
modeling to include the 
environment and the assumptions. 

1.1 If the object of verification is the DI&C system, then its 
environment includes the input and output devices and their 
valid signal space (value; timing) and their valid 
combinations. 

 

1.2 If the object of verification is the platform or system software, 
then its environment includes the hardware it is dependent 
on or with which it is interacting. 

 

1.3 If the object of verification is the application software, then its 
environment includes the platform it is dependent on the 
following, for example: 

1.3.1 the timely availability of needed resources 

1.3.2 assurance of freedom from interference with other 
components 

1.3.3 correctness of operation in other ways 

 

2 Lack of completeness, consistency, correctness, and 
adequate validation of the requirements, including quality-of-
serviceb requirements, derived requirements, and service 
requirements 

Also, see A.3  Baseline Criteria for 
Specifying Requirements.” 

Better validation will reduce 
uncertainty, e.g., through reviews 
by diverse groups of experts. 

3 Incomplete coverage of verification. Combinations of 
individual defects (each, by itself, thought of as being small 
and insignificant) are rarely, if ever, considered exhaustively. 

Testing can cover only a small 
portion of the input space in a 
feasible amount of time. 

4 Defective performance of other resources employed in the 
process, such as the following: 
4.1  humans 
4.2  tools 
4.3  information 

Also, see A.5  Baseline Criteria for 
Evaluating Tool Automation.” 

a Predicated on satisfaction of the preconditions given in Appendices A.1–A.6. 
b Commonly known as “non-functional” 

Given the diversity in the sources of uncertainties discussed above, commensurate forms of 
evidence will provide adequate coverage support assurance (see Table 2). A range of diverse 
techniques are recommended, e.g. preventative approaches such as constraining the design 
space, exploiting abstraction, mechanized reasoning in the abstract space, and independent 
expert team review. 
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Table 2  Coverage of uncertainties through diverse, complementary forms of evidence 

ID# Evidence Remark 

1 Review, walk-through, and inspection (RWI)—particularly 
effective in validatinga requirements or evaluating 
architectures 

Also see: 

 A.3  Baseline Criteria for 
Specifying Requirements” 

A.4  Baseline Architecture” 

2 Bounding the space to be verified, such as the following.  

2.1 Design constraints, e.g. architectural A.4  Baseline Architecture” 

2.2 Exploiting abstraction through the use of appropriate 
modeling languages 

 

2.3 Disciplined use of a well-proven, “safe” subset of the 
various languages employed in each phase of the 
development lifecycle 

See A.5  Baseline Criteria for 
Evaluating Tool Automation.”  

 

Table 8, ID#s 3–4 

 

2.4 

Assurance that the respective language subsets (e.g., for 
requirements specification, architectural design, detailed 
design, implementation,b target hardware instruction set) 
are semantically consistent and the corresponding 
transformations preserve the source semanticsc 

See  

Table 8, ID#s 2–8 

3 Reasoning—combination of machine-aided and human: 
logical; probabilistic 

For key enablers, see 
Appendices A.2–A.5 

4 Analysis—static, dynamic: mathematics-based See A.4  Baseline Architecture” 

By using best in class analysis, 
which improves over time, the 
coverage can be improved and 
residual uncertainties, reduced 
[GH]. 

5 Use of insights gained from verification activity at an earlier 
stage for improvements, including downstream V&V plan 
revision. The earlier in the lifecycle that an issue is 
discovered, the more effective and efficient is the V&V.d 

 

6 Model checking, with coverage comparable to items 8.0–0 
below 

For key enablers, see 
Appendices A.2–A.5 

7 Simulation, including respective stakeholders 
(e.g., developers and users) 

 

8 Testing (reduced with reasoning for coverage achieved), e.g.: 
8.1   Covering all states, including fault states or abnormal 
conditions 
8.2   Covering all paths 
8.3   Covering all combinations of inputs (values; timing) 
8.4   Covering specific scenarios of concern, including effects 
of failures 
8.5   “Corner” cases 
8.6   Stress testing 
8.7   Retesting after each changee or corrective action 

The NRC has a related research 
project on fault injection techniques 
and tools 
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ID# Evidence Remark 
a Mathematical proof systems today are very powerful, but they can prove only according to the input they get. 
Therefore, we still have the validation problem [MB]. 
b [Even if an organization has a coding standard,] don’t just assume that it is being adhered to [DD]. Compliance 
should be verified, e.g. through tool automation. 
c  …Systems…today…rely on...many different…implicit assumptions, often about how you produce a piece of 
software…[e.g.,] about the semantics.… Some of these levels are inherently difficult and complex, and error prone…. 
It is very difficult to assure that an argument which you can formulate on a particular level of the stack can be 
transmitted to the next level…arguments [from one level of abstraction to another] don't fit together properly [MB]. 
d Conversely, if the root cause of a defect is in an earlier stage of the lifecycle, the later the discovery, the more 
difficult it is to find the root cause and to understand its impact on system safety [JC]. 
e Try to make regression test/verification suite sufficiently complete to detect new errors introduced by change. 

The types of evidence listed in Table 2, esp. for ID# 8, are not exhaustive. The types of 
evidence used for a particular system will depend upon its specific requirements and design 
choices; not all types listed in Table 2 ID# 8 may be needed. V&V continues to depend upon 
expert judgment because of limitations in the state of the art (see Table 3 for examples).28 In 
particular, expertise is needed to review the V&V plan to examine whether the plan provides 
adequate coverage in relation to the requirements, environment, design choices, and 
associated uncertainties.  

Table 3  Limitation in the State of the Art for V&V 

ID# Limitation in the State of the Art Remark 

1 Traditional verification is limited to finding 
defects, but it cannot assure the absence 
of defects, especially those rooted in 
systemic causes such as engineering 
mistakes. 

Example limitation: Shortcomings in specifications, 
esp. for quality of service and derived requirements 

2 Independent V&V personnel might not 
have an adequate understanding of the 
application domain. 

The IV&V team needs domain expertise because the 
team must have equivalent or better expertise than 
the developers of the system (see Appendix B to 
10 CFR Part 50). However, fulfillment of that 
requirement is not easy. 

3 Methods for combining or integrating 
different types of evidence mentioned 
above and determining adequacy or 
sufficiency 

Further discussed in Section 4 “Safety 
Demonstration”  

4 Methods for modeling the operating 
context or environment that could expose 
sensitivity to unfortunate combinations of 
defects with especially severe 
consequences 

 

5 Validation of requirements See Appendix A.3, “Requirements” 

6 In architectures, identifying the “right” level 
of separation of concerns or isolation to 
avoid unexpected coupling, dependency, 
or side effects. (Also see discussion in 

See A.4  Baseline Architecture,” condition 6 

                                                
 
28 Further recommendations are given in Section 7, “Miscellaneous Research Recommendations—V&V.” 
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ID# Limitation in the State of the Art Remark 
Appendix C) 

7 In architectures, specifying the “quality of 
service”a properties or requirements and 
identifying dependencies 

 

8 Systematizing the identification of 
dependencies 

 

9 Methods and tools for compositional 
reasoning about interacting components 

 

a
 Commonly known as nonfunctional requirements 

4. Safety Demonstration 
Baseline for discussion of uncertainties: This discussion of uncertainties is predicated on the 
assumption that DI&C systems and their elements satisfy the conditions and criteria outlined 
in Appendices A.1–A.6. It is not implied that the assumption holds for current DI&C systems, 
their elements, or their development environments. 

As Figure 3 shows, when V&V activities indicate various uncertainties about whether the safety 
system or a component meets its requirements, it is difficult to ensure that the system safety 
goals are met. Referring to the baseline given in A.6  Safety Demonstration Framework,” and 
depicted in Figure 6  Evidence-argument-claim structure,” the assertion claim would be 
substantiated through a logical (argument-based or reasoning-based) organization and 
integration of the evidence. It is not enough to show only a clause-by-clause compliance with 
the applicable requirements, guidelines, and standards. The evidence-argument-claim chain or 
structure demonstrates that the effect of uncertainties and known limitations is reduced to a 
level and manner that does not compromise the safety goal. In particular, the safety 
demonstration would include the following: 

• diverse, complementary evidence, as shown in Figure 3 

• explicit evaluation of the sufficiency of evidence and argument or reasoning to expose 
weaknesses, fallacies, and limitations 

 

• explicit reasoning about the uncertainties in the evidence29 and how these have been 
managed and mitigated 

• evidence of the level of effort and rigor in analysis and proof, and that it is commensurate 
with the strength of the claim made 

• explicit identification of system aspects, features, characteristics, or other items or of 
process activities or competencies upon which the safety argument depends, in order to identify 
whether a change impacts the argument 

• modular structure (see Appendix A.4, especially Sections 4–6) with modular evidence30 

                                                
 
29 Objective evaluation of safety evidence and arguments is not always feasible…. Thus, evaluation includes 
subjectivity, as in law and other disciplines. Good scientific evidence or good mathematical evidence is better but it is 
a rarity. And bad “scientific” evidence and bad “mathematical” evidence is worse than no evidence because it 
produces unjustified confidence [MH]. 
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The state of the art in the application of a logical claim-argument-evidence structure (see Figure 
6) to DI&C safety systems has significant limitations. There is too little theory and too little 
empirical knowledge of how things work in practice. Therefore, highly skilled judgment is 
recommended in conjunction with multidisciplinary, multidimensional expertise and with diversity 
of perspectives and thought processes. The application of judgment could be improved through 
additional knowledge, such as the following: 

• understanding, principles,31 and techniques drawn from other fields, e.g., philosophy, law, 
linguistics32, for evaluating arguments and reviewing safety demonstrations for the quality of 
arguments and evidence 

• understanding of the limitations in evidence and how to combine different types of 
evidence,33,34 such as testing, model-checking and analysis, including a theory of coverage 

• understanding of where in a process uncertainties can arise (e.g., when creators of the 
architecture misunderstand the requirements) 

• integrating the contribution of interdependent factors, such as the 
complexity competence35 nexus 
 
Further recommendations appear in Section 7, “Miscellaneous Research Recommendations.” 

5. Uncertainties Associated with Tool-Automated Processes 
Baseline for discussion of uncertainties: This discussion of uncertainties is predicated on the 
assumption that DI&C systems and their elements satisfy the conditions and criteria outlined 
in Appendices A.1–A.6. It is not implied that the assumption holds for current DI&C systems, 
their elements, or their development environments. 

There is a trend to automate36 labor-intensive tasks, under the premise that automation will 
preclude the occurrence of mistakes made by programmers or testers.37 Although this premise 
applies well to automating tedious tasks at which humans are typically not very good, 

                                                                                                                                                       
 
30 Modular evidence is evidence of verification about each module or element, which can be reused wherever the 
module is reused and which can be composed in a claim-argument-evidence hierarchy corresponding to the system 
architecture. 
31 Strive for a scientific foundation, e.g., devise a calculus for reasoning about uncertainties, degrees of validity, and 
degrees of confidence [MB]. 
32 in combination with those from basic “hard” sciences, e.g. logic, inference, completeness of the proof 
33  …be aware that there is always some uncertainty left, and so…the interesting question is:  What is a good 
approach to deal with all of the things we have achieved to come as close as possible to 100 percent, and to be 
aware of the uncertainties and make sure that these uncertainties do no harm [MB] 
34 One of the issues is how we can put our hands around what is needed and how to combine evidence.  This is 
important when we ask the question "If we are going to accept something different, what is the scope and span of 
evidence that is needed?"  If we replace one thing with something else, will we be missing anything?  Mapping the 
areas of knowledge needed to make the safety decision is important [SA]. 
35 There is limited understanding of the complexity competence relationship. As the cognitive load increases and 
the simultaneous use of multiple cognitive faculties increases with complexity, it becomes more difficult to identify the 
commensurate performance indicators or to assess the competence of a performer. 
36 Qualified tools are invaluable if used correctly. Even some “trivial” tools have been instrumental in significant time 
savings and higher quality. 
37 Although automation can reduce or eliminate a class of defects, it also changes the space of possible new defects. 
This could result in systems exhibiting new failure modes that are outside the intuition and experience of the 
designers and regulators. 
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automating judgment-based tasks at which humans are typically good entails potential hazards 
about which there is little understanding or experience.38 

Early experience with automation in various engineering domains has shown that the task 
performed by the tool is not fully automated but rather entails a new set of human 
competenciesfor human-tool interaction, often requiring cognitive capabilities that are not well 
understood or well documented. This introduces new sources of uncertainty. For example, the 
semantics and assumptions built into the tool or the limitations of its application are not explicit 
and not well understood. Use of a tool beyond its valid range has led to disastrous 
consequences. 

Even when engineering tools such as code generators and verifiers are used in their valid 
range, there is uncertainty about the correctness of their use. Qualification standards and 
capabilities for such tools are not mature [PM].  

Table 4 identifies some of the known limitations and challenges experienced in tool-automated 
development or verification of complex logic, esp. software. 

Because many automated tools can be used across many products, if a tool has a hidden 
defect or limitation, an adverse effect can occur in different parts of a system and even in many 
different systems, multiplying the effect of the tool’s defect or limitation. 

Some sources of uncertainty are worth specific scrutiny when evaluating tools: 

• code generation and testing from same model (see Table 8. criterion 1)  

• intellectual grasp of tool operation and results (see Table 8, criteria 11,12, and 14) 

• completeness of tool coverage 

• applicability of tool to specific project and product 

• pedigree and integrity of tools 

• assumptions made by tool designers 

• algorithms used by tools 

As an approach to manage complexity, software is developed by using a sequence of 
abstractions from architectural specifications to design and then to implementation, and 
abstraction-to-concretion transformations are performed with the assistance of tools, intended to 
“hide the complexity.” However, new uncertainties result from semantic inconsistencies across 
different levels of abstractions. Evaluation of a tool39 is performed in the context of the whole 
process, including other information40 on which the performance of the tool under evaluation 
depends41 (also see Appendix A.5,  

Table 8). One type of interdependency, as mentioned above, is language42 semantics and 
interpretations by respective tools (see Appendix A.5,  

                                                
 
38 Potential fault modes are outside the intuition and experience of the designers and regulators. 
39 and the chain, as a set,  
40 For example, the 1994 Intel Floating-Point Divide (FDIV) defect was introduced by a simple bug in a script used to 
generate table entries for the quotient selection step of the FDIV algorithm. 
41 This recommendation is consistent with and an inherent part of the safety demonstration concept. 
42 Standardization in itself is not sufficient; the Unified Modeling Language is an example of such a weak standard. 
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Table 8, criteria 2–8). If semantic compatibility is claimed through the use of restricted subsets 
of the respective languages43 [10, 11, 12,  and 13 ], definitions of these restricted subsets would 
be carefully examined for semantic compatibility (see Appendix A.5, 

Table 8, criteria 3–4). The more transformation stages in the process, the higher is the likelihood 
of semantic mismatches potentially leading to defects. If the relevant evidence is inadequate, 
the deficiency can be compensated for with more traditional evidence of correctness and rigor in 
testing and with an independent check of the output.44 

 

Table 4  Limitations and Challenges in Tool-Automated Processes 

ID# Limitation or Challenge Remark 

1 Tool support and the validity of results from 
tool-automated processes is dependent on 
appropriate models and methods for 
requirements engineering, architecture 
design, coding or code generation, and the 
deployment and correct fit of the respective 
work products. 

See Appendices A.1–A.6 

Serious limitation: Shortage of skilled people 

2 Verification of complex tools such as 
compilers and the integrated tool suite 

Also see Table 8 

3 Confidence in certitude of verification To overcome limitations of any single verification 
method or tool, use as many (certified and 
uncertified) checking methods as available, in 
order to provide the greatest possible coverage 
across the gaps of individual tools. Diversity in the 
methods and tools can also help improve 
confidence. 

4 Adapting traditional software processes to 
model-based development 

 

5 Understanding the effects of automation on 
the ability of humans to fully comprehend the 
state of a system or tool 

 

6 Determining appropriate mix of human and 
automation interaction to efficiently leverage 
respective strengths and compensate for 
individual weaknesses 

 

7 Automation can miss important aspects that 
have implicitly been performed by humans 

 

8 Ability to put enough practical detail in a 
model to be able to drive the development 
process realistically enough not to have to 
tweak results 

 

                                                
 
43 The semantics of all of the languages used in the various transformation stages are not likely to match. 
44 Manual verification of the work product of such tools is difficult and introduces additional uncertainties. 
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6. Unknown Effects of Change  
This discussion of uncertainties is predicated on the assumption that DI&C systems and 
their elements satisfy the conditions and criteria outlined in Appendices A.1–A.6. It is not 
implied that the assumption holds for current DI&C systems or their elements or 
development environments. 

Although the NRC guidance includes change impact analysis, the adequacy of the analysis 
performed is unclear.45 A major reason is that the degree of significance of a change is unclear. 
If a change is fine-grained or if it occurs in some indirect or supporting activity or item, it may be 
treated incorrectly as “insignificant.” In such cases, the dependency of the safety goals on a 
particular item or activity may be obscure for the reasons identified in Table 5. Changes can 
expose existing unknown defects that did not have an effect before the change. Finding defects 
after change is very difficult without extensive re-verification. In essence, the regression analysis 
must  be as convincing as the original analysis. 

 

Table 5  Why Dependencies Are Obscure 

ID# Reason Remark 

1 Lack of a logical structure in the safety 
demonstration 

See A.6  Safety Demonstration Framework” 

2 Lack of awareness, explicit identification, 
representation, and documentation of all the 
dependencies, including: 

1. Requirements 
2. System architecture 
3. Processes 
4. Organizational architecture 
5. Such other related factors 

 

3 Inadequate configuration management and 
inadequate granularity of configuration 
management 

Assess adequacy of standards for change control 
and configuration control. 

4 Lack of historical record of system 
development decisions—not known or not 
understood when making change 

Developers make assumptions without explicit 
awareness. A hidden assumption may not affect 
the original system but may affect the change.  

5 Lack of change in system corresponding to 
change in its environment 

 

Change may occur in various ways, including the following: 

• corrective—“bug fix” 

• perfective—do the same only better 

• new functionality—change in requirements 

• adaptive—responding to a change in the environment that invalidates earlier assumptions 

                                                
 
45 Programmatic requirements for change control and configuration control are not adequate to support change 
impact analysis. 
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• changes in personnel over the lifetime of a system (loss of knowledge) 

For the analysis of degree of impact, the drivers or sources of change may be characterized as 
follows: 

• known, planned, controlled: 

• changes made during initial development 

• anticipated changes in requirements 

• anticipated changes in design 

• unanticipated or uncontrolled (not expected at an earlier time)—more difficult to analyze 

Table 6 outlines recommendations to improve the evaluation of change impact analysis. While 
these recommendations would help reduce uncertainties in general, numbers 1–2, 8, and 10–12 
are more specific to the impact of change. 

Table 6  Recommendations for Evaluating Change Impact Analysis 

ID# Recommendationa Remarks 

1 Items under configuration control and change control should include 
the safety demonstration and all items on which the safety 
demonstration is dependent (i.e., the arguments, evidence, and items 
on which these are dependent). The latter may include requirements, 
system architecture, processes, the tools, competencies, and data on 
which the processes depend, supporting tools, operating conditions, 
and maintenance. 

 

2 
Ensure that the safety demonstration makes explicit what aspects, 
features, characteristics, items, or other factors the safety argument 
depends on so that one can tell if the change affects the safety 
argument. 

 

3 Impact of change should include analysis against the original system, 
not just the most recent version. This includes updates of all related 
documents and artifacts to ensure consistent and valid configurations. 

 

4 Test space is large—seek preventative approaches, instead of 
excessive reliance on testing. 

See Appendices A.1–A.6 

5 Ensure that architecture provably prevents or limits the propagation 
and effects of change.b 

See “A.4  Baseline 
Architecture Specification 
Principles,” esp. 
criteria 4–6c 

6 Evaluate readability of documentation and code (e.g., by checking 
code against coding standards or procedures and reading 
documentation for comprehensibility and consistency with code). 

Poor readability leads to 
mistakes and higher 
maintenance costs. 

7 Check that rationale for design decisions (e.g., architectural) is 
documented for comprehension by an unfamiliar third party. 

 

8 Traceability documentation should be maintained to assess impact of 
changes (relate to and expand to include general dependencies). 

 

9 Check that informationd is maintained in one place only (and 
referenced elsewhere—not copied and pasted).e 

 

10 Rate or calibrate the performance of an organization in following sound 
practices (e.g., in change and configuration control and management). 
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ID# Recommendationa Remarks 
Adjust review depth and probes accordingly. 

11 Make sure that the people making changes are as qualified as the 
original developers and are adequately familiar with the system. 

 

12 
Possible defensive measure: validation by parallel operation (new and 
old) for extended periods.  

a Even following all these recommendations cannot eliminate the possibility of defect introduced through change. 
b Allows regression verification to be limited to that part of the system that is affected by the change. 
c Information hiding allows formal analysis of the effect of change, thereby ensuring that change will not damage the 
system in unknown ways. There is extensive evidence on the success of information hiding. There is extensive 
evidence of failure through not using something like information hiding. 
d Documentation, code, design. 
e Duplication exposes the documentation to inconsistencies, which exposes the change process to mistakes, 
potentially leading to defects in the system. 

7. Miscellaneous Research Recommendations 
Knowledge gaps identified in the topics discussed above are candidates for research. 
Following are some additional recommendations, identified by the experts: 

V&V: Research is recommended to overcome the limitations in V&V identified in Table 3. The 
NPP application domain can also benefit from tracking the state of the art and developments in 
other safety-critical application domains, such as the following: 

• use of models and model-checking in the medical devices application domain 

• state of practice in verification and certification of real-time operating systems46 for safety-
critical applications (e.g., flight control systems) 

Safety demonstration: Evaluation of safety demonstrations (for the quality of arguments and 
evidence) could draw upon principles and techniques from other fields (e.g., philosophy, law, 
linguistics)47, striving to transform this knowledge into a scientific foundation for reasoning about 
uncertainties, degrees of validity, and degrees of confidence. To ensure that the uncertainties 
do not lead to harm, experts recommend research for understanding the limitations in evidence 
and how to combine different types of evidence, such as shown in Table 2, including a theory of 
coverage. Mapping the areas of knowledge used to make the safety decision is important. It is 
recommended  that research to overcome limitations in safety demonstration include learning 
more about the specific limitations or conditions experienced in licensing reviews, including the 
review of safety cases and assurance cases, where available, and the review of operational 
experience.48 

Architecture: Better ways of defining an interface are recommended to integrate properties 
other than the function to be performed (e.g., timing constraints and criticality). Otherwise, it is 
difficult to analyze the impact of change when such properties are affected. 

                                                
 
46 A “homemade” real-time operating system should be checked for this level of verification and operational 
experience, at least. 
47 to integrate different types of evidence, such as shown in Table 2 and to complement knowledge from basic 
disciplines used in §3-4 of Table 2. 
48 The Haddon-Cave Report [24] attacks models of building an argument about why a system is safe.  These 
documents have become too design time focused but they are not reviewed down the road for failures [CJ]. 
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Tool automation and its correct use: Research is recommended to overcome the limitations 
and challenges identified in Table 4. There is also a need to develop more rigorous tool 
qualification standards.49 In this context, the merits50 of “self-certification” of tools by their 
suppliers could be examined. 

8. Next Steps 
While this RIL alerts the licensing offices about major sources of uncertainty in the safety 
assessment of DI&C systems, maturation of this information into published review guidance will 
be an iterative, evolutionary process. Following are some next steps recommended by the 
expert focus group: 

8.1 Public Dissemination 

For inviting public review, comment, discussion, and resolution, the experts suggested a 
workshop in conjunction with a mainstream software engineering conference. This would enable 
cross-domain participation and discussion, leading to cross-fertilization of ideas to the NPP 
domain from other safety-critical application domains. 

8.2 Follow-On Involvement of Expert Focus Groups 

Recognizing that the scope of these problems is large and their resolution is a long-term effort, 
the experts recommended follow-on engagement of similar expert focus groups with more 
domain-specific information and specific topic areas. 

The NRC will integrate this suggestion into several research activities as part of the NRC’s 
2010–2014 DI&C research plan. Some examples are outlined below. 

Findings reported in this RIL that are relevant to the NRC’s DI&C research plan [2] 
Section 3.1.2, “Safety Assessment of Tool Automated Processes,” will be incorporated into the 
execution plan. The project will seek guidance from the world’s leading researchers in the 
subject. 

NRC/RES/DE Digital Instrumentation and Control Branch (DICB) will seek an expert focus 
group to guide research activities identified in the NRC’s DI&C research plan [2] Section 3.1.5, 
“Analytical Assessment of DI&C Systems,” as described below: 

• Section 3.1.5, deliverable 3, requires analysis of each NRC-approved safety system platform 
(i.e., Common Q: Advant Fieldbus 100 and High Speed Links, Teleperm XS: PROFIBUS & 
Ethernet, Tricon: Tricon System Access Application and Peer-to-Peer) and identification of 
credible51 fault and failure modes. The analysis includes models to “roll up” or “up-integrate” 
effects of malfunctions in networked elements. The scope includes an analysis for systems 
with tightly coupled integration of traditionally decoupled or loosely coupled functions, 
applications (e.g., reactor trip system, engineered safety features actuation system), signals, 
and infrastructural services, as exemplified in new licensing applications. Engagement of 
experts in this activity will help focus their knowledge to the issues of the NPP domain.  

• Section 3.1.5, deliverable 2, requires characterization of different kinds of DI&C systems and 
their relationship to their environments, progressing in three stages: 

                                                
 
49  Learn from best practices and evolving standards in other application domains (e.g., commercial aviation). 
50 The issue is reduced degree of independence versus access to knowledge and experience. 
51 It is not easy to identify all credible fault and failure modes because “all” is not known and may not be knowable 
with the existing platforms. 
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1. Existing inventory in NPPs and the NRC-approved platforms mentioned above 

2. Emerging systems in NPPs  

3. Knowledge gained from safety-critical systems outside NPPs.52  

These activities will also support the creation of a challenge problem model (another suggestion 
emerging from the expert clinic). This model will be representative of the system configurations, 
platforms, and applications seen or expected in the NPP domain.53 In order to focus the experts’ 
knowledge on problems being experienced or foreseen in the NRC, these activities will require 
the participation of experienced NRC licensing reviewers. 
 

  

                                                
 
52 Engagement of experts will help address classes of issues broader than the specific platforms mentioned above. 
53  It has been done successfully several times.  It helped to develop the field and also got a lot of feedback [MB]. 
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9. Glossary 
The scope of this glossary54 is limited to this RIL and the related RILs in this series [4 and 5]. 

Atomic element; Non-atomic element (of an architecture) 
An element or unit (such as a hardware or software component) that is indivisible (i.e., for which 
no further subdivision is described in the architecture of a computer system, such as a DI&C 
system, or its software). 

Related definition: A non-atomic element is one that consists of other elements (e.g., a software 
subsystem composed of a number of software components), as described in the architecture. 

Complexity 
(A) (software) The degree to which a system or component has functionality, design or 
implementation that is difficult to understand and verify. (definition (1)(A) in [15]). 

(B) (software) Pertaining to any of a set of structure-based metrics that measure the attribute in 
Definition 1A in Ref. [15]. (definition (1)(B) in [15]). 

Note 1: There is no universally accepted definition of the term “complexity.”55 The notes 
below give some other definitions of complexity to illustrate the diversity of perspectives. 
Note 2: Conversely (changing negative expression to positive) Simplicity: The degree to 
which a system or component functionality, design or implementation can be understood 
and verified. 
Note 3: The number of linearly independent paths (one plus the number of conditions) 
through the source code of a computer program is an indicator of control flow complexity, 
known as McCabe's cyclomatic complexity [16]. 
Note 4: In nontechnical language, we can define the effective complexity of an entity as the 
length of a highly compressed description of its regularities [17]. 
Note 5: An ill-defined term that means many things to many people [18]. 
Note 6: A system is classified as complex if its design is unsuitable for the application of 
exhaustive simulation and test, and therefore its behavior cannot be verified by exhaustive 
testing. Source: Defence Standard 00-54, Requirements for safety related electronic 
hardware in defence equipment, UK Ministry of Defence, 1999. 

Constituent 
“Serving to form, compose, or make up a unit or whole: COMPONENT <constituent parts>” 
(http://www.merriam-webster.com/dictionary/constituent?show=1&t=1283882195) 

Diverse team 
A team composed of individuals with complementary attributes needed to perform the assigned 
task (e.g., thought processes, communication styles, and competence, including education, 
training, and experience in different domains and disciplines). 

Element 
The smallest component identified in the architecture of a computer system or its composition 
into a larger component, subsystem, or a system in a system of systems, which affects one, or 
possibly more than one, elementary function. An element may be hardware, software, firmware, 
or a combination thereof. 

                                                
 
54 Because definitions come a variety of sources, there is an unintended side effect of inherent inconsistencies. 
55 Research is needed to clarify complexity within the context of system safety evaluation. 
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A defect in a hardware device or component; for example, a short circuit or broken wire 
(definition 9 in [15]).  

Synonym: physical defect. 

A defect or flaw in a hardware or software component (definition 13 in [15]). 

Derived definition: 

Latent fault: An existing fault that has not yet been recognized. 

For software, this concept of fault corresponds to “defect.” 

Feasible 
“Capable of being done with means at hand and circumstances as they are” 
(http://wordnetweb.princeton.edu/perl/webwn?s=feasible). 

Other definitions also impose such constraints as “practicably,” “reasonable amount of effort, 
cost, or other hardship” (http://www.fhwa.dot.gov/environment/sidewalks/appb.htm), or “cost-
effectiveness” (http://uis.georgetown.edu/departments/eets/dw/GLOSSARY0816.html). Such 
constraints distinguish “feasibility” from “possibility.” 

Information hiding 
The principle of segregation of design decisions in a computer program that is most likely to 
change, thus protecting other parts of the program from extensive modification if the design 
decision is changed. The protection involves providing a stable interface that protects the 
remainder of the program from the implementation (the details that are most likely to change). 

Mistake 
A human action that produces an unintended result (definition 1 in [15]: electronic computation). 

Note: Common mistakes include incorrect programming, coding, and manual operation [15]. 
This definition suits mistakes concerning validation. 

A human action that produces an incorrect result (definition 3 in [15]) (software). 
Note: The fault tolerance discipline distinguishes between the human action (a mistake), its 
manifestation (a hardware or software fault), the result of the fault (a failure), and the 
amount by which the result is incorrect (the error) [15]. This definition suits mistakes 
concerning verification. 

Mode confusion 
A situation in which an engineered system can behave differently from its user’s expectation, 
because of a misunderstanding or inadequate understanding of the system state. 

Modularized 
Having or made up of modules. 

Note: Also see separation of concerns, information hiding, and orthogonality. 

Module 
A removal or changeable element of a system, with a well-defined interface such that certain 
properties of the system are preserved when it is replaced. 
 

Note 1: This definition is generalized from IEEE Standard (Std) 100 [15], definition 8 (whose 
source is IEC 60050); this definition, “a plug-in unit,” implies that “certain properties of the 
system are preserved when a module or its replacement is “plugged in” or integrated in the 
system.” 
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Note 2: An example of the preserved system properties is the behavior of the remaining part 
of the system (i.e., it is implied that the functions of the module and the functions of the 
remaining part do not affect each other). 
Note 3: It is implied that the element is identifiable and separable from and integratable with 
the remaining part of the system in some repeatable manner, following some well-defined 
procedure. For example, for software, IEEE Std 100 [15], definition 2A, mentions compiling 
and loading with the aid of an assembler, compiler, linkage editor, or executive routine. IEEE 
Std 100 [15], definition 2B, describes it as a “logically separable part of a program.” 
Note 4: IEEE Std 100 [15], definition 2B, states that the terms “module,” “component,” and 
“unit” are often used interchangeably or defined to be sub-elements of one another in 
different ways depending on the context. The relationship of these terms is not yet 
standardized. The RIL-1001 glossary distinguishes a module as a special kind of unit with 
well-defined interfaces preserving certain properties of the system. 
Note 5: In the case of a hardware assembly or an assembly that may also include firmware 
or software, the interface also includes physical attributes and implies spatial boundaries to 
preserve the system architectural property of freedom from interference. For example, see 
IEEE Std 100 [15] definitions 9 and 10. 

Noninterference 
Absence of unwanted function or feature interaction and absence of cascading failures between 
two or more elements that could lead to the violation of a safety requirement (adapted from 
[21]60). 

Example 1: Element 1 is interference-free of element 2 if no failure of element 2 can cause 
element 1 to fail. 
Example 2: Element 3 interferes with element 4 if there exists a failure of element 3 that 
causes element 4 to fail. 

Orthogonality 
A property of the variables on which a function depends, such that the variables are 
independent of each other (i.e., a change in one variable does not affect another). 

Note 1: In computer science, orthogonality has been identified as an important property of 
the fundamental elements (building block functions and variables) of a programming 
language. When the language elements are orthogonal, the programs composed from these 
building blocks avoid unnecessary complexity and are easier to verify. 
Note 2: When user-defined functions in a computer program are orthogonal compositions of 
orthogonal building blocks, these functions avoid unnecessary complexity and are easier to 
verify. Such programs lend themselves to use as modules in larger programs. Then 
orthogonality is a module property. 
 
Note 3: When a software system is a composition of orthogonal modules, the software 
system avoids unnecessary complexity and is easier to verify. Then orthogonality is a 
system property. 
Note 4: Orthogonality guarantees that modifying the technical effect produced by a module 
of a system neither creates nor propagates side effects to other modules of the system. 
Note 5: The following are some example guidelines for practical application of orthogonality: 
Minimize unnecessary coupling across modules (see 
http://www.eli.sdsu.edu/courses/spring01/cs635/notes/module/module.html#Heading2). 
Maximize cohesion within a module (see http://www.cs.unc.edu/~stotts/145/cohesion.html). 

                                                
 
60 This uses the term “freedom from interference.” 
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Separation of concerns 
“The process of separating the development of a computer program into distinct features, 
aspects, and views that overlap in functionality as little as possible. A concern is any piece of 
interest or focus in a program. Typically, concerns are synonymous with features or behaviors.” 
(adapted from en.wikipedia.org/wiki/Separation_of_concerns) 

Synchronous architecture 
An architecture that preserves synchronization between related items of information. 

Note 1: Synchronization means maintaining the timing relationships (e.g., period and 
phase), usually with the aid of a clock. 
Note 2: Asynchronous means not maintaining such timing relationships explicitly. 
Note 3: Some experts claim61 that synchronization makes it easier to verify satisfaction of 
timing constraints as found in a hard real-time system. 
Note 4: Systems and development processes architected with this principle avoid 
unnecessary complexity. Systems are easier to verify. Also see “information hiding” and 
“orthogonality.” 

Systemic 
Embedded within and spread throughout and affecting a group, system, or body. Also see 
“systemic cause” in [14]. 

Systematic failure 
Failure, related in a deterministic way to a certain cause, that can only be eliminated by a 
modification of the design or of the manufacturing process, operational procedures, 
documentation or other relevant factors [19]. 
Note 1: Corrective maintenance without modification will usually not eliminate the failure 
cause. 
Note 2: A systematic failure can be induced by simulating the failure cause. 
Note 3: In IEC 61508-4, CDV 3.6.6, examples of causes of systematic failures include 
human error in the following: 
the safety requirements specification 
the design, manufacture, installation, and operation of the hardware 
the design, and implementation of the software 
Also see “systemic cause” in [14]. 

  

                                                
 
61 A counter-example from the NPP safety systems domain: At architectural level, the different computers which 
together constitute a protection system (acquisition units, logic units, voting units) usually work asynchronously to 
prevent a failure in a receiving (consumer) unit from propagating into an emitting (producer) unit. In this case, the 
asynchronous architecture is much simpler and easy to verify than a synchronous one. 
 



 

 Page 30 
 

 

 

10. Abbreviations and Acronyms 
ACRS    Advisory Committee on Reactor Safeguards 

DE     Division of Engineering (NRC/RES) 
DI&C    digital instrumentation and control 
DICB    Digital Instrumentation and Control Branch (NRC/RES/DE) 

FMEA    failure modes and effects analysis 
FPGA    field-programmable gate array 
FTA     failure tree analysis 

HW     hardware 

IEC     International Electrotechnical Commission 
IEEE    Institute of Electrical and Electronics Engineers 
ISO     International Organization for Standardization 
IV&V    independent verification and validation 

NPP    nuclear power plant 
NRC    U.S. Nuclear Regulatory Commission 

OpE    operational experience 

PNNL    Pacific Northwest National Laboratories 

RES    Office of Nuclear Regulatory Research (NRC) 
RIL     research information letter 

SRM    staff requirements memorandum 
STD    standard 
SW     software 

V&V    verification and validation 
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Table 7  Abbreviations Identifying Sources 
Abbreviation Source Abbreviation Source 
AW Alan Wassyng JM John McDermid 
CJ Chris Johnson MB Manfred Broy 
CW Charles Wallace MH Michael Holloway 
DC Darren Cofer PJ Paul Jones 
DD Dan Dvorak PM Paul Miner 
DJ Dana Johnson RK Roger Kieckhafer 
GH Gerard Holzmann SA Steve Arndt 
JC James Christensen SP Stephen Prusha 
JH Jorgen Hansson VV Valerie Vyatkin 
JK John Knight WL William Locke 
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Appendix A 

A.1  Baseline Process 
The discussion of uncertainties is based on satisfaction of the following process conditions 
(labeled as the baseline) in the development,1 third-party verification, assessment, and audit2 
activities of a digital instrumentation and control (DI&C) system for safety functions. Failure to 
satisfy these conditions gives rise to uncertainties3 beyond those discussed in this report. 

1. The organization has defined an executable process to a level of detail such that it specifies 
the competence, tools, information, and other resources required to execute that work 
element correctly4 and to integrate the results of such work elements correctly. 

1.1. In recognition that each process variable in each work element may contribute to some 
defect, the organization has selected and maintained methods, tools, and competence 
levels to minimize the effects of these known contributing factors. 

1.2. The cognitive load (or intellectual complexity) imposed by a specified work element, 
including an integration activity, is assured to be well within the capabilities of personnel 
available to perform that activity. 5 

Note: Because the definability of such a deterministic process also depends on the 
architecture and complexity of the product (DI&C system), also see the conditions identified 
in Appendix A.4.6 

2. The executable processes follow the NRC regulatory and guidance framework (see Figure 
57), which includes references to standards such as Institute of Electrical and Electronics 
Engineers (IEEE) Standards 1012 [23],8 1028, 1044, 603, and 7-4.3.2 and International 
Organization for Standardization/International Electrotechnical Commission (ISO/IEC) 
Standards 12207 [22] and 60880. 

3. The process is assessed and certified independently [VV]; resources are available to assess 
the process. 

                                                
 
1 Examples of activities included requirements analysis, architecture, design, implementation, and testing. 
2 The NASA Software Architecture Review Board approach is that review of a project should tell you about the quality 
attribute of a system….demonstrate how well…achieving that requirement (Ex: safety). A project should…keep 
appropriate records to provide evidence to proper attention and show ability of designers to achieve certain qualities 
[DD]. 
3 Even in a well-defined process, the uncertainty space of the process variables is very large. For example, the 
quality produced by different people of the same level of nominal qualification can vary over an order of magnitude. 
4 The DI&C system and the processes for its development, verification, assessment, and audit are designed with the 
awareness that a human activity may incur a mistake. 
5 This may require certification of personnel through a standardized process. 
6 Considering the relative simplicity of the required safety functions, if the identified conditions are satisfied, the 
requisite architectures are technically feasible and the overall complexity is decomposable into manageable levels. 
7 With reference to Electric Power Research Institute TR-102348 and such other industry documents, NRC 
endorsement may be limited and other NRC guidance may govern—it is not implied that the NRC accepts industry 
standards verbatim. 
8 Appendix F.1 to IEEE STD 1012-2004, “IEEE Standard for Software Verification and Validation,” dated 
June 8, 2005 [23] shows the relationship of verification and validation (V&V) to other activities affecting the safety 
properties of the product. Examples of relevant references include the lifecycle process reference model [22], 
including the relationship to system lifecycle processes per Annex C to ISO/EIC Standard 12207-2008, “Systems and 
Software Engineering—Software Lifecycle Processes” [22], and the process assessment model [24]. 
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4. The process in execution is audited independently. 

4.1. Resources are available to audit the process. 

4.2. Process audits are performed in sufficient9 degree of completeness.10 

5. For each contributing factor11, performance criteria are established such that each criterion 
can be evaluated comparatively12 on a defined scale to measure relative performance. 

5.1. Norms are established for achieving correct execution. 

5.2. Observable values of performance are established in proficiency- deficiency rank order. 

5.3. A threshold is established for the unacceptable13 performance level14 (§5.2). 

 

Figure 5: NRC's regulatory and guidance framework - overview 

                                                
 
9 e.g., based on statistical processes for selecting audit samples, assessing acceptability of audit samples, and 
evaluating audit results solely based on the audit process 
10 When the performance level is low or a good track record does not exist, the audit may take enormous effort, 
interfering with the audited activity. 
11 e.g., competence to perform an activity 
12 i.e., with ability to rank order 
13 An item dependent on this factor cannot be credited for contribution to assurance. 
14 It could be mapped into zero in a numeric quantification scheme of evaluation. 
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A.2  Baseline Verification Process 
For the baseline postulated in the section, “Baseline for Discussion of Uncertainties,” the 
corresponding V&V processes are identified in IEEE Standard 1012 [23] for integrity level 4, 
including relevant optional15 activities and reports. It includes activities for management of V&V 
processes, acquisition, development, operation, maintenance, retirement and disposal, 
reporting, and documentation. IEEE Standard 1012 specifies verification and correction 
activities for each phase16 in the development cycle. IEEE Standard 1012 specifies process 
activities for anomalies: recording, reporting, evaluation, impact analysis, root cause analysis, 
resolution, corrective actions, and analysis of the effect of changes to resolve an anomaly. 
Corrective action may require process improvement and regression implementation of process 
improvements on the system development effort and products. 

A.3  Baseline Criteria for Specifying Requirements 
The discussion of uncertainties in this report is based on the satisfaction of the following 
conditions (treated as the baseline) in the development, verification, and validation of 
requirements17 that a DI&C system and its software must satisfy to support nuclear power plant 
(NPP) safety functions.18 Failure to satisfy these conditions gives rise to uncertainties beyond 
those discussed in this report. 
 
One of the weakest links in the overall process is establishing valid requirements to drive the 
design of the DI&C system. It is often thought to be the most common root cause of system 
failure [GH, JM, DC, PM, JK]. Failures traceable to shortcomings in requirements cannot be 
caught through such verification activities as simulation and testing. Early formalization (in the 
requirements phase) can help to discover and remove impreciseness, incompleteness, and 
inconsistency in requirements. However, formal methods do not help to discover or elicit 
missing requirements or intent or to understand intent [PM, GH].  

The baseline conditions are the following: 

1. The team engaged in these activities is an assemblage of high competence in multiple 
disciplines, capable of creatively eliciting and synthesizing information from diverse sources, 
including implicit, experiential knowledge about the environment [GH]. 

2. A diverse team reviews the requirements and their validation [GH]; it includes experts from 
other domains [PM]. The review team has expertise in requirements engineering, esp. in 
discovering the following types of mistakes or shortcomings: 

2.1. Misunderstanding the environment [DC, GH] 

2.2. Incompleteness [VV] 

2.3. Inconsistency [VV] 

2.4. Ambiguity in the natural-language textual description [DC] 

                                                
 
15  Optional activities and reports are tailored to the application (e.g., see Table 3 and Annex G to [23]. 
16 The phases are concept, requirements, design, implementation, integration, change, and modification. 
17 Because most issues with inadequate software requirements can be traced to inadequate validation in the system 
engineering lifecycle, the treatment here is integrated. The scope also includes quality of service requirements, 
derived requirements and design constraints. 
18 The scope includes all derived and supporting requirements (i.e., any requirement on which the correct, timely 
performance of the safety function depends). 
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2.5. Formalization (from intent or natural-language text) [DC] 

2.6. Input constraints misunderstood, improperly captured [DC] 

2.7. Input constraints improperly formalized [DC] 

2.8. Inadequate input validation 

2.9. Inadequate or improper abstraction19 to capture classes of issues [MH] 

2.10. Adverse effects of the complexity of the functional requirement set20 [WL, JM] 

2.11. Also, see under item 5. 

3. Assumptions about the environment are documented explicitly, including how and when 
these assumptions will be validated or the consequences if the assumption turns out to be 
false [JM].  

4. Assumptions about the downstream design are documented explicitly, including how and 
when these assumptions will be validated [JM] (e.g., through explicit derived requirements 
or constraints on the architecture, design, and implementation) and the associated methods 
and tools.  
Example: Requirements imposed by the application software on system platform services,  
including hardware and software resources to support the workload, timing constraints to be 
satisfied, compatibility, and so forth, especially across maintenance updates [VV]. 

5. Requirements include measures to mitigate the consequences of assumptions that fail to 
hold [GH]. 

6. Results of the system safety engineering process (e.g., through system hazard analysis 
[25]21 are explicit, especially the resulting system safety requirements and their allocation to 
software requirements. This process is iterated at every phase22 in the lifecycle.23 Example 
areas of inquiry24 include the following: 

6.1. Propagation of the effect of a fault (inability to contain it) 

6.2. Disallowing unwanted or unintended functions [MH] 

6.3. Effects of sudden hardware failure,25 especially semiconductors [JC] 

6.4. Effects of faulty inputs 

6.5. In general, identifying sources of uncertainty, their effects, and their mitigation [MH] 

6.6. Provision of resiliency and robustness, assuming the presence of faults26 [SP] 

6.7. Assuring that no unnecessary requirements exist. 
 

                                                
 
19  generalization 
20  The bigger your hazard analysis, the less useful it is [CJ]. 
21  Consider the issues raised in [25]. 
22  Concept→requirements model→system architecture→design→implementation. 
23  Safety requirements are discovered at every stage. 
24 as applicable in a particular phase of the development lifecycle 
25 We [should look] at systems engineering from a holistic viewpoint. Current practice divides systems engineers into 
one group and then we have software engineers here and we have hardware engineers there and very often the 
failures occur due to the gaps in between; usually, there is no one spanning all three (system; hardware; software) 
throughout the project. There is a need for crosscutting analytical approaches [JH]. 
26  Identifying safety requirements requires first-class engineers. However, there is no way to know what all of the 
hazards are [JK]. 
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7. Requirements include failure or fault detection and predefined action (for fail-safe systems) 
or containment27 measures28 [GH],29 where appropriate30, including the ability to locate and 
isolate the source of the fault (e.g., a hardware or software component) [PM]. 

8. Requirements are documented in a manner (e.g., language, structure) that is 
unambiguously comprehensible [AW, JK,26,7] to the community of their users (for example, 
reviewers, architects, designers, and implementers) (i.e., the people and the tools they use) 
[VV]. Example: Modeling 

9. Relationships among requirements are unambiguously comprehensible to the community of 
users [VV]. 

10. Constraints associated with functional requirements (such as timing constraints [JH, AW], 
sometimes known as para-functional requirements, should be unambiguously 
comprehensible to the community of users [VV]. 

11. Satisfaction of requirements and constraints should be verifiable. 

12. Interrelated requirements should be bi-directionally traceable. 

13. Quality-of-service requirements31 affecting safety should also be unambiguous and 
verifiable, referring to such properties as the following:  

13.1. Verifiability 

13.2. Analyzability 

13.3. Composability. 

13.4. Maintainability (design for change),  

13.5. Reusability32  

13.6. Reconfigurability 

To the extent that any of these conditions is not satisfied, independent experts with 
commensurately higher level of competence33 arerecommendedto evaluate the effect on 
system-failure likelihood. The variation in expert judgment will also increase. 

                                                
 
27 There is a recent example with a space system involving a quad-redundant system with four general computers. 
They were connected by a multiplexor/de-multiplexor module, and one of these was faulty due to a failed diode. It 
failed in such a way that it was not observed by the four computers similarly. This had not been anticipated when it 
was built [PM]. 
28 Adding backups (or fault protection) can increase complexity and introduce new hidden dependencies [GH]. 
29 Although layered protection has benefits, there can be dilemmas from keeping software protected with several 
layers. Layers increase complexity [PM]. 
30 e.g. for a fail-operational system 
31 other than functional and para-functional – also known as service requirements or  “-ilities” or non-functional 
requirements 
32  Reuse is very dangerous because, in a certain sense, you assume that the requirements are the same [including 
the environment].  But if they are not, we have seen bad results. So it is a nice idea, but you have look at a lot of 
factors [for correct reuse or fitness of purpose] [MB].  
33  We need to consider issues about the competency of the regulators. Many are not competent enough to make 
judgments on aspects of detailed software engineering. Processes are critical, and they depend on the quality of the 
people implementing those processes. You need to have a sufficient number of trained expert regulators who can 
assess the implementation and not just the processes in engineering [CJ]. 
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A.4  Baseline Architecture Specification Principles 
The discussion of uncertainties in this report is based on the satisfaction of the following 
conditions (treated as the baseline) in the development, verification, and evaluation activities of 
a DI&C system architecture and software architecture34 to support safety functions. Failure to 
satisfy these conditions gives rise to uncertainties beyond those discussed in this report. 

1. The architecture supports system verifiability,35 especially avoiding unnecessary [JM] 
complexity. The following conditions reduce complexity and improve analyzability—thereby 
improving verifiability. 

2. The allocation of requirements to some function and that function to some element of the 
system is bidirectionally traceable. This condition is satisfied through all levels in the 
architectural hierarchy36 and through all stages of derived requirements and design 
specifications [JH]. 

3. The behavior specification avoids mode confusion, especially when functionality is nested 
[GH, JH]. 

4. The behavior of every element in the architecture is unambiguously specified. This condition 
is satisfied through all levels in the architectural hierarchy. 

5. The behavior of a nonatomic element is a composition of the behaviors of its constituent 
elements, with well-defined, unambiguous rules of composition [PJ] [29]. 

5.1. Interfaces of elements are unambiguously specified, including behavior. 

5.2. Interactions across elements occur only through their specified interfaces37. 

6. Only required interactions are allowed. The architecture precludes unwanted interactions 
and unwanted, unknown hidden coupling (see Appendix C) or dependencies,38 interference, 
or side effects across its elements: specified information exchanges or communications 
occur in safe ways. 

7. The system is modularized using principles of information hiding and separation of 
concerns, considering orthogonality of functions and data (i.e., avoiding unnecessary 
interdependence). 

8. Each element (e.g., a software unit) is internally well-architected (satisfying conditions 1–6 
above) and relatively simple. For example, for a software unit implementing some NPP 
safety functions, the following conditions are true: 

8.1. It is composed from atomic functions using well-defined, unambiguous rules of 
composition (see condition 4). 

                                                
 
34  System failures traceable to architecture rank high in numbers found in various safety-critical, mission-critical, high-
quality DI&C systems. For example, unwanted interactions, hidden couplings, and side effects have led to 
unexpected failures; traditional testing or simulation-based verification did not detect such flaws. 
35  Example: [in] a synchronous design … lots of things…are much easier to analyze than in a asynchronous [design], 
and classes of behaviors can't arise; [an] intrinsically synchronous design avoids a whole bunch of 
uncertainties….[see in Glossary “Synchronous architecture”]. 
36 Some abstractions can mask problems, and that is a risk [PM]. 
37 i.e., adhering to principles of encapsulation 
38 One of the accident investigation reports that I like reading is the initial launch of the Ariane 5 rocket. …There were 
many things that lined up for that incident to take place even though almost all of the decisions made were 
reasonable [PM]. 
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8.2. The atomic functions use a combination of logical, relational, and simple arithmetic 
operators. 

8.3. The number of inputs and outputs is relatively small. 

8.4. The types of inputs and outputs are relatively simple, e.g.: 

• Boolean variables  

• Physical quantities (pressure, temperature, flow) 

• Rates of change of physical quantities. 

9. The architecture is explicitly specified in a manner (e.g., language; structure) that is 
unambiguously comprehensible [JH] to the community of its users (such as reviewers, 
architects, designers, and implementers) (i.e., the people and the tools they use). 

9.1. This condition is satisfied through all levels in the architectural hierarchy, including the 
interfaces of the elements39 and their interrelationships, interactions, and 
interconnections [JH].  

9.2. This condition is also satisfied for the mappings from one level to another in the 
architecture hierarchy [JH]. Conformance to the architecture is assured at all levels, 
including the code. 

To the extent that any condition is not satisfied, independent experts with commensurately 
higher level of competence are recommended to evaluate the effect on system-failure likelihood. 
The variation in expert judgment will also increase. 

To the extent that the DI&C system architecture satisfies these conditions, an FTA becomes 
commensurately more credible. The fault sequences could be traced from the externally visible 
failure event through the paths of composition to the failures of functions in the comprising 
elements, down to the smallest software unit identified in the architecture. However, the 
correctness of the FTA is predicated on the assumption that there is no possibility of random 
data corruption or nondeterministic effects that can cause bizarre and unpredictable software 
behavior under generally unpredictable conditions. Given that every single execution sequence 
of a complex software system has a vanishingly small probability of occurrence, there is very 
little one can say about the reliability of any such system, no matter how long it has actually 
executed without a failure. Every execution is, for all practical purposes, one that has never 
been seen before (that is, the precise interleaving and event orderings that occur in that 
execution). Structural safeguards have to save the day in these cases [GH]. 

A.5  Baseline Criteria for Evaluating Tool Automation 
The discussion of uncertainties in this report is based on the satisfaction of the following criteria, 
constraints, and guidelines (treated as the baseline) in the evaluation and qualification of tool-
automated processes for development and verification of software40 and other forms of logic 
implemented in DI&C systems. Failure to satisfy these criteria gives rise to uncertainties beyond 
those discussed in this report. 
As in earlier discussions, uncertainty associated with tool-automated processes is reduced by 
eliminating the corresponding causes of defects, that is, through means to improve the quality. 
To the extent that tools are based on software, the uncertainty issues and conditions discussed 

                                                
 
39 Interface specifications are available for all components of the architecture. 
40 Code generators and verifiers are being used for single programs, software components, or other implementation 
of the logic. Automated integration of components is in its infancy. Thus, this baseline is focused on generating the 
code for a component and verifying this code. 



 

 Page 41 
 

 

for software in the DI&C system also apply to the software in the tools. IEEE 7-4.3.2-2003 “IEEE 
Standard Criteria for Digital Computers in Safety Systems of Nuclear Power Generation 
Stations”, clause 5.3.2, is based on this position. Therefore, the baseline criteria given in 
Appendices A.1–A.4 to this RIL also apply to tools and tool-automated processes.  

Table 8 provides additional criteria, constraints, and guidelines specific to tool suites and 
environments used for development and verification of software and other forms of logic 
implemented in DI&C systems. 

Experts’ position: There is concern [about the use of] uncertified tools with loosely defined 
specification formalisms. It is strongly recommended that uncertified tools be considered 
unacceptable in the production of code (e.g., in a chain of transformations) for safety-critical 
applications. 

Table 8: Evaluation of Tools to produce Safety-Critical Logic 

ID Factor Criterion/Constraint/Guideline 

1 Independence of 
verification and 
development 

Verification cases for the product are not dependent on the 
information that tools and other resources use for automated code 
generation. 

2 Transformation 
process 

The process is mechanized (reduced to a routine) correctly. 

The process activity is deterministic; that is, its input and output are 
unambiguously defined and the transformation of the input to the 
output is algorithmically specified. 

3 Input The input language (e.g., for the design modela) has a published 
specification that is unambiguously comprehensible to the community 
of its users—humans and other tools—engaged in development, 
verification, or other evaluation activities. Example: Restricted version 
of a modeling language [11, 12, 13]. 

4 Output The output language (e.g., the programming language) has a 
published specification that is unambiguously comprehensible to the 
community of its users. Example: Restricted version [24] of a type-
safe language. 

5 Composition rules There are unambiguous, published rules of composition in the source 
language and the target language. 

6 Elements 
mappable 

There is an unambiguous mapping (transformation) from each source 
element to a corresponding target element or composition of 
elements in the target language, such that the mapping is backward-
traceable.  

7 Compositions 
mappable 

There is an unambiguous mapping (transformationc) from a 
composition of source language elements to a composition of target 
language elements. 

8 Transformation 
rules 

The transformation rules are distinctly identifiable, unambiguous, and 
verifiable. 

9 Architecture The architecture of the tool provides clear distinction and 
independence of the following key elements: 
• Input 
• Output 
• Transformation rules and associated data 
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ID Factor Criterion/Constraint/Guideline 
• Transforming mechanism 
• User interface 
• Environment in which the input artifact is produced 
• Environment in which the output artifact is used 

10 Complexity Unnecessary complexity of the software is avoided by using sound 
architectural principles such as separation of concerns, 
encapsulation, unambiguously specified interfaces, and 
unambiguously specified interactions, as described above and in A.4  
Baseline Architecture Specification Principles.” 

11 Published 
limitations 

The users of the tool are aware of its limitations and conditions of 
use. 

12 User competence The users of the tool are competentb in its correct use for the 
assigned process activity, considering known limitations. 

13 Developer 
competence 

People developing and maintaining tools and tool suites possess and 
maintain the requisite competence, commensurate with the 
complexity of the assigned tasks. 

14 Community of 
users 

The individual persons and other tools engaged in development, 
verification, or other evaluation activities or dependent on the tool are 
identified explicitly, are qualified to use the tool correctly, and are 
included in the configuration-managed set for which the tool is 
qualified. 

15 Configuration 
management 

The tool and all items and factors on which the correctness of the tool 
is predicated are configuration-managed, verified, and validated as 
an integrated set (e.g., the restricted versions of the input and output 
languages, the community of users; libraries). 

a A limitation observed by experts is the ability to build models with accurate enough abstractions. 
b Certified by an independent certification authority. 
c In a chain of transformations, it is recommended that semantic consistency be assured across all tools involved.  

A.6  Safety Demonstration Framework 
The applicant for certification or license should demonstrate the satisfaction of the safety goal 
through a logical (argument-based) organization and integration of the evidence (see Figure 6) 
from verification, validation, and audit activities [JH, JM, PJ, PM]. This is sometimes called a 
“safety demonstration” and, in some communities, it is known as an “assurance case” and for 
the whole system a “safety case” [27]. It is not enough to show only a clause-by-clause 
compliance with the applicable requirements, guidelines, and standards [28].41 Each item of 
evidence from verification, validation, or audit by itself does not provide adequate assurance. 
The evidence should include diverse redundancy (e.g., testing to complement formal verification 
[JK, GH] integrated with the reasoning to demonstrate how it reduces the uncertainty of meeting 
the safety goal [JM]. The demonstration should also include an invitation for challenges (as 
depicted in Figure 6), their resolution, and, to the extent that challenges,42 rebuttals, and 

                                                
 
41  Satisfaction of programmatic requirements is not enough [28]. 
42  UK defense standard 0056 [26] added in the last edition a requirement to search for counter evidence, things 
which show it isn't safe [JM]. 
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inconsistencies are not fully resolved, commensurate qualification of the degree or strength of 
the validity of the claim or assertion. 

Criteria and conditions given in Appendices A.1–A.4 to this RIL will improve the systematization 
of the safety demonstration framework and the expert judgment process. Even then, the 
evaluation will require significant expertise, involving project-specific customization and 
judgment. The systematization of the expert judgment process is still a subject of research [JM]. 

 
 
 
A safety plan based on such a safety demonstration framework can be instrumental in 
generating significant measurable evidence early in the project lifecycle, avoiding surprises 
later. 

evaluate

Figure 6  Evidence-argument-claim structure
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Appendix B  Expert Elicitation Process 
The expert elicitation process was designed and executed with the purpose of acquiring 
knowledge outside the nuclear power plant (NPP) domain relevant to understanding software-
related uncertainties in the assurance of digital instrumentation and control (DI&C) systems 
used for NPP safety functions. 

The process was designed for the elicitation to do the following: 

• Be supported with evidence, appropriately qualified for its degree of validity. 

• Synthesize complementary individual knowledge, applying qualitative reasoning. 

• Use collective judgment to integrate and apply this knowledge to the NPP domain. 

• Identify reasons for differences across experts (e.g., different underlying assumptions). 

The elicitation process is outlined in the form of a flow diagram in Figure 7, followed by an 
explanation of each step in the flow.  
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Building the Candidate Pool of Subject-Matter Experts 

Based on the purpose and objectives defined for the project, the U.S. Nuclear Regulatory 
Commission (NRC) identified the complement of expertise needed and desired. NRC internal 
experts identified an initial set of subject-matter experts outside the NPP domain, based on their 
own knowledge of researchers in the assurance of software-reliant safety-critical systems who 
could contribute to the desired complement of expertise. When each member of the candidate 
pool was contacted to explore a match of interest, Pacific Northwest National Laboratories 
(PNNL) asked the expert to suggest other experts who should be contacted for a match of 
interest. Their suggestions were added to the candidate pool. Similarly, each new contact was 
asked for referrals. PNNL team members and NRC experts also reviewed the candidate pool 
periodically and suggested other names. This process of successive referrals built up a 
candidate pool of 75. PNNL searched for publicly available information about and publications 
by each candidate. 

Candidate pool:  

75 

30 

Search for experts 

Select for individual elicitation 

Prebrief; interview 

Individual elicitations 
Individual elicitations 

Individual elicitations 
Individual elicitations 

Analysis; digest 

Issue 
selection

Group 
selection: 
10 

Consensus 
position

Clinic 

RIL-1001 RIL-1002 RIL-1003 

Figure 7  Design of overall elicitation process
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Selecting for Individual Elicitation 
Based on information publicly available, collected from the referring individuals, and obtained 
from the candidates, PNNL sequenced contacts with candidates to explore matches or conflicts 
of interest and to determine availability. PNNL screened candidates and selected approximately 
30 to schedule for individual briefing and elicitation. 

The selection focused on experience outside the commercial NPP industry, such as defense, 
space flight, commercial aviation, medical devices, automobiles, telecommunications, and 
railways, spread across seven countries (United Kingdom, Sweden, Germany, Canada, United 
States, Australia, and New Zealand). 

Prebriefing 
Before individual elicitation, each of the 30 candidates was briefed on the background: the NPP 
application domain and the issues about which his or her expertise was to be solicited. The 
purpose of the briefing was to assist the expert in retrieving and focusing his or her knowledge 
about the problem domain. At this stage, some candidates decided to withdraw from further 
engagement or suggested other candidates. 

Individual Elicitation 
After the orientation, the PNNL team interviewed each expert, aided by an inventory of 
questions. Interviews adapted to the information flow dynamics specific to each individual. With 
the consent of the expert, the interview was audio-recorded to aid future recollection. Later, 
PNNL created a text summary of the interview, mapping the information to the relevant topic or 
question in the inventory to the extent readily feasible. In selected cases, PNNL invited the 
expert’s review and further input. In some cases, for clarification or to probe further, PNNL 
conducted a second interview or follow-up e-mail messages. 

Analysis and Digest 
The NRC analyzed these interview summaries progressively and iteratively to identify areas of 
broad consensus, points of difference, reasons for the differences, and issues worthy of further 
discussion, clarification, or resolution. At the same time, the NRC began identifying experts who 
could be strong contributors in moving forward on these issues in an expert focus group setting. 

The collection of individual elicitations had not been able to cover all aspects of the NRC’s initial 
scope. The elicited information was also sparse in some topics and rich in others. 

The NRC’s digest, in the form of a reference position document was sent to the interviewees for 
their review feedback. This process helped solidify areas of broad consensus and helped 
identify issues requiring face-to-face discussion by a suitably selected focus group. The design 
of the group interaction—the expert clinic—was finalized accordingly, including the topics and 
questions for discussion and the selection of 10 participants. 

Consensus Position 
The consensus findings were digested in the form of a reference position  that included 
references to the individual elicitations and reflected back on the sources cited. As feedback or 
additional information was received, the reference position was modified. 
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Selection of Issues for Focus Group Discussion  
The amount of information collected was too large to review and discuss in a group setting for 
further refinement. Therefore, the NRC analyzed the information for most relevance and best 
value to the program offices, considering issues encountered in recent reviews. Based on this 
analysis, the NRC selected certain topics for discussion by a focus group. 

Focus Group 
Based on their contribution to the topics selected, diversity of perspectives, and availability, the 
NRC selected 10 experts outside of the NRC and NPP industry for a 2-day meeting in a focus 
group setting. 

Clinic 
The focus group was notified, in advance, of the topics selected for group discussion. 
For each of the selected topics, the focus group was charged with the following objectives:  

• Identify limitations in the current state-of-practice (i.e., sources of uncertainty), due to which 
software assurance is heavily dependent on expert judgment. 

• Identify the evidence that is needed to more effectively assure software for safety, based on 
best practices in other application domains. 

• Identify knowledge gaps to be filled (i.e., areas in need of research and development) to 
enable more consistent reviews and to reduce judgment-based variation. 

In addition to the 10 experts in the focus group, the clinic included other participants as follows: 

• Two experts from U.S. Naval Reactors and one from U.S. Food and Drug Administration 
participated by providing comments at the introduction and conclusion of the clinic and at 
invited points during each segment of the clinic. 

• Five experts from the NRC provided the context of the problem domain: 
 NPP application domain 
 Regulatory framework and boundaries 
 Difficult technical issues experienced in licensing reviews 

• PNNL staff facilitated the execution of the clinic. 

All discussions were audio-recorded and transcribed at the end of the day for review (. 

All participants had access to laptops, networked and facilitated for real-time communication 
among all participants. The facilitator invited all participants for their inputs and interactions 
through the networked laptops. For example, an NRC expert and a focus group member could 
conduct a clarification interchange concurrent with oral discussions in the focus group. 

For each of the topics discussed, the focus group provided the following: 
• a summary of its conclusions 
• additional (post-it) notes written for immediate display near the end of the topic segment 
• inputs through laptops—chat logs 
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Formation of RIL-1001 
PNNL reviewed various forms of input, including the pre-clinic individual elicitations and the 
consensus position , selected excerpts relevant to each discussed topic, and organized the 
snippets and excerpts accordingly. 
 
The NRC analyzed the excerpts collected for each topic and reorganized it into RIL-1001 (this 
document), focusing the main body on information elicited during the clinic and placing other 
relevant information from the consensus position  in Appendix A. 

Information for RIL-1002 and RIL-1003 
While RIL-1001 is focused on uncertainties in assurance of software in digital safety systems 
and other manifestations of complex logic, the remaining information from the consensus 
position and individual elicitations pertaining to identifying and analyzing DI&C failure modes will 
be addressed in RIL-1002 [1]. The remaining information from the consensus position and 
individual elicitations pertaining to the feasibility of applying failure mode analysis to 
quantification of risk associated with DI&C will be addressed in RIL-1003 [2]. 

References for Appendix B 

1. U.S. Nuclear Regulatory Commission, “Identification of Failure Modes in Digital Safety 
Systems and Analysis for Systemic Causes—Expert Clinic Findings, Part 2,” Research 
Information Letter RIL-1002.  

2. U.S. Nuclear Regulatory Commission, “Feasibility of Applying Failure Mode Analysis to 
Quantification of Risk Associated with Digital Safety Systems—Expert Clinic Findings, 
Part 3,” Research Information Letter RIL-1003.  
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Appendix C – Hidden couplings can lead to severe consequences   
Failures with severe consequences can result from unexpected combinations of seemingly benign “minor” 
faults. As systems get larger and more complex, typically, failure combinations are not (and generally 
cannot be) studied in detail, because there are far too many possible combinations, as explained below. 
Thus, even though each separate failure cause can be well understood, the combinations are not. Some 
combination could cause a failure with a severe consequence [1]. 

Consider an example of a system with 102 seemingly “minor” latent1 faults, there can be up to 104 
possible combinations of two faults and 106 combinations of three, and so on - each with a vanishingly 
small probability of occurrence. Two such latent faults could fall in the same execution path; or one fault, 
when activated in one execution, could change the system state such that a second fault, when activated 
in another execution, causes a different failure. Thus, two latent faults combine in an unforeseeable way 
and cause a behavior that could be catastrophic. The Three-Mile Island accident is an example of a 
catastrophe caused by a combination of several seemingly “minor faults” - each harmless by itself. 
However, because each latent fault has a small probability of being triggered in an execution, the 
combination of two or more such small faults has an even smaller probability. However, even if some 
case has a probability 1/N with a very large value for N, it could still be a concern if there are M such 
potential cases, with M also being very large and approaching N. Several studies have shown that 
serious software failures can be caused by very low probability events (cases for which the software was 
not tested thoroughly). Typically, in rarely executed code, such as exception2 handling code, a good 
example of a combination of seemingly “minor” defects is a relatively benign fault triggering a rarely 
executed exception handler, which itself contains a fault. [GH] 

Reference for Appendix C 
[1] Charles Perrow, “Normal Accidents: Living with High Risk Technologies”, New York: Basic Books, 

1984.  

 

                                                
 
1 A latent defect is one that is dormant in the code, but has not revealed itself yet (for instance because that piece of 
code has not yet been executed under precisely the circumstances that are required to reveal the fault and cause a 
problem). 
2 Commonly called “error” 
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