

Thermal Control of Concrete

Overview

- Hot weather concreting
 - "External" influences
- Mass concrete
 - "Internal" influences

Hot Weather Concreting ACI 305 Definition:

"Hot weather is any combination of:

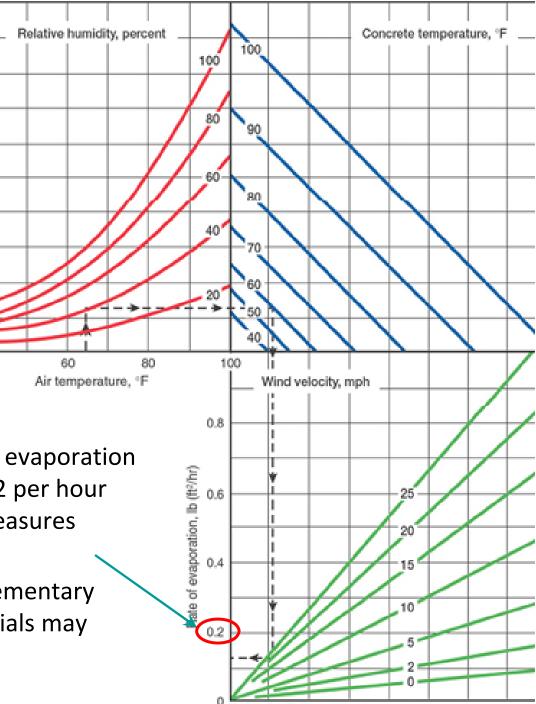
- high air temperature
- high concrete temperature
- low relative humidity
- wind velocity
- solar radiation

...that tends to impair the quality of fresh or hardened concrete."

Questions You Ask Yourself During Hot Weather ?

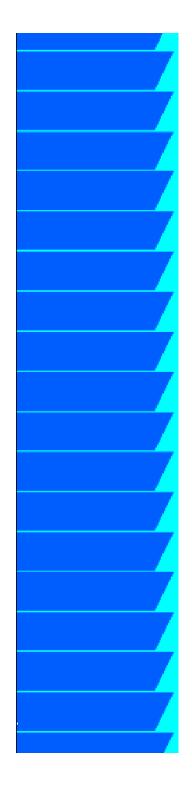
- What are the effects of *hot weather* on concrete ?
- Why are these effects important to the quality of the finished concrete product?

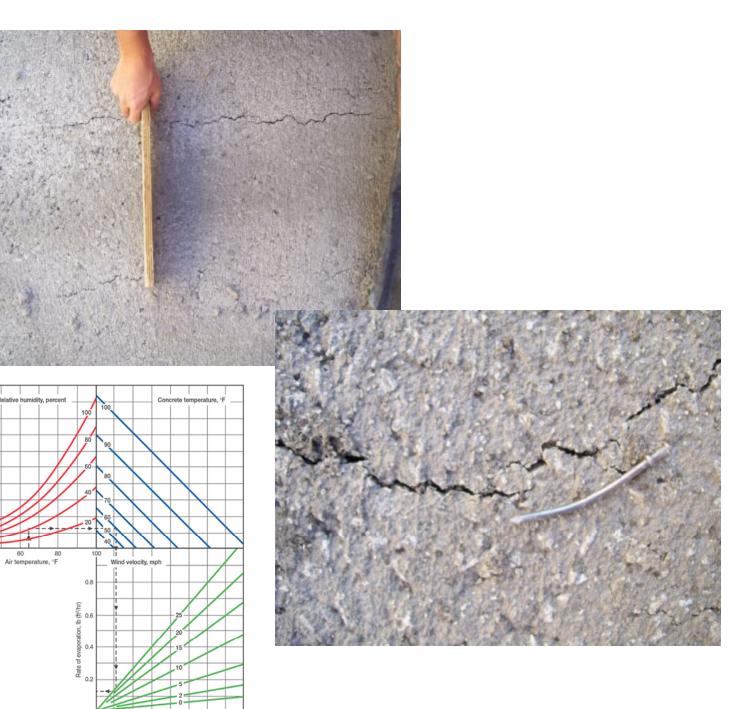
Hot Weather Concreting Problems – Fresh properties



- Increased Water
 Demand
- Accelerated Slump Loss
- Faster Set Times
- Rapid Water
 Evaporation
- Plastic Shrinkage
- Difficulties controlling entrained air
- Increased potential for thermal cracking

Hot Weather Concreting Problems – Hardened Properties

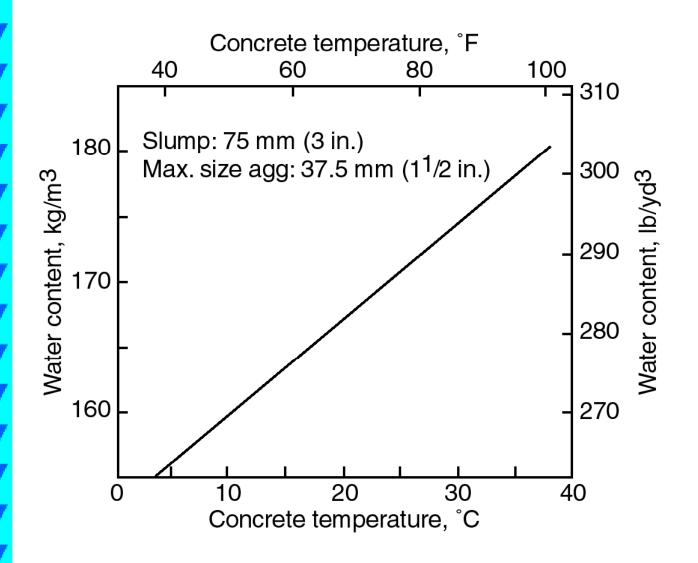

Decreased strength
Drying Shrinkage
Decreased Durability
Increased Permeability Evaporation of Surface Moisture from Concrete

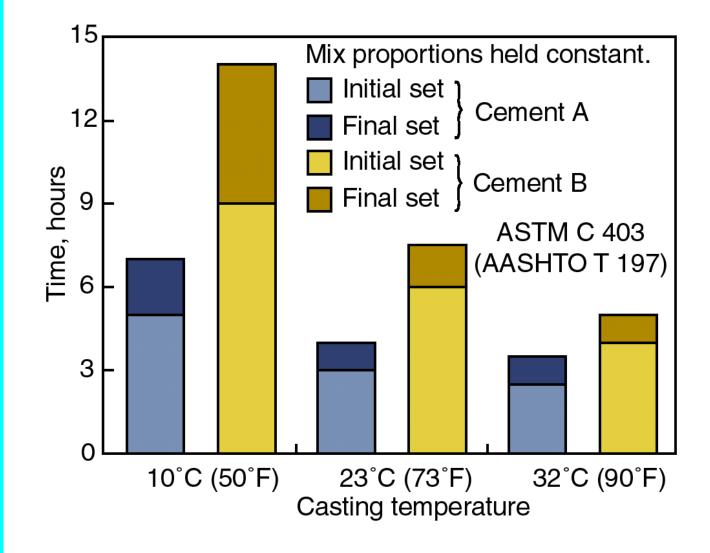


 When the rate of evaporation exceeds 0.2 lb/ft2 per hour precautionary measures should be taken.

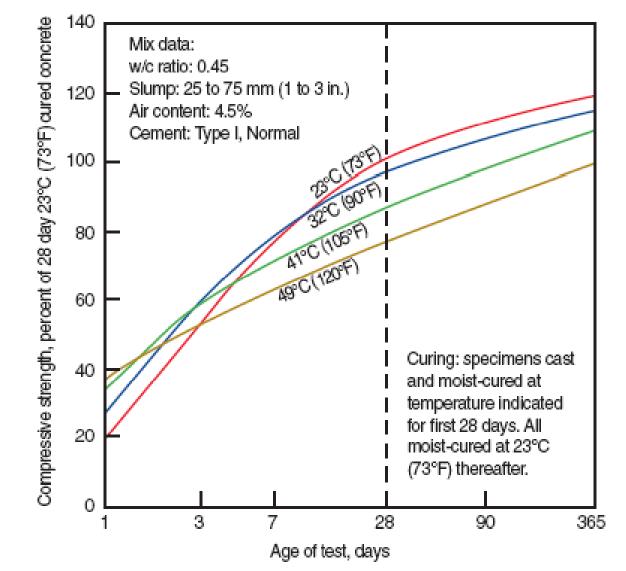
40

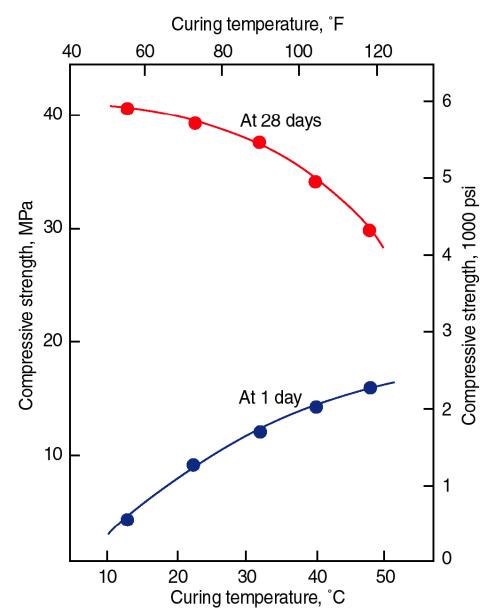
 The use of supplementary cementing materials may lower this value.

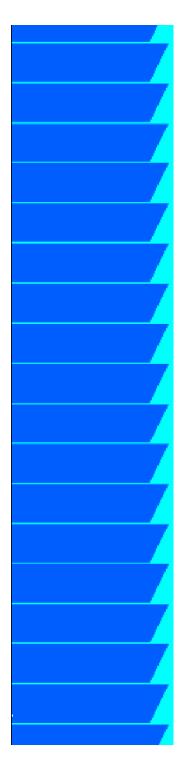



Concrete Temperature

- ACI 211.1 For every 100 lb Cement expect approximately 10-15°F temperature rise from Heat of Hydration.
- Use tepid water for curing.
- After curing, let surface dry out slowly to reduce the possibility of crazing or cracking.


Effect of Concrete Temperature on Water Requirement


Effect of Concrete Temperature on Setting Time



Effect of Concrete Temperatures on Strength

Strength vs. Curing Temperature

Adjust the mix for Hot Weather

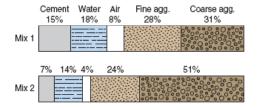
• Use of SCMs (fly ash, slag cement)

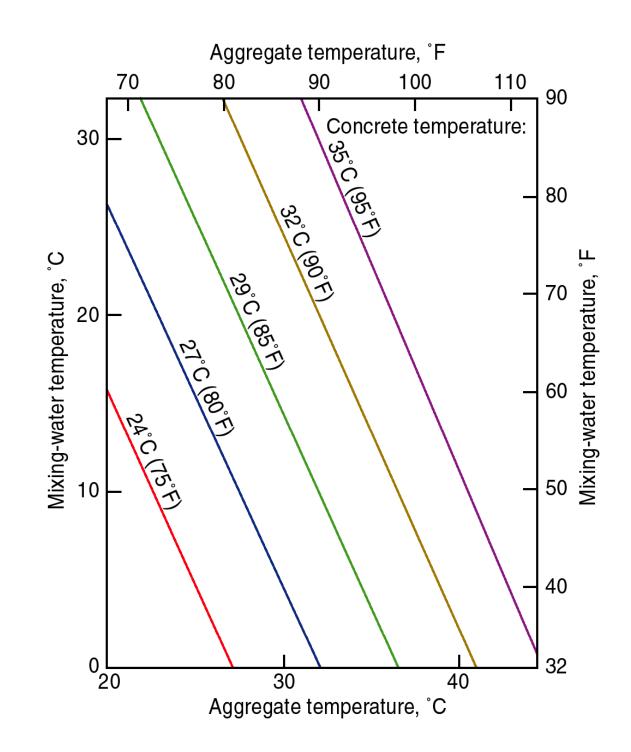
(Can be a double edged sword)

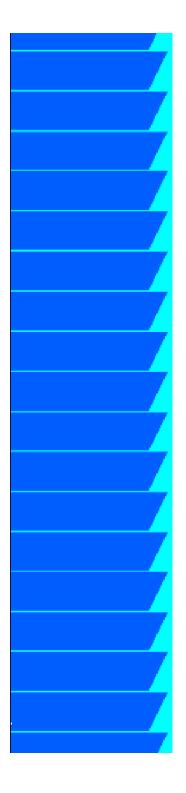
- Retarders
- Cool concrete materials
- Moisten aggregates
- Cool concrete
- Add plastic fibers

Adjust Placement Practices

- Dampen subgrade
- Reduce the time of transport, placing and finishing
- Erect temporary windbreaks and sunshades
- Fog over the concrete immediately after placing
- Cover concrete

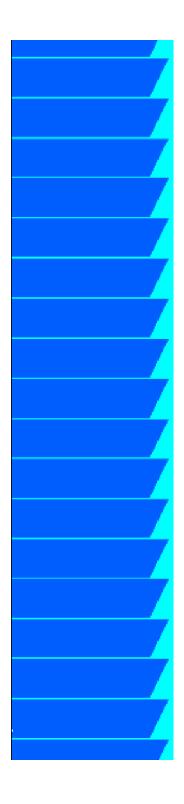

Effect of Temperature of Materials on Concrete Temperatures

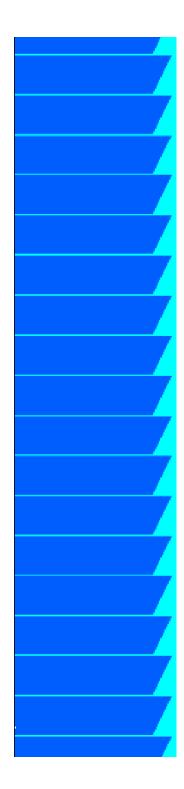

$$T = \frac{0.22(T_a M_a + T_c M_c) + T_w M_w + T_{wa} M_{wa}}{0.22(M_a + M_c) + M_w + M_{wa}}$$


T = temperature of the freshly mixed concrete, °C (°F)

 $T_{\alpha'}$, $T_{c'}$, $T_{w'}$, and T_{wa} = temperature in °C (°F) of aggregates, cement, added mixing water, and free water on aggregates, respectively

 M_{α} , M_{c} , M_{w} , and M_{wa} = mass, kg (lb), of aggregates, cementing materials, added mixing water, and free water on aggregates, respectively



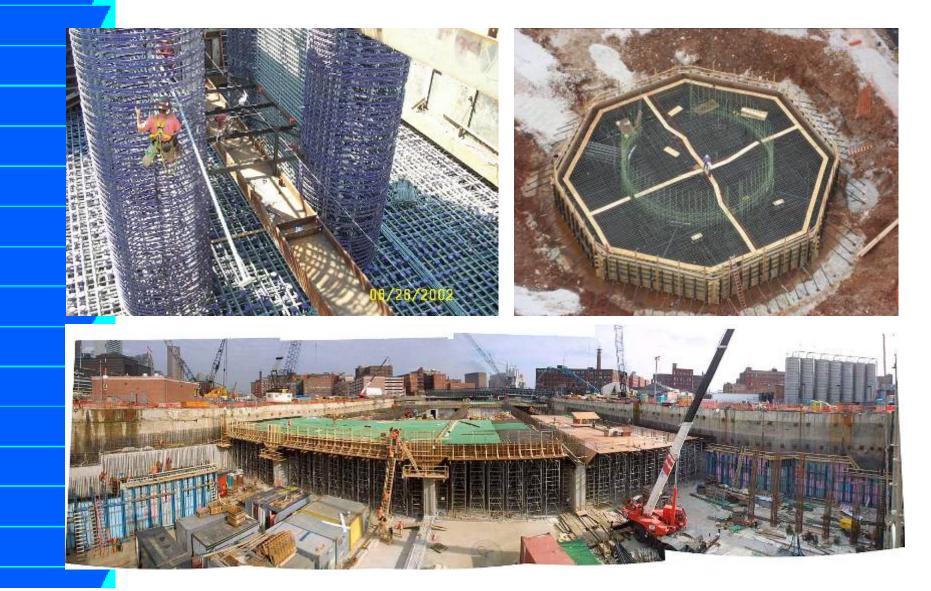

Effect of Ice on Temperature of Concrete

$$T(^{Q}C) = \frac{0.22(T_{a}M_{a} + T_{c}M_{c}) + T_{w}M_{w} + T_{wa}M_{wa} - 80M_{i}}{0.22(M_{a} + M_{c}) + M_{w} + M_{wa} + M_{i}}$$

 $T(PF) = \frac{0.22(T_aM_a + T_cM_c) + T_wM_w + T_{wa}M_{wa} - 112M_i}{0.22(M_a + M_c) + M_w + M_{wa} + M_i}$

Placing & Finishing Concrete in Hot Weather

- Cool equipment
- Dampen/ cool
 - subgrade
 - forms
 - rebar
- Scheduling: evening or night time construction
- Windbreaks
- Sunshades



Questions on Hot Weather Concreting?

What is Mass Concrete?

What is Mass Concrete?

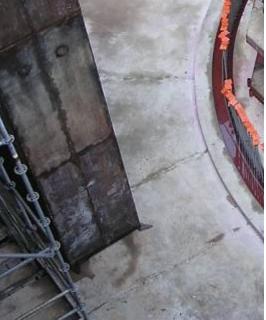
"Any volume of concrete with dimensions large enough to require that measures be taken to cope with generation of heat from hydration of the cement and attendant volume change, to minimize cracking." – American Concrete Institute (ACI)

- Thick: Foundations, columns, radiation shielding, etc.
- Thin: High Performance (HPC), Self Consolidating Concrete (SCC), Grout, Patching material

Working Definition

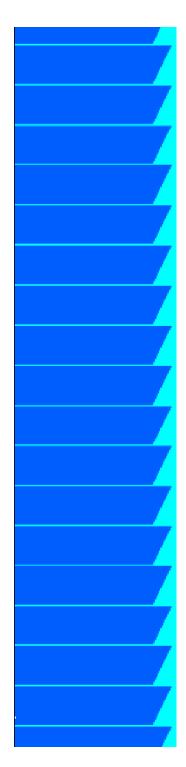
Minimum Dimension (Thickness)

- No consensus $(2\frac{1}{2}$ ft to 7 ft)
- ACI 301-09 will likely say \geq 4 ft


Cement Content

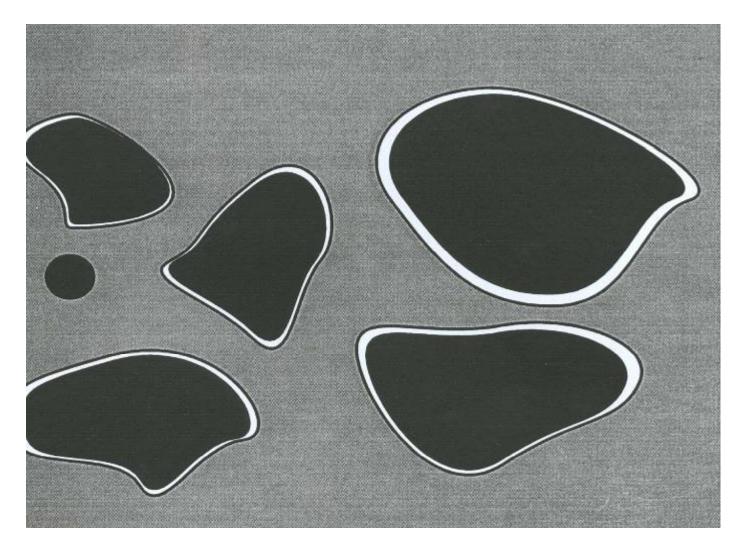
- Usually not considered
- ACI 301-09 will likely recommend a limit

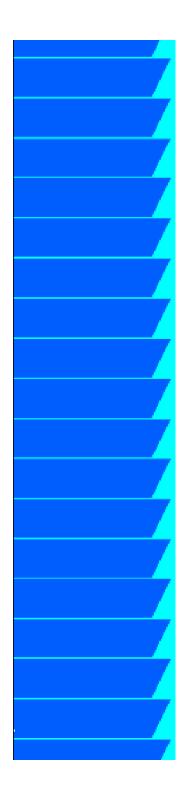
Key Considerations


- Maximum temperature
 - Can reduce strength and durability
- Temperature difference
 - Can result in thermal cracking

Maximum Temperature

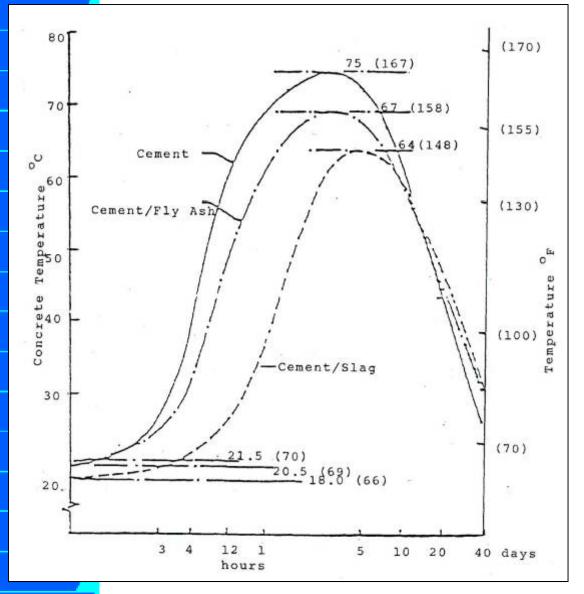
- Often limited
 - No consensus between agencies
 - Safe limit: 160°F (70°C)
 - Delayed Ettringite Formation (DEF)
- Concrete mix design
 - Cement (type and quantity)
 - Pozzolans (type and percentage)




Delayed Ettringite Formation (DEF)

- Concrete cured at excessively high temperatures may develop DEF because ettringite decomposes – or does not form at high temperature.
- Later it forms/reforms after the concrete is hard, and may cause expansion.
- DEF is a term that is properly applied only to curing at elevated temperatures. It does not apply to ambient curing.

Expansion of Paste away from Aggregate



DEF potential?

- The heat of hydration of cement can raise the concrete temperature to above 160°F
- The critical temperature for DEF lies somewhere between 160°F and 195°F (depends on the cement)
- This is particularly true for cements with high fineness(> 400m²/kg), high C₃S, high C₃A, and high alkali content. SO₃/Al₂O₃ ratio > 0.7

Maximum Temperature

- 100% Cement
- 70/30 Blend of Cement and Fly Ash
- 25/75 Blend of Cement and Slag

Maximum Temperature Estimation


Max. Temp. = Initial Temp. + Temp. Rise - Loss

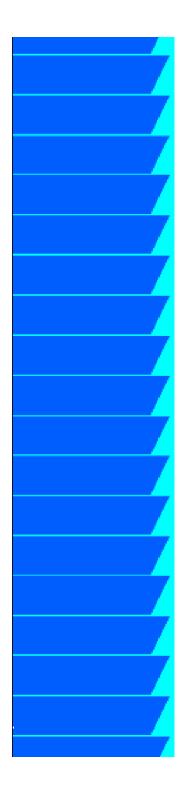
- Initial Temperature
 - As low as economically practical (Payback of 1:1)
- Temperature rise depends on mix design
 - Equivalent cement content
- Loss (Early heat loss)
 - Minimal for placement >5 ft thick
 - ◆ 2-6 F per day, depends on R value, dimensions, etc.

Equivalent Cement Content

- Ilb/yd³ of cement = 1 lb/yd³ equiv. cement
- 1 lb/yd³ of Class F ash = 0.5 lb/yd³ equiv. cement
- 1 lb/yd³ of Class C ash = 0.8 lb/yd³ equiv. cement
- 1 lb/yd³ of Slag (50%) = 0.9 lb/yd³ equiv. cement
- 1 lb/yd³ of Slab (75%) = 0.8 lb/yd³ equiv. cement
- Temperature Rise in Concrete
 - 16°F per 100 lb/yd³ equiv. cement

For example...

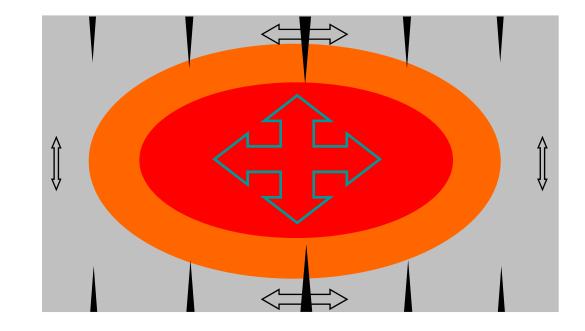
Concrete Foundation


400 lb/yd³ cement and 200 lb/yd³ class F fly ash 70°F delivered concrete 6 ft thick

Equivalent cement = $400 + 0.5*200 = 500 \text{ lb/yd}^3$

Temperature Rise = 500*16/100 = 80°F

Maximum Temperature = 80+70-0 = 150°F



Temperature Difference

Limited to minimize (or prevent) thermal cracking

Temperature difference between interior and surface

Crack width is a function of the temperature difference

Thermal Cracking

- Undesirable, but sometimes unavoidable
- Mostly a durability concern
- Severe can be a structural issue
- "Tolerable" limits in ACI 224R

Table 4.1—Guide to reasonable* crack widths, reinforced concrete under service loads

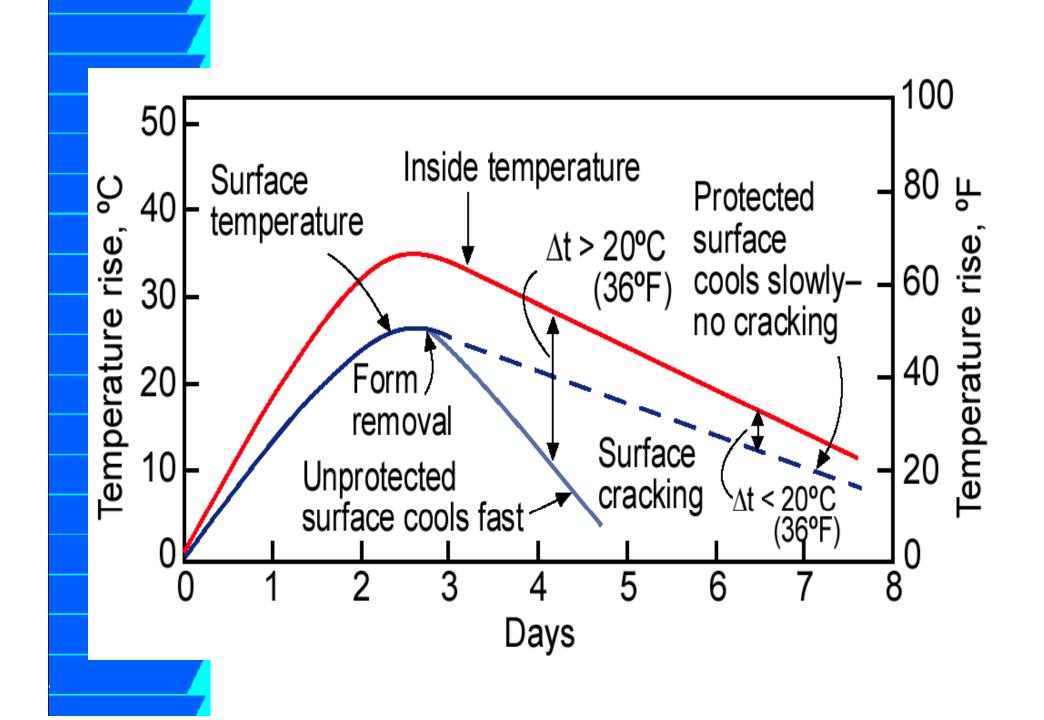
	Crack width	
Exposure condition	in.	mm
Dry air or protective membrane	0.016	0.41
Humidity, moist air, soil	0.012	0.30
Deicing chemicals	0.007	0.18
Seawater and seawater spray, wetting and drying	0.006	0.15
Water-retaining structures [†]	0.004	0.10

^{*} It should be expected that a portion of the cracks in the structure will exceed these values. With time, a significant portion can exceed these values. These are general guidelines for design to be used in conjunction with sound engineering judgement. [†]Exclusing nonpressure pipes.

Extreme Thermal Cracking

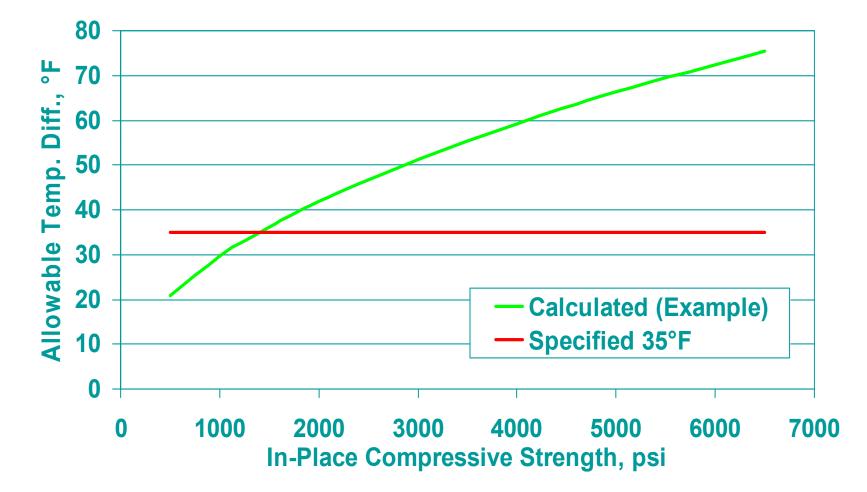
More Extreme Thermal Cracking

Somewhat Extreme Thermal Cracking

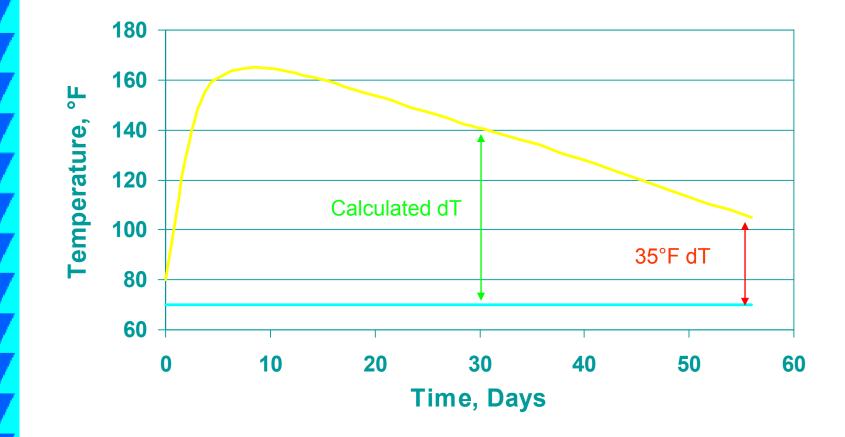


Typical Thermal Cracking

More Typical Thermal Cracking

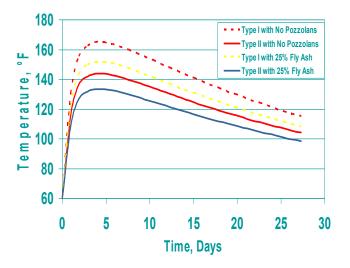

Temperature Difference Limits

- Often limited to a maximum of 35°F
 - Generalized "rule-of-thumb"
 - Worked for unreinforced dams in Europe 75+ years ago
 - May not prevent thermal cracking
 - Extends construction time
- Stepped limit
 - Steps up with age (35-45-60°F)
 - Shortens construction time
 - Can lead to thermal cracking
- Tailored limit


Tailored Temperature Difference

- Calculation based on ACI 207.2R
- Performance-based approach
- Accounts for concrete's ability to withstand higher thermal stresses as in-place strength increases
- Based on concrete properties
- Based on structure and design
- Can be used to prevent cracking or limit crack widths

Temperature Difference (cont.)



Temperature Difference and Time Savings

Temperature Control Strategies - Use a Reduced Heat Concrete

- Type I/II, II or V Cement
- Slag Cement
 - ◆ 50% to 75% replacement
- Fly Ash (Class F)
 - ◆ 25% to 40% replacement

Recall that:

1lb/yd³ of cement = 1 lb/yd³ equiv. cement 1 lb/yd³ of Class F ash = 0.5 lb/yd^3 equiv. cement 1 lb/yd³ of Class C ash = 0.8 lb/yd^3 equiv. cement 1 lb/yd³ of Class (0%) = 0.0 lb/yd^3 equiv. cement

- 1 lb/yd³ of Slag (50%) = 0.9 lb/yd^3 equiv. cement
- 1 lb/yd³ of Slab (75%) = 0.8 lb/yd³ equiv. cement

Temperature Control Strategies – Place Concrete in Lifts

- Thick placements take a <u>long</u> time to cool
- Multiple distinct placements
- Thin lifts allow early heat loss
 - Reduced maximum temperature
 - Faster cooling

Temperature Control Strategies – Precool the Concrete

- Precool aggregates
 - Evaporative cooling is a very low cost solution
- Chilled mix water
 - Low cost (need chiller plant)
 - Max. reduction of about 5°F
- Substitute ice for mix water
 - More expensive
 - Can be labor intensive
 - Max. reduction of about 20°F

Temperature Control Strategies – Precool the Concrete (Cont.)

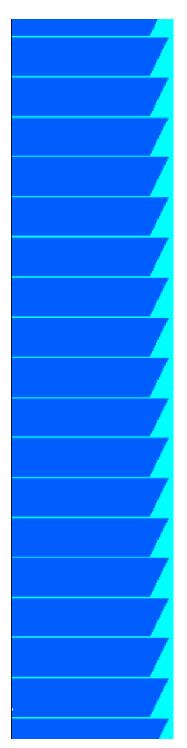
- Liquid Nitrogen (LN2)
 - Can re-cool concrete multiple times
 - Adds time and drum rotations
 - Cool onsite or at batch plant
 - Can be expensive
 - Can be dangerous

Temperature Control Strategies – *Cooling Pipes*

- Remove internal heat after concrete placed
- Reduces maximum temperature
- Reduces cooling time
- ¾" plastic cooling pipes
- Grouted afterwards

Temperature Control Strategies – *Cooling Pipes*

- Large supply of natural water (river, lake, ocean, ground water)
- Chiller

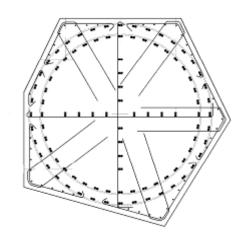


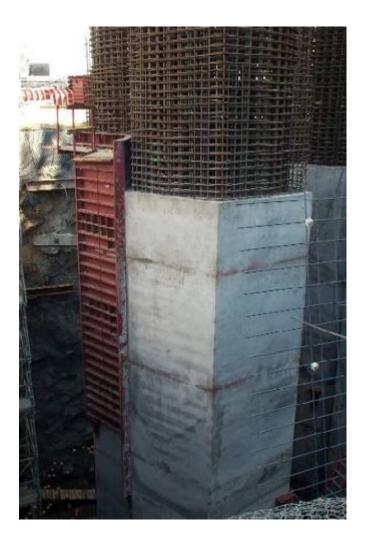
Temperature Control Strategies – Insulation

- Insulation retains surface heat to control the temperature difference
- Necessary in summer and winter

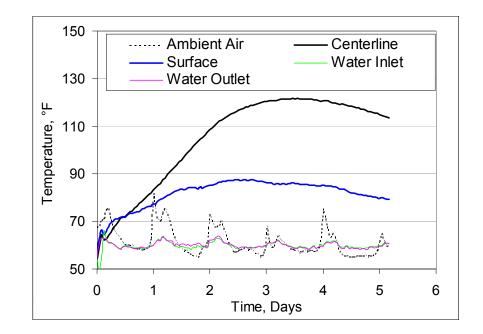
Things to Avoid

- Water Curing
- Improper Insulation
- Early Removal of Insulation

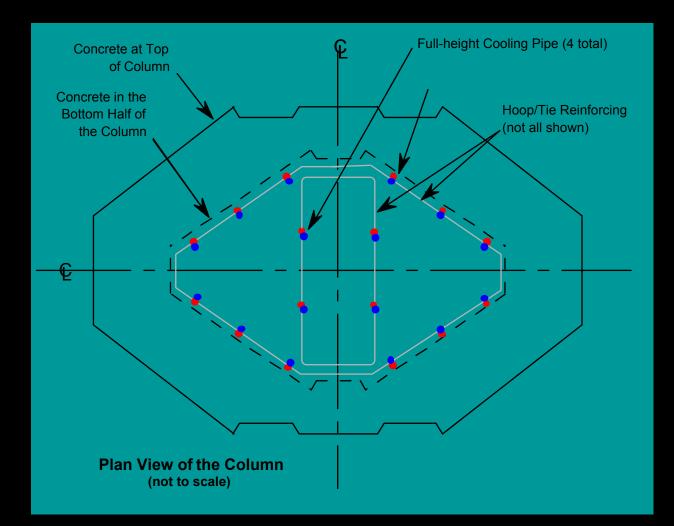



Example: 10 ft dia. column

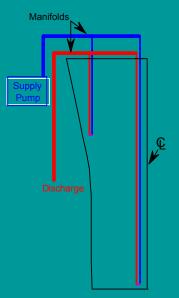
- Performance specifications
 - 674 pcy minimum cementitious
 - 150°F maximum temperature
 - No thermal cracking
 - Tailored temperature difference


Example (cont.)

- Specially designed concrete
- Tight Schedule
- Used Cooling Pipes
- Used Maturity


Example (cont.)

 Using Calculated temp. difference, Columns sufficiently cool in 5 to 6 days



- If 20°C(35°F) temp differential specified...
 - cooling time increased by 50%
 - could not meet spec without cooling pipes

Example: Column Analysis

ssumed Placement Conditions procrete Mix No. 1 with 330 pcy slag and 330 pcy cement	Temperature, °I
boling Pipes Installed and Operated	
verage Air Temperature = 70°F	155
itial Concrete Temperature = 80°F	150
poling Water Temperature = 70°F	145
2.8 Surface Insulation	140
	- 135
	- 130
	125
	- 120
	115
	- 110
	105
	100
	95
	90
	85
	80

Day = 0

Concrete Mix No. 1 with 330 pcy slag and 330 pcy cement Cooling Pipes Installed and Operated Average Air Temperature = 70°F Initial Concrete Temperature = 80°F Cooling Water Temperature = 70°F R-2.8 Surface Insulation

Temperature, °F

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70

Predicted Temperatures (See Drawing No. 3 for Thermocouple Locations)

Center Thermocouple = 137°F Surface Thermocouple = 123°F Pipe Thermocouple = 117°F Largest Temp. Diff. = 20°F

Concrete Mix No. 1 with 330 pcy slag and 330 pcy cement Cooling Pipes Installed and Operated Average Air Temperature = 70°F Initial Concrete Temperature = 80°F Cooling Water Temperature = 70°F R-2.8 Surface Insulation Temperature, °F

155

150

145

140

135

130

125

120

115

110

105

100

95

90

85

80

75

70

Predicted Temperatures (See Drawing No. 3 for Thermocouple Locations)

Center Thermocouple = 150°F Surface Thermocouple = 129°F Pipe Thermocouple = 124°F Largest Temp. Diff. = 26°F

Concrete Mix No. 1 with 330 pcy slag and 330 pcy cement Cooling Pipes Installed and Operated Average Air Temperature = 70°F Initial Concrete Temperature = 80°F Cooling Water Temperature = 70°F R-2.8 Surface Insulation

Temperature, °F

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70

Predicted Temperatures (See Drawing No. 3 for Thermocouple Locations)

Center Thermocouple = 146°F Surface Thermocouple = 123°F Pipe Thermocouple = 121°F Largest Temp. Diff. = 25°F

Concrete Mix No. 1 with 330 pcy slag and 330 pcy cement Cooling Pipes Installed and Operated Average Air Temperature = 70°F Initial Concrete Temperature = 80°F Cooling Water Temperature = 70°F R-2.8 Surface Insulation

155

150

145

140

135

130

125

120

115

110

105

100

95

90

85

80

75

70

Predicted Temperatures (See Drawing No. 3 for Thermocouple Locations)

Center Thermocouple = 139°F Surface Thermocouple = 116°F Pipe Thermocouple = 116°F Largest Temp. Diff. = 23°F

Predicted Temperatures (See Drawing No. 3 for Thermocouple Locations)

Center Thermocouple = 131°F Surface Thermocouple = 109°F Pipe Thermocouple = 111°F Largest Temp. Diff. = 21°F

Day = 5

Predicted Temperatures (See Drawing No. 3 for Thermocouple Locations)

Center Thermocouple = 123°F Surface Thermocouple = 104°F Pipe Thermocouple = 106°F Largest Temp. Diff. = 19°F

Day = 6

Predicted Temperatures (See Drawing No. 3 for Thermocouple Locations)

Center Thermocouple = $116^{\circ}F$ Surface Thermocouple = $99^{\circ}F$ Pipe Thermocouple = $101^{\circ}F$ Largest Temp. Diff. = $17^{\circ}F$

Day = 7

70

Predicted Temperatures (See Drawing No. 3 for Thermocouple Locations)

Center Thermocouple = 110° F Surface Thermocouple = 95° F Pipe Thermocouple = 97° F Largest Temp. Diff. = 15° F

Day = 8

Inspector's Guide to Mass Concrete – *Before Placement*

- Read contractor's thermal control plan
- Identify initial concrete temperature limit
- Identify other rejection criteria
- Verify cylinder storage area
- Verify placement equipment
- Schedule personnel and duties
- Verify installed temperature sensors
- Verify operation of cooling pipes (if used)

Thermal Control Plan (TCP)

- Submittal item
 - Must be approved before placement
- Demonstrates contractor's methods to
 - Comply with mass concrete specifications
 - Ensure maximum temperature under 160°F (or specified limit)
 - Minimize/prevent thermal cracking (states a temperature difference limit)
 - Ensure proper curing

Contents of a TCP

- Specification Requirements
- Concrete Placements covered by TCP
- Concrete Mix Design
- Predicted Temperatures in Placements
 - Assumptions used
 - Temperature ranges (air, concrete, etc).
 - Prediction method
 - Anticipated results

Contents of a TCP (cont.)

- Construction Practices
 - Placement method (pump, etc.)
 - Rejection temperature for delivered concrete
 - Curing method
 - Insulation (materials and installation)
 - Cooling pipe details (if used)
 Materials
 Installation
 Operation

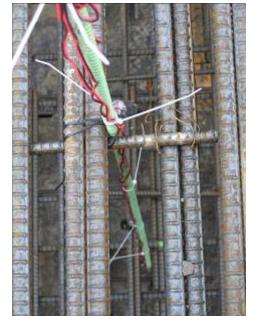
Contents of a TCP (cont.)

Construction practices (cont.)
 Temperature monitoring

 Gequipment
 Frequency
 Reporting
 Corrective measures

 Completion criteria

Prepour Temperature Sensor Verification


Correct equipment and locations

- Per the thermal control plan
- Typically at center of mass of placement
- 2-3" below surface (top or side)
- Away from pipes, piles, etc.
- Backup sensors

Functioning (good data)

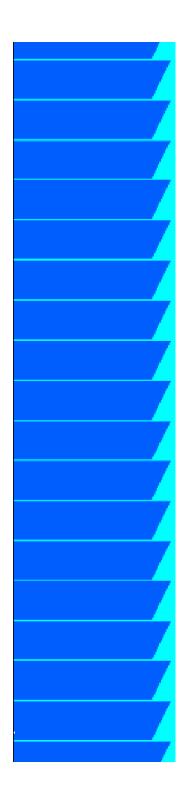
Wires protected

Prepour Cooling Pipe Verification

- Proper locations
 - Per the thermal control plan
 - Uniform layout
- Water flows through all pipes
- No leaks
- Flow rate

Inspector's Guide to Mass Concrete – During Placement

- Verify fresh properties
- Verify concrete temperature within limit
- Verify proper vibration
- Form pressure issues?
- Watch cooling pipes and temperature sensors
- Revibration
- Finishing
- Curing


Inspector's Guide to Mass Concrete – During Thermal Control Period

- Fully insulated concrete and formwork
- Cooling pipes operating properly
- All temperatures within limit
- Temperature differences within limit
- Contractor adjustments, if necessary

Inspector's Guide to Mass Concrete – After Thermal Control is Complete

- Cooling pipes grouted, cut below surface and patched
- No thermal cracking
- Repairs (if necessary)

Summary

- Concrete gets hot!!
- Extra measures are needed to prevent excessive temperatures and temperature differences.
- Many approaches to thermal control
- Insulation always needed
- Temperature sensors for verification of thermal control

Questions on Mass Concrete?