

Dutch approach to coastal flood hazard

Joost Beckers

Deltares, The Netherlands

January 28, 2013, NRC Workshop on PFHA, Rockville MD

The Netherlands

Flood of Feb 1st 1953

Response to the 1953 Flood

- Improvement of flood protection
- Closing of estuaries with dams and storm surge barriers
- Formal safety standards in terms of probabilities

Estuaries: 1/2000 per year

River levees: 1/1250 per year

Water Act (1990): periodic safety assessment

- Done every 5 years
- □ Performed by Water boards
- Tools and methods prescribed by Ministry of Infrastructure
- ☐ Central role for <u>probabilistic</u> methods

Levees

Safety assessment – probabilistic framework

Example: Coastal sea defense

Failure mechanism: wave overtopping

Load = water level and wave conditions
Resistance = height and profile of the levee

Aim: determine the probability of a critical overtopping discharge of >1 l/m/s

- Water level statistics
- Wind statistics (direction and speed)
- Wave model for transformation of wind to nearshore waves

Water level statistics at gauging stations

'Modified' Regional Frequency Analysis

Variation to RFA for a non-homogeneous region:

GPD shape parameter may vary, but follow a coherent spatial pattern

Constraints on shape parameter, combine with hydrodynamic modeling

and expert judgment

Hydrodynamic modeling

Use Delft3D model simulations of 'superstorms' to:

- Improve the consistency between stations
- Get surge levels at other locations
- Verify the feasibility of extreme surge levels

Wind statistics

Wind statistics:

- Potential wind speed at 10m
- Conditional on wind direction (12 sectors)
- GPD on POT
- PW-Moments
- 'Modified' RFA

Nearshore wave conditions

- SWAN (Simulation WAves Nearshore)
 Delft University model for wave generation and propagation
- Translate offshore wind to nearshore wave conditions Significant wave height H_s and spectral wave period $T_{m-1,0}$
- Use nested grids from full North Sea down to resolution of 25 m.

Calculate failure probability

Probabilistic models – Hydra family

Different models for different water systems and associated forcing variables:

- Coast
- River
- Lake
- Tidal river into sea
- River into lake

Dealing with uncertainty (1)

Aleatory uncertainty: natural variability

Epistemic uncertainty: model and statistical uncertainty

First generation of Hydra models (1990's):

For the safety assessment:

Use best estimates of hydraulic load
Disregard epistemic uncertainty

For (re)design of flood protection:
Apply safety margins for model uncertainties
And margins for sea level rise and land subsidence.

Any newly built structure will pass the safety assessment

Dealing with uncertainty (2)

New generation of Hydra models:

Epistemic uncertainties as random variables in the probabilistic model Example: uncertainty in water level frequency curve

Statistical uncertainty included in the AEP

Increase of 10⁻⁴ AEP surge level of 50 cm

Effect on failure probability

Dune erosion model At 10⁻⁴ level, increase in retreat distance: 10-20m

Failure probability increases to 2*10-6

Dune would still pass the safety assessment

Contribution of statistical uncertainty ~10%

Summary and conclusions

- Flood risk management based on AEP's of 1/10,000 can be done
- Large uncertainty in extrapolation of frequency curves
- Use (M)RFA and hydrodynamic modeling for spatial coherence and improve general confidence in the frequency curves
- Current safety assessment procedures are based on best estimates of exceedance frequencies of the hydraulic load
- Probabilistic models are being developed that allow for a Bayesian approach. Informative for:
 - Probability of failure according to Bayesian interpretation
 - Contributions of uncertainties to failure probability
 - Relevance for the decision at hand

Thanks for your attention

Deltares, Delft, The Netherlands
Joost Beckers
+31-88 335 8336
joost.beckers@deltares.nl

Extra slide: Stochastic storm modeling

Random variables are depression track, speed, size, depth Probability distributions based on historical storms
Hydrodynamic modeling produces surge levels
Compare results with statistical extrapolation

