An Observation-Driven Approach to Rainfall and Flood Frequency Analysis Using High-Resolution Radar Rainfall Fields and Stochastic Storm Transposition

Hydrometeorology Research Group

Civil and Environmental Engineering Daniel B. Wright, James A. Smith, Mary Lynn Baeck

The Hydrometeorology Research Group

Focus: understanding the atmospheric and land surface processes tied to hydrologic extremes using observations and numerical models

- Atmospheric Dynamics
- Sensors and Remote Sensing
- Surface Hydrology and Hydrometeorology
- Urban Hydrology and Meteorology

Outline of talk

- Motivation and research questions
- A critical look at conventional flood risk assessment
- 3. High-resolution radar rainfall and stochastic storm transposition (SST) for rainfall frequency analysis
- 4. SST for flood frequency analysis
- 5. Summary and future directions

Motivation and research questions

- What are the dominant physical processes that control urban floods?
 - Specifically, how does the spatial and temporal structure and motion of extreme rainfall interact with surface, subsurface, and drainage network characteristics to produce floods?
- How can we use modern data and computational resources to examine these processes?
- How can we use this scientific understanding to improve engineering practice, risk management, and policy?

Conventional methods

- 1. Spatially uniform, temporally idealized extreme rainfall
- 2. Assumed return-period dependency between rainfall and peak discharge at all points in a drainage network
- 3. Stationary flood risk

Wright et al., The Hydroclimatology of Flash Flooding in Atlanta, Water Res. Research, 48

Conventional methods

Design storms

- Assume spatial and often temporal uniformity
- Neglect important realities of extreme rainfall structure and motion
- Do not consider important differences in storm types

Wright et al., A Critical Examination of Area Reduction factors, in preparation

Charlotte, NC study watersheds

Dense USGS rain gage network, NWS WSR-88D weather radar, USGS stream gages, FEMA flood studies, detailed drainage network and land surface information

High-resolution radar rainfall

10 year (2001-2010) bias-corrected 1 km², 15-minute Hydro-NEXRAD radar rainfall dataset

Radar rainfall + storm catalogs

Creating a basinspecific storm catalog:

1. Define climatologically homogeneous "domain" containing the basin

2. Identify largest 50 rain events of *t*-hour duration of the correct size and shape from the 10-year radar rainfall archive

Radar rainfall + storm catalogs

Example:

12-hour storm catalog for Little Sugar Creek at Archdale

SST Procedure

Stochastic Storm Transposition (SST)

- 1. Randomly select a storm from catalog and randomly transpose it within domain
- 2. Compute rainfall over watershed

SST Procedure

Stochastic Storm Transposition (SST)

- 3. Repeat this procedure k times, where $k \sim Poisson(\lambda = 5.0 \ storms/year)$
 - 50 storms from a 10-year radar archive $\rightarrow \lambda$ =5.0 storms/year
- 4. Retain the highest of the *k* values: synthetic annual rainfall maximum
- 5. Repeat this many times to generate rainfall frequency estimates: **"resampling"**

Wright, D.B., J. A. Smith, G. Villarini, and M. L. Baeck, *Estimating the Frequency of Extreme Rainfall Using Weather Radar and Stochastic Storm Transposition*, **Journal of Hydrology, in review**.

SST—IDF estimates

SST and spatial rainfall structure

SST and rainfallweighted flow distance statistics let us examine the spatial distribution of extreme rainfall relative to the drainage network

SST and temporal rainfall structure

Temporal rainfall variability shows substantial departure from idealized design storm principles.

SST for flood frequency

Gridded
Surface
Subsurface
Hydrologic
Model
(GGSHA)

Little Sugar Creek (110 km²)

GSSHA model elements Hydro-NEXRAD rainfall

- 1 km², 15-minute resolution
- Mean-field bias corrected

Channel network

- 1-D diffusive wave routing:
- 328 surveyed sections,
 46 bridge crossings, 53
 culverts, 140 storm drains

USGS DEM

 90 m grid resolution for 2-D diffusive wave overland flow

NLCD Land Use

- 10 land-use classes
- Used for overland flow roughness

SSURGO Soils data

 For Green and Ampt infiltration model

NLCD Impervious area

 Used to determine percent area contribution to infiltration

Flood SST

High variability in flood response at Little Sugar Creek at Medical Center simulated from SST-based 6-hour, 100-year rainfall

Flood SST

Inter-basin heterogeneity in flood peaks simulated from SST-based 6-hour, 100-year rainfall

SST-based flood frequency analysis

- With SST, we can estimate flood return period at any point in the drainage network:
 - Independent of rainfall return period
 - Dependence/ independence of return period across drainage network

Future directions for SST...

- How can SST be simplified for engineering practice?
- Can we use SST for developing reservoir operating rules?
- How can we combine SST with PMP/PMF?
- What can we learn from SST to improve flood risk estimation in data-poor regions?
- How can we use SST in a changing regional climate?

Summary

- 1. Conventional rainfall and flood frequency analysis techniques ignore variability in spatial and temporal rainfall structure and motion and its interactions with the land surface, subsurface, and drainage network.
- 2. Extreme rainfall can vary substantially in space and time, with important implications for flood risk.
- 3. SST coupled with radar rainfall fields allows us to examine rainfall variability and incorporate it into flood risk estimates.

Acknowledgements

This research is funded by the Willis Research Network, the National Science Foundation, and the NOAA Cooperative Institute for Climate Sciences.

Thank you!

Hydrometeorology Research Group Civil and Environmental Engineering

Daniel B. Wright, James A. Smith, Mary Lynn Baeck

