Probabilistic Tsunami Hazard Analysis

Hong Kie Thio
URS Corporation

Tsunami hazard - probabilistic

- Integration over a broad range of tsunami sources with varying sizes and recurrence rates
- Formal inclusion of uncertainties through logic trees and distribution functions
- Straightforward for offshore waveheights because of linear approximation (analogous to stiff site condition)
- Extension probabilistic offshore waveheights to inundation

Magnitude/frequency of tsunami sources

Concepts of Probability

ARP

Frequency (aleatory)

- Describes the natural (physical) variability of earthquake processes
- Typically expressed in the form of distribution functions

Judgment (epistemic)

- Expresses the uncertainty in our understanding of earthquake processes
- Included as different branches of a logic tree that each express a different opinion, or belief

PTHA vs PSHA

Source – Magnitude, location recurrence

GMPE – site, M, R

Non-linear soil analysis

– SHAKE, FLAC, etc

Source – Magnitude, location (large R) recurrence, slip

Long wave model bathymetry, numerical solution FD, FV, offshore

Inundation – nonlinear numerical analysis, analytical/empirical relations

What are the largest uncertainties in PTHA?

- Source models
 - Recurrence
 - $-M_{max}$
 - Slip Distribution
- Digital Elevation Models
 - Near-shore Bathymetry
 - Onshore Elevations (SRTM: errors of >10 m)
- Numerical Models
 - Near-shore Propagation/Inundation

Sumatra and Tohoku

1e+06 Area scaling 100000 Rupture Area (sqared km) 10000 Papazachos et al 1000 Murotani Strasser et al 100 7 8 9 Magnitude

Stein et al., 2012

Slip Relations

Average slip

Average and Maximum Slip

Source recurrence model – epistemic uncertainty, max magnitude

Model	Segment	Mmax	Lon. range	Recur
USGS	All	7-8	-195.0144.0	G-R
	Yakataga	7 – 8.1	-145.5139.5	G-R
	East	9.2	-154.5144.0	Max
	Kodiak	8.8	-154.5149.0	Max
	Semidi	8 – 8.5	-158.0154.0	G-R
	Shumagin	-	-163.0158.0	-
	Western	8-9.2	-190.0163.0	G-R
	Komandorski	8 – 8.2	-195.0190.0	G-R
McCafrey	Alaska	9.5	-144164	Max
	East Aleutian	9.3	-164180	Max
	Western Aleutian	9.3	-180195	Max

Source models

Base model

- Follows global scaling relations
- M_{max} determined by overall dimensions of source
- Recurrence determined by plate rates
- What is maximum width?
- What is maximum slip?
 - Related to W_{max}?

Source specific model

- Based on observed earthquakes/tsunamis
- Historical record
- Paleo-tsunami deposits
- But: limited sampling

Aleatory Uncertainty from Scenario Modeling/Benchmarking and Tides

Effect of Aleatory Uncertainty on Tsunami Hazard Curves

How and where do we apply our uncertainties

Source

- In many ways similar to seismic
- Variability in slip and scaling are important

Offshore

 Straightforward in case of probabilistic exceedance amplitudes (sigma, tides)

Onshore

- Difficult due to strong non-linearity
- May need to apply on the offshore waveheights and propagate inward
- Apply variability in bottom friction?

Subfault Green's function summation

Probabilistic offshore waveheight

Exceedance waveheights: 975 yr

Source disaggregation

Morro_Bay-475yr

San_Pedro-475yr

Cascadia Scenarios

- Magnitude: 4x (8.5-9.2)
- Sigma (slip): 5x (-2, -1, 0, +1, +2)
- Tide: 3x
- Splay: 2x (with and w/o)
- Width: 2x (80 120)
- Trench: 2x
- Slip Variation: 3x (D_{max}=2*D_{ave})

Inundation uncertainty

- Bottom friction
 - Manning of dimensionless
 - Distribution of friction coefficients
 - Variable friction
- Variable algorithm
 - Finite difference/volume etc
 - Dispersive algorithms

PTHA for submarine landslides

Source characteristics

- Dynamics (speed)
 - Uncertainty through variation of physical parameters (friction?)
- Shape/cohesion
 - From observed slides
- Volume
 - From observed slides

Recurrence

- Excitation
 - Strong coupling with earthquake occurrence?
 - Decoupled from earthquake occurrence for very rare slides?
- Sediment input
- Slope
- Global sea level

Submarine slide sensitivity

