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; Th1s Research Informat1on Letter ‘tran mits the signi:
een obta1ned from the LOFT ‘Reactor Safetﬁ arch Program from October 1,
through June 1, 1979, Dur1ng this time,: 1 “clear 1oss of—coolant exper]ments-
- L2-2 and L2-3, were. conducted successf'll Ca R R

The LOFT fac111ty (Reference 1) cons1sts ‘of a comp]ete operat1ora] pressur1zed
water reactor (PWR) designed to operate over the range of power dens1t1es of -
commerc1a1 ‘PWRs and to simulate 1o0Ss- of-coo]ant accidents (LOCA). - The..i” . 7 =
LOFT system and core conf1gurat10ns are shown in Figures 1 and 2. The - :
LOFT Research Program (References 2, '3) has been developed to prov1de exper1menta1‘
;ﬁ1nformation relevant to the: 11cens1ng criteria for large comiercial PWRs. The . ~ -
- ‘major portion of this program is’ directed at an’ 1mproved understand1ng of the -
" LOCA and the performance of emergency core cooling systems using thermal-~
.iﬁ,hydrau11c, core physics, structural and fuel behav1or data obta1ned through
~ “ loss- of-coo]ant experiments (LOCEs) o L

.+ This 1etter is based on data obtained from the f1rst ‘two nuclear LOCEs -
'¢[>conducted in the LOFT facility. The two are part of the L2 exper1ment
i,vser1es in which ‘the effects of a ‘complete. of fset. shear of a primary coolant
:; . -pipe are studied. L2-2 was conducted at a maximum linear heat generation
= rate of 26. 4 +:2 kW/m which. is’ approx1mate1y 2/3 the nominal value of commercial
 _PWRs.. L2-3.was conducted at the nominal maximum PWR value of 39.0 + 3.0 kW/m.
A descr1pt1on of the system conf1gurat1on and “initial cond1t1ons for these
'exper1ments 1is contained in Tab]e I _



The,exper1menta1 resu1ts are from ‘the two nuclear powered full- s1zed

ble-ended cold-leg break tests, L2-2 and L2-3, Extrapolation between. -
these test results and those of the zero-powered 11- 5 test prov1de the -~ -
Towing conc1us1ons and- “information which apply to the full’ range of - .
operat1ng'powers equivalent to. a maxirum 1linear heat generation rate of
ero. to 39.4 kW/m 0-12 kw/ft), when there is no loss of offs1te power.,,

turn to pos1t1ve core f]ow, the f]ow 1s suff1cient to quench the coré
A1n1t1at10n of . Emergency Core Coolant. (ECC) 1n3ect10n.¥;
dentified h A

{ w“ o ,swsuff1c1ent to quench"
a}I fuel wh1ch is’ 1n f11m bo111ng, at highe in1tia1*powers ‘onlyrthe upper

'ortjon of the core is. quenched ;;f,

1ncreases moderate]y S
v-Reactor vesse] 11qu1d o

by eva1uat1on mode] calcu]at1ons
affect the time to reflood “and- consequently the ‘peak. ‘clad temperature - .-
+ reached during reflood, these results provide a measure of conservat1sm dfﬁ_-_-
_.],1n best—est1mate and eva1uat1on ‘model ca]cuIat1ons. S

" Since both bypass ‘and m1n1mum 1nventory

S The largest hydrau11c loads associated with a 1arge break occur ina -
7. plant initially at hot standby,. and decrease with increasing power. °
.+ The 'majority of the hydraulic Toading energy content is in the frequency .
- . range-beTow 40 Hz.. Structural design methods, similar to.those used for
- r'commerc1a1 PWRs, are shown to have a 1arge ‘margin of safetye_' ‘

S n7??ZA11 four of the best est1mate codes ‘used to pred1ct L2-3 pred1cted genera11y
: ;‘f-h1gher c1add1ng temperatures than those measured .

rl,aThe absence of a s1gn1f1cant quench 1n the Sem1sca1e counterpart tests o
. 1s be1ng assessed . y =
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zignlmprovements 1n RELAP4/MOD6 input parameters and system mode]s have 1ed "‘-
to predictions of system hydraulics and c]add1ng temperature response i
which agree well with £L2-2 and L2-3 measurements.. When applied to a - T
comnercial PWR, this improved code predicts very similar thermal- hydrau11c S
©.responses.. - Scaling differences between LOFT and the commercial plant, '

- such as ‘core flow, core length, and steam generator configuration, are .

74shown to have no s1gn1f1cant effect on the conc]us1ons reached ' ‘

”;;As a resu]t of the nuclear exper1ment resu]ts obta1ned thus far and
“"as‘a result of the recent TMI accident, a new test sequence is be1ng
formulated which advances severa1 sma]] break and transient tests to -
beg1n this yeéar, and postpones’ the remaining tests in.this large break

series until. Jate 1980 and 1981.."Information from smalljoreak*and;ac¢;;z_“ L

beg1nn1ng in. ear]y 1980

0 BACKGROUND :
LOFT Program ObJect1ves L

The;spec1f1c LOFT program obaect1ves are:

Prov1de 1ntegra1 system exper1menta1 data ‘to the u. S Nuc]earh LR
Regu]atory Comm1ss1on (NRC) and the nuclear 1ndustry for the .r-s- PR

'"7;‘a.“_The trans1ent thermal hydraullc, mechan1ca1 and nuclear responsev
.. of the reactor system 'and primary: system components under LOCA

- and anomalous trans1ent cond1t1ons.

o b.. ‘The capability of current Emergency Core Coo]1ng Systen (ECCS)
’ - designs to fu1f111 the1r intended function. - N

- c;:AThe margin of conservat1sm inherent in the capab111ty of current f"*
o ECCS des1gns. , .

d. ‘The effectiveness of a]ternate ECCS conceptso
’1}24 Investigate thresholds or unexpected:phenomena that could affect the

va11d1ty of the analytical models used to predict the thermal- hydrau11c;
mechan1ca1 and nuclear response of the reactor system . '
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.. The first LOFT exper1ment ser1es, des1gnated the L1 ser1es, was. nonnuc]ear 1nf}37“
. ‘hature and served to (a) evaluate and verify the stiructural 1ntegr1ty of the” . ..
‘ ;LOFT system, (b): prov1de data for eva]uat1on and. development of ana1yt1ca1 ”;g~'-:“
- models used to predict the hydrau11cs in response ‘to- large pipe breaks; and = . .
(c) provide operat1ona1 experience for. the. simulation. of. large pipe breaks in oo
- PWR systems at powered conditions. Several nuclear test series have been .
- defined, one of which is the L2 series, which is jntended to provide ‘??~~ g
4_;1ntegra] system exper1menta1 data related -to the full size double-ended -
~cold-leg break at ascending power leyels and with cold- 1eg ECC. 1nJect1on.
_This Tetter is based on the résults of two .of the L2 'series experiments, .
L2-2 and L2-3, which are the first. fully 1ntegrated PwR systems loss of-
““coolant. exper1ments to be conducted in the wor]d ' »

LOFT system is des1gned to "sca]e" s1gn1f1cant oop
mmerc1a1 PWR and t6. reproduc1b1y simulate typ1ca1 system_trans1ent.r'””
to a LOCA.: _The sca11ng rationale (Reference 5), app11ed to LOFT, ‘make
'_tens1ve use of - principles that have been app11ed ina w1de range of.
‘expériments within and beyond the nuclear power: 1ndustry The genera]
sca11ng rules app11ed 1n LOFT are as fo]]ows

Fue] 11near heat generat1on rate is fu1] sca]e. The nuclear fue]
design has the same' 15 X 15 geéometry as commercial reactor fue]
Differences from the commerc1a1 fuel are length (1. 68m),

Tower fuel density-and fuel pins not prepressur1zed (an exper1ment
us1ng prepressurlzed fuel is p]anned

when feas1b1e, core power is taken as the bas1s for sca11ng of component
volumes; that is,

FT Vol _ LOFT Power ;
LOFT Volume PR Powe X PNR Vo1ume

F1ow areas are sca]ed to prov1de s1m11ar mass f]uxes

The ratio of break area’ to system vo1ume is set 1dent1ca] to the
commercial PWR value under study. . Hence, the primary coolant
system percentage water 1nventor1es vary 1n the same way with time.

Initial conditions (pressure, temperature, mass f]ux/core power)
are set identical to the commercial PWR values.

LOFT is actual]y one -of three systems that are re]ated by thlS sca11ng
rationale. The Semiscale facility -(Reference 6) is a scale model of LOFT -

using about the same. scale ratios as were used in scaling LOFT to the
commercial PWR. . The'major scaling parameters for LOFT, Sem1sca1e, and the
commercial PWR are summarized in Table II.
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T;eThe des1gn and operat1on of the LOFT fac111ty ensure that a11 the s1gn1f1cant
™ phenomena occur in approximately the same magnitude and time sequence as would"
“occur in-a commercial PWR LOCA.” "Assessment of the sca11ng rationale is -
' ccomp1lshed by: (a) comparison- ‘of LOFT" experimental results with results of - L
ounterpart experinents conducted ‘in the Semiscale facility,and (b) applying the
‘same ‘modeling techniques to LOFT and the commerc1a1 PWRs, w1th LOFT LOCE initial.
: 10ns‘”and eva]uat1ng the compar1sons..¢‘ ~ : . ,

LOFT'Program Act1v1t1es

he. LOFT Program consists of both exper1menta1 and ana]yt1ca1 phases. . The
‘xper1menta1 phasé consists of the planning, preparation, and conduct of the .
periments. - This phase culminates- in the acquisition of data. and analysis
ffresuTts that fulfill e'obJect1ves of the LOFT Program.™ Planning LOFT-
eriments _includes evaluation of Sem1sca1e counterpart exper1ments;and oth
15ca1e experiments involving parametric variations.. The exper1m“'t 1 data::
ained from L2-2 and L2-3 -are contained in. References 7. and. 8;
espect1ve1y. Semasca1e COunterpart expertment -data’are eported i
“References ) 10 and 11 . ey

._Concurrent wwth the exper1menta program supporting analysis prov1de 2
“preexperimental’ pred1ction and post-experimental analysis for the purpos
7 of_developing and refining code models and 1dent1fy1ng areas for. add1t1ona1
. code. development:” Thermal-hydraulic analysis of L2-2 and L2-3 was =
“‘carried out principally with the RELAP4/MODG6 . (Reference 12) and FRAPT4 - = =
* “(Reference 13) codes by EG&G Idaho,and with the TRAC- P] (Reference 14) and
'ﬁZTRAC-PlA (Reference 15) codes by Los A]amos.w,:,,aw .

.,f73 i LOFT DataxUncerta1nt1es

ffIn]genera1, the uncerta1nt1es 1n the pr1nc1pa1 measured var1ab1es are as
hffo Tows: _ A .

temperature "( S R +3 K : 1.0%

" pressure - © - - 0,03 MPa L 2.2%
"~ differential pressure +0.01 MPa ' - 0.2%
© density - - - %0,03 Mg/m - - - 3.75%
“. - momentum flux - - ¥12.0 Mg/m.s: - 20.0%
«1..veloc1ty cee T S o 2.7 m/s 'j ' 13 SA

'-;f;;Techn1ques and 1nstruments are we]l developed for measurements of the f1rst .

- four” variables; consequent]y, these measurements are. relatively accurate.

: However, the fuel ‘cladding ‘temperature measurements can be up to 30 K -

- Yow during transient conditions. due to hydraulic:influences on the cladding =

:-“external thermocoupIe. ‘The Tast two variables, momentum flux and velocity,

o7 “are difficult to 'measure in two-phase flow cond1t1ons. The uncertainties - = -
i 'stated for these.variables reflect this difficulty and represent the largest - -
.. uncertainties which occur durlng Tow qua11ty fluid conditions.. Full-scale

-flow calibration work, now in progress, is. expected to reduce these uncertainties.
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ff'"4 0 RESULTS

;The resu]ts obta1ned from L2- 2 and- L2-3 represent a s1gn1f1cant

jach1evement in the NRC! 'S reactor: safety program. - After many years of = -

planning, construct1on, ‘andexperimentation, the first ‘experiments have been. -t L
pleted wheréin the 1ntegrated effects from a.loss-of-coolant accident . e

Jn a:fully. operat1ona1 PWR have been evaluated.. The experimental data obta1ned L

rom.these first two exper1ments ‘have ‘many 1mportant implications on the ear]y s

‘thinking (Reference 16): which formed the basis of the 11cens1ng criteria in effect .= -

“today. .The data also have’ dimplications on the expectations of thermal-hydraulic =~ = -

iphenomena in commerc1a1 systems subjected to ‘'similar: loss-of-coolant acc1dents

and on the safety marg1ns qe__ ned 1nto the systems in accordance w1th the .

fm.hot standby cond1t1ons w1th the reactor‘shut';' :

5‘na1fran§e of. commercia"P
' *'}ndjtions (v 1 Zo max1mum 11near heat ;i

“1to:nom1na1 full’po

‘[double -ended offset. shear o’ a*prlmary coo1ant co1d 1eg p1pe.,
f. L2t2 and L2-§, and of the novw

‘FT LOCE Thermal-Hydrau11cs

he,thermal hydrau11c trans1ents in exper1ments L2 2 and 1L2-3 are -
. 'ntrtat1vely,descr1bed by the sequence of events .given’ 1n Tab]e 1115 -
”and by the summary of phenomena results given in Table IV.. The’ informat1on T
-in Table III'and IV, along with the initial conditions def1ned in Table I,
‘prov1des a clear description of the loss- of-coo?ant phenomena resu1t1ng

vfrom a double ended offset shear in the co]d 1eg of a PWR prfmary coo]ant

. ép1p1ng 1oop

2The chrono1ogy of events shows very s1m11ar behav1or between the two
“nuclear experiments and also.very similar behavior between nuclear and ,
“nonnuclear experiments for those events: not str1ct1y associated with core
“power - A11 conclusions from the nonnuclear series and reported in RIL #37 -
;(Reference 4) were ver1f1ed in the 12-2 and L2-3 testsa_j;_' o

sThe cessation of fuel cladd1ng temperature rise and subsequent core- w1de

return-of fuel cladding temperature to fluid saturation temperature within S

“the first 10 ‘seconds ‘of the transients were the dominant events that influenced the -

‘simiTar sequence characteristi¢s which occurred subsequent to the first 10 seconds

~in both: the ‘nuclear and nonnuclear experiments. - These thermal phenomena are the:

“vesult of primary coolant system hydraulic phenomena that- are dominant and which

z--control and 1imit the fuel cladding maximum temperature to well below damage ;
lrthresholds. As the chronology shows, the cladd1ng returns to fluid saturat1on :
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t,,before actuat1on of . any of the ECC systems 1n both L2-2 and L2 3.? .

... demonstrates that for the case of no loss of offsite power the hydraulic”
_phenomenon’ that causes the core-wide return of- cladding temperature to fluid

saturation temperature is sufficiently dominant to overcome the thermal.

‘driving force for maximum 11near heat generat1on rates up to the nom1na1

_ PWR va]ue of 39 4 kW/m, S . v

The hydrau11c 11m1tat1on of the fuel cladd1ng therma] reSponse was caused by
;the ‘reestablishment of a positive core flow of ‘high density -fluid during the
.~ period from about 2.5 to 6 seconds ‘after break initiation {Reference 17, 18). T
o The resumption of pos1t1ve core flow occurred once the lower plenum f1u1d reached,_p,
saturation, effectively decoup11ng the broken loop 'cold leg.and core inlet - = .. = "
. mass flows,_ Since the primary coolant pumps had not yet. degraded s1gn1f1cant1y :

.their driving. force under these conditions served. to reestablish posit1vea~
core_flow.=:The, h1gh density of this reestablished positive core flow was
:caused "by ‘the transition, at about 3.6 seconds from.subcooled to saturate
10w at thé cold Teg side of the break " The: transition. reduced the break
_flow ‘at this time.such that the mass. eJected ‘was. less ‘than that supp]ie ’
“to the downcomer from ‘the. primary coolant pumps.. This cond1t1on :
_of excess coolant flow into the downstream side of the core lasted unt11
about 6 seconds as- shown in Table IV.- Consequentl 5ﬁdur1ng this period,’ ‘the
“réestablished positive core flow prov1ded ‘especially good: heat transfer from
“the core and a core-wide retirn of fuel c]add1 temperaturé to f1u1d

saturat1on temperature.?;,”ger¢-.wfsu_; S

Qdowncomer flows._ In add1t1on, noda]1zat1on in “Tumped parameter mode]s becomes
“important. in the handling of the propagat1on of dens1ty and temperature waves
in the. downcomer., Amplitude reduction through mixing in the modeled volumes:
“¢an-result in “Underpredicting the amp]1tudes of thermal- hydrau11c phenomena
-Split downcomer models and nodal opt1m1zat1on studies can be made using -

- L2 2 and L2~ 3 resu1ts as references 1n order to m1n1m1ze th1s def1c1ency

f,f~The 1nf1uence of the pr1mary coo]ant system hydrau11cs on the fuel c]add1ng
.~ thermal response is shown in three-dimensional Figures 3 and 4. During the
‘first 10 seconds the. hydrau11c behavior just described resulted in a s1gn1f1cant
. removal of the stored energy in. the fuel: 65 percent in the L2-2 case and 64
' percent in the L2-3 case. After 10 seconds the remaining stored energy was.
.ruv_lsuff1c1ent1y small that subsequent clad temperatures did not rise as h1gh as
- the initial valués, and the course of both experiments proceeded without -
‘ 's1gn1f1cant d1fferences in the phenomena and chronology of events. o

- .. A modified RELAP4/MOD6 model which predicts the L2-2 and L2-3 quench also
" - predicts that in the case of L2-3 with a loss of offsite power, the intact.
:. loop pump coastdown would not supply sufficient primary coolant to the -
-~ pressure vessel to result in this early quench. This situation will be
‘studied in the L2-5 test scheduled for late 1980.
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= fFurthermore, peak c]ad temperatures never exceeded damage thresho]ds, as

gshown in Figure 5. This indirect conc1u510n is corroborated by visual ~
“examination of.the fuel which shows that the core internals are ‘clean . L
‘and undamaged after two. nuc1ear LOCEs  (Reference 20). Also, water chem1stry samp]es

“have 'shown no_fuel damage or leakage of. fission products.; Furthermore, lead. —~
rod tests (LLR 1 to 4 and loss-of-coolant test, LOC-11) done.in the Power |

Burst Fac111ty demonstrate that the degree of damage to the fuel :is not too

severe to prevent reuse, even in the event the fue1 was prepressur1zed

hF1gures 3 and 4 also show that a]l c1add1ng temperatures in the 12-2 case, BIRE R

faga1n at about:18 seconds, very ‘shortly . after the accumu]ator 1nject1on began."“
Accumu]ator 1nJect1on caused Toca1 condensat1on and a consequent pressure
edue

n 1OW through the core from. the upper p]enum_a"
._ftop ‘down_quench-o T “1n 12-2 this effect-progr ssedgov,.g
‘full core !ength of he i 4 rate
i 5m elé

, Onnuc1ear exper1ments.r The ECC'bypass incr' sed” s11ght1y with ‘increasing core
-power dens1ty At the’ end ‘of ‘accumulator flow in the nonnuclear experiment -~
L15," the ECC bypass was 30 percent of ‘the total ECC injected up to that t1me
The ECC bypass increased to 32 percent in L2-2 (1n1t1a1 power 26. 4 kw/m) and -

- 36 percent (1n1t1a1 power 39 0 kW/m) in L2-3.% : : ,

'*“Q-LLECCS in conJunct1on thh the hydrau11c phenomena in the pr1mary coolant system :

= prevented complete depletion of fluid mass in the. reactor vessel during the . ..
" transients. - Calculations. of mass inventory in the reactor vessel as a function
‘of time showed that reactor vessel fluid mass does not deplete to_less than T

fpswgapprox1mate1y 40 percent of maximum at’ any time.. The Tower p]enum mass 1nventory*
w277 was not fully depleted at:any time during the L2-2 and L2-3 transients. Best -
' “estimate calculations using-the RELAP4/MODB code also show 1ncomp1ete

" depletion of lower plenum fluid, but more depletion than the experimental data‘:'i

{‘”'as shown in Figure 6. App11cat1on of Appendix K evaluation model criteria

. to these test cond1t1ons results in calculations of complete depletion of the
- Tower plenum fluid.- Thus; Appendix K is demonstrated to be conservative in
- the ca1cu1at1on of 1ower p1enum ref111 and start of core ref]ood

5 . , . »
- Movies are available from the coord1nat1on contact for this RIL which show the
progress1on of the quench fronts through the core as described. - .

:f These bypass figures are based on the results of the nonnuclear ser1es9 wh1ch
- was specially designed to evaluate bypass (Reference 21), modified in accordance

" with broken loop- flow measurements and other experimental differences. An

fg;A1ndependent measurement of ECC bypass by KehTer (Reference 22) supports the
- ECC bypass ca]cu1at1ons o
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f_;>The core ref]ood rate was essent1a11y the same in all exper1ments pr1nc1pa11y
. because of the. significant removal of stored -energy from the fuel early in -~
‘the transient.. However, quenching of the fuel cladding in the high powered
region gf the core ‘was de]ayed with -increasing 1n1tia1 power, as shown 1n
F1gure : . .

S a3 The Effects of Cladd1ng Surface-Mounted Thermocouples on the Resu]ts -

iMany 1nvestlgators, 1nc1ud1ng a group of 44 spec1a11y convened experts (Reference 23)
have studied the possibility that the presence of thé c]adding surface-mounted N
:thermocouples ‘influenced the early cladding quench observed While the” maJor1ty B
"agree that the pertinent data (Reference 24) support ‘the conclusion that there
‘was no significant influence," it is felt that~¢u t. ‘xperimenta1 work descr1bed
be]ow w111 shed more 119ht n th15“ques ST

me urement by these
acility (LTSF), the Power
: ‘at:Columbia University, and the
;German REBEKA fac111ty have Ted. to ‘the’ conclus hat “the thermocouples:
“do not s1gn1f1cant1y perturb the cladding surface “temperature. The LTSF
results indicate ‘that the externa] thermocoup1estagree ‘with_imbedded. -
*‘hermocoup1es to within 30 K. Independent]y,’ana1y51s ‘with_the. FRAP-T4
nd othér codes has shown; through fuel rod. storéd ‘energy ‘correlations,. -
“that the LOFT external thermocouple measurements are not. sign1f1cant1y perturbed :
by the thermocoup]e fin effect. : Further experimentation in this area is’ be1ng -g%
carried out in these and other facilities to-corroborate these conclusions,’
zdefine the1r 11m1tat1ons and better quant1fy measurement uncerta1nt1es.~ L

‘ffm4 . 4 Hydrau11c Loads Dur1ng Subcoo]ed B]owdown

*i*;lThe three exper1ments, L1 -5, L2- 2 and L2 3 cover the range of core AT
~values which occur in.PWRs (0 '22.7 and -32.3 K, respectively).- Hence
-these exper1ments prov1de 1nformat10n for determ1n1ng the pressure tran51ent )
- typical of that in PWRs that result from the largest pipe break for initial ™
A;_cond1t1ons varying from hot standby to nominal operation. The system- e .
- pressure data are shown in Figure 8-and the.chronology of events in Table 11 o
ar Subcoo1ed blowdown 1asts Tongest (0.10 seconds) for the hot standby condition test,
~.: - L1-5, This is because the conditions provide for the largest difference '
-gﬂg;between initial and saturation pressure. However, the subcooled blowdown - o
- time also . depends on “the sonic velocity which decreases as the temperature
- increases. Thus, as observed in Figure 8, as the temperature increases
* 2 in the upper plenum and hot 1eg, the rate of depressur1zat1on decreases. .
. Since hydraulic Toading of reactor components is reduced both by the reduction
- .'in depressurization rate and by the reduced subcool1ng, the subcooled
e blowdown loads are less severe as the core AT increases.

s 5 - . ,-7
For examp]e, Figure 7 shows that in L2-3 the central fue1 assembly, module 5,
- did not quench until about 10 seconds after the f100d1ng level passed
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The data out to 0.2 seconds were taken at a bandw1dth of 1000 Hz to ensure measure
‘ment_of all significant frequenc1es.4 -Analysis of .the subcooled blowdown pressure.
data reveals negligible energy:content ‘at frequenc1es above 40 Hz. . Furthermore,_u
‘the data indicate that at high’ temperature and pressures where water density s
only 2/3 the maximum 1ower-temperature value, the attenuation of . ‘high frequency
‘pressure waves is very high, ' The LOFT system was designed using WHAM6 code subcooled
~blowdown pred1ct1ons as forcing functions for structural ana]ys1s ‘codes. The re-’
quirements imposed on the WHAM6 ca]culat1ons were an 1sotherma1 system condition
very rapid 1.0 millisecond break opening t1me, “and ‘no ‘pressure wave attenuation.
jConsequent1y, the system was: pred1cted to. remain structurally sound with a Targe
margin. of safety - 'Measurements of strain and” acce1erat1on have confirmed this,
rediction: S1nce ‘commercial PWR systems have been des1gned with similar_con=: -
vatisms, the pressure waves' generated by a pipe break-in a commerc1a1 PNR aren
-expe ted to resu]t 1n fa1lure of structura] '

, ¥ counterpart exper1ments to L2- 2 nd L2-
ulic ‘phenomena on approximately the samawt1m1ng sequence'
re‘d1fferences occuir they ayre usually attributable to -overrides: he: sca11ng; v
at1ona1e (References 25, 26, 27) such as preservation of core and_d wncomer - 1engths

1 1r D1fferences in core hydrau11cs, _—

2."‘Inherent d1fferences between a Sem1sca1e e1ectr1ca1 heater
" rod and a nuc]ear rod; . :

:Sg Sta1n1ess steel c1add1ng as opposed to LOFT z1rcaloy c]add1ng, e

4. Power profile used in Semiscale to s1mu1ate the LOFT nuc]ear
: core behavior;

5. Pump 1ocked rotor simulation in Semiscale broken IOop hot leg as V“F;,,<3
 opposed to a free wheeling pump- simulation in LOFT; L

o The first two items are considered to have the most influence.: Ca]cu]at1ons, ,
-~~~ using the INVERT code, and the actual hydrau11cs measured in the LOFT exper1ments
“'with the same heater ‘rod power prof11es resulted in a predicted Semiscale .

_-.core thermal response- that was in.much better agreement with the measured" .
- LOFT core thermal response. Also, the return to fluid saturation temperature was.
then calculated to occur. However, similar calcu]at1ons with the RELAP4/MODG code
-~ did not show the return to fluid saturation. Analysis is cont1nu1ng in an. - -
- attempt to epra1n this d1fference




~-i:£;The performance of the TRAC and RELAP4 codes in pred1ct1ng the return of the _

" cladding temperature to the fluid saturation value:in'L2-2 and L2-3 is be1ng
tudied.: Preliminary results show that the cladding thermal response can be - -
\alcu]ated by modifying the heat transfer logic in the’ codes. This can result -
-_from-a different selection of the. tran51t1on boiling correlations, the minimum . .
‘1:f11m boi]ing po1nt, and the. cr1t1ca1 heat f1ux correlat1on.. At th1s time

ufuqua11ty have ‘been assemb1ed on which to base the ‘proper heat, transfer logic.
" -However, theoretical work is continuing in this area and, ‘as expérimental
- data cont1nue to be added the correct heat transfer log1c is expected to result.

RE Best'Est1mate“fnd WREM P ct1ons ”4i. )ft

glndependent pretest best-est1mate pred1ct1ons were made of the,L2 3 tests
sing the_Combustion Eng1neer1ng BE code package (Reference 28), EPRI's RE
Reference 29),. INEL's FRAP- S3/RELAP4MODG package (Reference 30) and LASL'S:-
RAC- -PIA (Referencev31) A brief Comparison is given in: (Reference 32) an
_ntual}y‘a ‘detailed comparison will be issued under the US Standard Problem-
] A i predictions’ ‘indicated’a cladding: température turnover-at th
8 ;;1rst quench; however, only the CE. predictions showed a quench™at
the h1gh-powered Tocation, and this was not core wide. Thus, all best- est1mate
odes predicted generaI]y h1gher c1add1ng temperatures than measure o -

A NREM {Water Reactor Eva]uat1on Model) pred1ct1on was made for L2 3 by DSS S
Thus; L2-3 provides a ‘basis for the evaluation of the margin of conséervatism in- . 7" .
- "the WREM code package.: Analyses are being performed within the Standard Problem - = . '
. - program and under the gu1dance of DSS to qua11fy various conservatisms conta1ned_v‘-'

in WREM, . . ‘ o

4. 3.2 App11cat1on to the Z1on PR -

<. Since L2-2 took p1ace, several . re]evant 1mprovements were made to the INEL computer
. code’ package. The hydraulics had not been predicted correctly for L2-2
7 principally because of a lack of understand1ng needed to define the values of
- certain. input parameters such as. the critical fiow transition quality and -
oo -multipliers. for the Henry-Fauske and homogeneous- ‘equilibrium models- (Reference 33).
. Post-experiment analyses have Ted ‘to significant improvements such that best-estimate .
“predictions of: system\hydraullcs now agree very well with L2-2 and L2-3 hydraulics
-~a;{(References 34, 35, 36).  Also; improved understanding of the heat transfer surface
-, useéd. in RELAP4/MOD6, now permit predictions of the early’ ‘cladding quench measured -
- 'in L2-2 and 1L2-3; a1though, as d1scussed above, a better understand1ng is st111 R
- being sought. : 4 . —

. The’ 1mproved LOFT. modeling techniques have been used in RELAP4/MODG and app11ed to o
~.-‘the ZION commercial PWR. Pred1ct1ons of system therma1 hydrau11cs were made
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;us1ng L2 2 and L2-3 1n1t1a1 cond1t1ons.. The mass flowrate resu]ts were
~divided by .the ZION-LOFT.volume ratio for comparison to. the LOFT results. |
_ Comparisons of the most. significant thermal-hydraulic phenomena in LOFT and
"ZION_are ‘shown:in Figure 9 for L2-2 initial cond1t1ons, and in Figure 10 for
;LZ -3 initial cond1t1ons. Corresponding comparisons of LOFT predictions with
“'JLOFT data are shown in Figure 11 for L2-3,‘ Comparison of corresponding
. curves in F1gures 10 and 11 generally show a strong s1m11ar1ty, and the only.
-7 area where LOFT data ‘and ZION predictions differ appreciably is in the core
" “thermal ‘response. The prediction shows that the cladding in the
. hot region of the ZION core does not return to fluid saturation conditions
“within the first 10 seconds’ of- the transient with L2-3 initial ‘conditions. . However, -
: ~fas shown in Figure 12, the cooler regions of the ZION core approach fluid B
~saturation temperature within_the first 10 seconds. - Temperature turnover does .~ -
ccur throughout the ZION- core, "nd-the maximum c]add1ng temperature is reached
_1th1n the f1rst 10 sec nds v R _

»mo separate sca11ng,con51derat10ns cause the LOFT core’ flow ‘to be d1fferent
' P nttially, the' 1ntact loop, wh1ch represents three intact:.

8 ,?the LOFT ‘core f]ow must be 1 68/3 66 or.46 percent of the -
fols b1nat1on of . these two. effects resu]ts 1n a LOFT core

ompar1son, durtng ‘the, initial part of the test. “An indication of this %Eynng;-»‘
onservatism is shown: by -comparing the LOFT results with the LOFT pred1ct1on
Figure 11 where: the prediction exceeds the measurement) and then compar1ng
he LOFT measurement with the ZION pred1ct1on (F1gures 9 and 10, where the
easurement exceeds the ZION pred1ct1on) - ‘ 4

he quest1on of the d1fferent core 1engths 1nvolved has been addressed in the
‘Semiscale facility.  Experimental results shown in Figure 13 indicate that core T
1ength does.not have a significant effect on.peak- cladd1ng temperature (Reference 37)
"The ZION steam generator design was varied as_shown in Table V to change : -
- the phys1ca1 properties affecting heat transfer. The largest change was to use the ,
" LOFT steam generator tube design. ‘The results of the changes to the ZION steam -
.,*generators on the system hydrau11cs were negligible. - The:core thermal response

- showed a neg]1g1b1e change in peak cladding temperature” except for the case

. ¢ involving ‘the LOFT steam generator tube design.in which the peak cladding

“f; temperature showed a decrease of .50 K.  However, as discussed above, the LOFT.
pred1ct1ons show higher peak cladding temperature than LOFT data which in

~ turn show a higher peak cladding teriperature than ZION predictions. We

- “conclude that ‘the combined effect of the various scaling discrepancies is

-=to produce a conservative indication of PWR core thermal response. The

deta1ls of the ZION ca1cu1at1ons are be1ng prepared for pub11cat1on,




“ 7 5.0 RECOMMENDATIONS R T
"The vesults of the LOFT experiments described in this letter are applicablé’
to large cold-leg breaks in the primary piping coolant loops of PWRs.: They"
ve recomménded for-use by NRR in-its. interpretation and application of..
‘LOCA;ECCS'evaluatidn model criteria_and related codes. . T

6.0 FUTURE PROGRAM .

"fThé tests femainihg:in'the large break powénﬁ&Scéﬁsion s

) 124 f:"f?val,u,a.'té.J"t:r’iei"""éé.rié,'t':heﬁ!t!aln esporise

52.5_kh/m, equivalent

: “vepeat the L2-3 test, but with a simulated loss of offsite
w . . power (primary'pymp’boaStqun;fdgléyed_yPIS;and LPIS); and

- The results of'thethOjnuc1éarj§estS‘repOrted'herei;anddSem1sca1gAcounterpartf
" tests, have been used in predicting the results of the remaining tests; these
;fare[sUmmarized,in;Tab]gfVl{;-D'fferenées-from_L2e3;nesu1ts are not expected t
: be*sﬁgnifipantjeXCépt_in_themtaseﬂof_LZrS_where-thé,c]adding-tempgrétUre‘is
expected to reach a maximum at a wmuch later time and reflood several seconds.: . ...
later than any.other test. in.-this series. - The importance of performing the- . =

above ‘tests which remain in the power ascension series lies in the extension: - - .

" of the range of conditions over which our conclusions and codes can be .=. =~ . - o
“demonstrated to be applicable. . - .. I R I

- Because of the TMI. accident, the focus of the LOFT program has shifted 3

- to the small break experiments. The existing testing sequence is, there- .o L

. fore, révised to reflect this shift. A new experimental sequence has tentatively - -

. _been defined, as shown in Table VII, which advances the. small break experiments
~'such-that they begin this year: Planning. for these small break tests is based on

-“§nput from your staff (Reference 38), vendor recommendations (Reference 39)

.. ».and review group advice (Reference 40). - Information on small break tests -

- should be available early in 1980. e



_ f any'fur't‘her eva1 uatmn of
d; future experiments, contact Dr.

these r'esu_]vté, and for :
(G.. Doriald McPherson

- B .
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TABLE I’

- SYSTEM CONFIGURATION AND INIfIAL CONDITIONS
- FOR NUCLEAR LOCES LZ-Z and L2-3

. . " ) R
N »' W .

. Parameter L

Loce LZ-Z

LOCE L2-3 . - - .

Location ‘ :
T Sfze T W
Opening time (ms)

Pr1mary system pump operation gv?ﬁj

© - eold 1egs
- 200% .

.:;_”: 2

Broken 1oop pump simulator*

Intact loop resistance

ECCSs

Ecc inaection Iocation _,:

ECC actuation mode' SRR

Accumulator
LRS-
HPIS o

S Steam generator secondary°'

. Pressure (MPa)

- F1ow rate (kg/s)
l Pr1mary system: .

Pressure (MPa) ... " "

. Temperature ﬂK):

" Hot leg i .-
- Cold leg

Core power (Mw)
. MLHGR (kW/m) -
“Mass flow (kg/s)

Soration (ppm)

| eccs’ accumulator

_fﬂreSSure (MPa)
“Temperature (K) .
_. Boration (ppm)--
- Injected vo1'uﬂe (m3)
“Gas valume (

. .- _Pressure-level -
.Aq_Pressure31eve1_

'vPowered to To + 200 s
L Operating pump K *=9.95
" Low resistance K= 131 7

__HPIS, LPIS, and
' »accumulator :

: Intact loop cold Ieg Lo

Pressure

6,35+ 0.08
12,767+ 0.40 .

15.64 -+ 0,03 .

.4.11 +0.05

300.87+ 3 .
3301 +19 -

1.68 ¥ 0.03
{1.05 ¥ 0.03

7 cold Teg.
BT

v\g,'fPressure
.* - Pressure~level
. Pressure~level

- Power to To + 200 s, 1;}

Operating pump K s 9 95

B Low resistance ( a 131 7 gjw'

HPIS, LPIS. and
accumulator 7;3

Intact_Ioop,cclc leg ;:_‘: o

4.18 + 0.05 .
307.8+3

3281 417

1.71 ¥ 0.03

10.96 ¥ 0.03

1* parey K factor based on 0.616‘m2_flcw area.




Ry TABLE rr "
'Tj LOFT . SEMISCALE - pra SCALING PARAMETERS

‘f' ;‘v': = ;ﬁ Sentscale =r;}f=:‘ fLosI" [T, R

- iVolun s: R R
e Total PCS (m3) i . 17.80"
Reactor Vessel (% of PCS) ' 34

“Intact Loop (% of PCS):.
Broken Loop (% of PCS)

. Power (M) "gq’iis
:.l Length of Active COre (m) fﬂi}s?:
:iaatios » | T
,;VoTume/Power (m3/Mw) HO.iS
. Break Area/PCS Volume: (m-l)_ 42 0026

PR Volune/Volume iUl T '1530

1CHR0N0LQ§Y Oﬁ EVENTS FOR NUCLEA LO E LZ-Z AND
-3 HITH NONNUELEAR LOCE Ll 5 COMPARATIVE VALUES

| Subcooted break flow ended

;Time After LOCE Initiation (s)

< - Event 4 L LOCE L2-3 - LOCE 1252 - LOCE L1-S ;i S
m mTt'nated - . —-U___ LT L T
Subcooled blowdown ended a T 0.06" 0.07: - . 0.1,

"Reactor scram signal received jf . s 0. 103 7 '0.08 .- 0.087 .-
1. | at control room . T ST LT e s e
VEM&“«wﬂmMﬂMWmMmMmeﬁo%? ©-28.6 L.,
", from fluid saturat1on temperature ‘ . Lk e T

(Tclad > Tsat e T
Control rods completely 1ngerted e 16837 1 725 STox 1,880 T

, , 3.0 .0 3.8 0.0 ) :
Maximum cladding temperature i§ C o © 495 0 .. 8,8 o o steady state
.~ attained . 5 Lo e oGl T s value at time 0
| Eerliest core-wide return of c]adding 8,8 . 8.0 i e 48
‘temperature’ to fluid saturat1on temperature G e T
| HPIS fnjection initiated ) S U ¥ R - T S & I
_ Pressurizer emptied - ; B ¥ I |- RUCURPCRRR I U BN
- Accumulator injection inftiated ! - S 1e e 18 e 19
_LPIS irijection initiated L e e T T 3
. Lower plenum filled with Yiquid, ~ : =~ .35 . . [~ 3§ .. 137 e o
Saturated blowdown ended, Y N 7 SRR Y A
Accumulator 1iquid flow ended - S e 48 i T 49 et 68 L. T
‘ Core volume reflooded = - o3 “ IR B - 1 59.,u;_ ,
" o ‘ E i RS S . Tod N

,a.__End of subcooled blowdown is defined as the occurrence of the first phase trans1txon in
< the system “other than at the p1pe break location.v%np T

Tl fkul;5End of subcooled bireak f1ow.is defined as the completion of subcooled fluid d1scharge N

‘from the break (hot- and cold legs) in the broken loop. o




‘ TABLE IV

o SUNMARY OF LOFT NUCLEAR
LOCE RESULTS *

EXperjment Results

LOCE L2:3: -

" LOCE L2-2

-|- Times for)c1add1ngitemperaturejto : ]
“‘exceed fluid saturation temperature (s)

“minimumlin hot region
B maxlmum in hot reg1on

Peak claddxng temperature -»';(K)'jff'f" o

_Core ref1ood rate (m/s)

Min fmum’ mass/volume in reactor vessel (kg/m3)

Accumu]ator flow duration (s,
,Maximum accumulator flow/system vo]ume ;;vir
E (kg/s/m3)
oo S

jAccumu1ator polytropic gas constant w

::Cladding quench time/core reflood time

"ECC bypass “at. end of accumu]ator flow i
: (% of total ECC fnJected)

First 10 s .of the transient

‘Duration of primary punp pressure
d1fferent1a'l (s)

-;' Mass f1ow rate/system volume

-‘:,421n1tial value lntact loop co]d leg
4 (kg/s/m3)

Max imum value (t>0) broken loop
. cold leg (kg/s/m3) -

- Time 'interval (mBLCL>'ﬁ1LcL)* e (s)
Time interval (mILCE>mBLCL)* . (s)

Integra] mBLCL - (kg/m3)
‘_Integral mILCL - (kg/m3)

D1fference inm 1ntegrals ;"(kg/m3) ::fn-

',.L;Stored energy removed *
. (% of nuclear heat source’ energy)

094

1.84 "

914 +3. .. ¢
0.0 40,02 -
431 +75

Soe9 -

6.42 + 0.45
1,25 40,02

o<1 for all -
measurements . ..

B+4

..-4'.0 to‘g-‘ »’.
T 25,6 2.0 .
96.2+14.4 .

L to 3.65°
© 3.65 t0 5.71

323.6 + 22.7

2316 +16:2 .
1 92.0 £21.9

Tea

1,00
2,30

L0122 0.02
e a s |

, "-7 71°%.0.45

1 22 + 0 02

: <1 forall

measu r'emen‘ts :

243

 Oto8

28,9 +2.0

60.8 + 9.1

to 3.60
3.60 to 6.16
254.7 +17.8
215.0 + ‘15,0

39.7 £ 23.3

<65

BLCL . broken loop cold'legi.
'ILCL“ - intact loop cold leg.




TABLE V

- ZION STEAM GENERATOR PARAMETRIC VARIATIONS -
FOR THERMAL-HYDRAULIC EFFECTS ANALYSIS .

Steam Generator P_a‘rametHc Variation

'Rhysical Change

- Tube mater1al changed from Inconel
to SS 316
y Tube‘geometry unchanged ~_ 3‘

Thermal conductivity decreased

- ‘Heat

at 478 K 10.6%

at 589 K 13.9%

capacity increased slightly
at 478 K negiigible

at 589K 1.3 %

Tube geometry changed:
“ 10 increased from_iQ.? mm to 22.2 mm
0D increased from 22.7‘mm to 25.7 mm

" Number of tubes decreased from 3250
to 2430

Tube material unchanged (Inconel)

Heat

transfer area reduced: . -~

Primary side 13.4% -

Secondary side 13.2% -

' LOFT»tube geometry used:
10.2 mm 1D
12.7 mm 0D

‘Number of tubes 12050
- Tube material unchanged (Inconel)

Heat

transfer anea increased:
primary side 92.8%
secondary side 112.4%




- - . TABLE VI

| - EXPECTED RESULTS OF REMAINING
| o L2 LOCES

Variations in initial conditions

Expected dif?éreﬂces in

| Experiment =~ or system configuration relative ,
| - to LOCE L2-3 results relative to LOCE L2-3
} —Same hydraulic phenomena.

Lé-4 A B Power 33% greater K
"~ . Mass flow 25-30% greater. Core.
- fluid temperature differential
“remains unchanged.

\
‘ ‘ - L2-5 ~ Pumps tripped at experiment
B ¢ . “initiation. HPIS and LPIS
oo bl Y w0 delayed, A1l dnitial condie
S . B o tions are unchanged.

L2-6 -+ A1l conditions same as in L2-5
"~ except pressurized fuel is used.

Similar fuel cladding tem-

-perature transient with a

peak value of 1100 K
occurring at 5 s and core

. 'wide return to fluid

saturation by 9 s.
Subsegquent clad temperatures

Jower than peak value during
- blowdown. Core wide = - -
..~ cladding quench by ECC by

60 s (5 s later than L2-3).".

-Initial cladding temperature
- response will be similar .

with the clad temperature
at 5 s possibly up t0-30 K-~
higher. However, there will
not be a core wide return of.
cladding temperature to

- -fluid saturation temperature
- in the hot region. The’

cladding temperature will

“reduce 100 K by 7 s

followed by a gradual

i~increase to the peak value
- of 950-1050 K by 35 s. ECC
“ quench of the cladding will

be complete by 65 s.

Thermal response is expected
to be the same as in L2-5.
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TABLE Vll

50,-3‘52 5 A16 i y SMALL BREAK COLD LEG. BREAK FLOA GREATER THAN D
ST T S THIGH PRESSURE SAFETY INJECTION FLOM, I AON
50 - 52,5 16 " .° - SuALL BREAK COLD LEG. HIGH PRESSURE SAFETY - .. -
ST T INJECTION FLOW. GREATER THAN BREAK FLOW. . 1. .~ ~ = . .
0. 0. 0" ‘7SMALL BREAK COLD LEG, PRIMARY COOLANT PUMPSLOFF‘an“ .
0 T_t"O',-ﬂf 0. {.SMALL BREAK COLD LEG, "PRIMARY COOLANT PUMPs:ON
370394 . 120 .:OPERATIONAL TRANS!ENTJ L0SS OF STEAM LOA
52,5 163' ‘ESMALL BREAK, PRESSURIZER RELIEF VALVE.
37 30,4 12 ~ OPERATIONAL TRANSXENT, LOSS oF PQIMARY €00
N T FLOWy :
50 52.5 16 ‘SMALL BREAK COLD LEG. H!GH PRES SURE SAFET
N _INJECTION FLOW EQUAL TO BREAK FLOW. - - %
37T 3 12 :'OPERATIONAL TRANSIENT, EXCESSIVE LOAD lNCREA SE
370 39,4 12 LARGE DOUBLE-ENDED COLD-LEG BREAK AS L2-3
AT T “"BUTWITH LOSS OF QFFSITE POWER.. - - -, T
' ;7'&_'39;47.5 12 - 'TQfINTERMEDxATE BREAK UVSPECIFIED AT THIS DATE.,qlfl
37 .. 39.4 "12}.i _ OPERATIONAL TRANSIENT: ROD WITHDRAWAL 'f' _
37 39.4 VR L INTERMEDIATE BREAK unspsc:pxen AT THIS DATE,
37 394 12 ‘,..'UPERATIONAL TRANSIENT Loss OF I»EED‘NATER '
49 51,5 16, " 16 KM/FT 2003 DECL, o
37 39,4 12...5 . ; OPERATIONAL TRANS!ENT' UNCONTROLLED BORON
ST T T T DILUTION,
37 394 12 . :-- 200% DECL with PREPRESSURIZED FUEL
37 304 12 i:f‘TfSTEAM GENERATOR TUBE RUPTURE & LOCA,
» 37- 39.4 12f:~j ;}_ T.STEAM GENERATOR TUBE RUPTURE & LOCA.”
50 52,5 16.'“:ff?§';fSnALL BREAK UNSPECIFIED AT THIS DATE.
50 52,5 16 f“ff”“. SMALL BREAK unspecxrxsn AT THls DATE.. .

i

“*TARGET DATES ASSUME NO SIGNIFICANT PROBLEMS NOR PROGRAM CHANGES
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7.0 COORDIMATION CONTACT. -

For coordination of any further evaluation of these.results and for
discussion and future experiments, contact Dr. G, Donald McPherson
LOFT Program Manager, RES, Te]ephone 427-3437.

\\ SauT Levine, Director
~ 0ffice of Huclear Regulatory Research
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7.0 COORDINATION CONTACT

(9}

For coordination of aﬁ} further evaluation of these results and for
discussion and future experiments, contact Dr. G. Donald McPherson
LOFT Program lManager, RES, Telephone 427-4437.

Original Signed By
gﬁ_;g‘[ Lovine

Sauyl Levine, Di%ector
0ffice of Nuclear Regulatory Research

Subj

Circ

Chron
Branch R/F -
SLevine
JTLarkins
TEMurley
LSTong
CEJohnson
GDMcPherson R/F
GDMcPherson

Distr“i but'ion: S ’ E .. * T : o Tt ‘—"’V‘.‘iii"‘

" orrices| RSREMTLRB | RSR:W RSR:DIR RES: ARBCS, RESﬁR

SURNAME>@9M eY‘éOn:m t CEJohnson/LSTong TEML-IY"] ey JTt ;'E(/'I’YIZS\\ 3L neﬂ
AN 9717779 9/25/79 1 1077179 i )7

DATE

NRC Farm 3188 (4-79) NRCM 0240 dsl r A EDMUEMNY DBIMTING AEEICE: 1070—— 201404






