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INTRODUCTION 

The origin of this PFM application study was a proposed presentation on a benchmarking study for 
SMiRT 25, “Use of Probabilistic Fracture Mechanics Calculations in Flaw Assessment – An Assessment of 
the Effect of Engineering Experience on Analytical Outcomes.” The study’s intent was to help formulate 
better guidance for regulatory and best-practices concerning the conduct and reporting of PFM analyses 
when applied to components of the primary pressure circuit of a nuclear reactor pressure vessel (RPV). 

The hypothetical problem created for the benchmarking study involved two ultrasonic indications found 
close to the cladding in a nuclear RPV. The goal for participants was to quantify the risk of vessel failure 
when the vessel is subjected to a “normal” cooldown transient using Version 16.1 of the FAVOR 
computer code. This application study uses that hypothetical problem and follows the steps and actions 
presented in NUREG/CR-7278 [1]. 
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1 STEP 1: TRANSLATION OF REGULATORY REQUIREMENTS INTO AN ANALYSIS 
PLAN 

1.1 Step 1: Action 1 – Define the regulatory context 

The goal of this analysis is to evaluate the acceptability of continued operations of a single Reactor 
Pressure Vessel (RPV) following a recent inspection which identified two indications (Figure 1-1) in the 
beltline region (hereafter referred to as Flaws A and B as defined in the figure). Both flaws were 
determined to be unallowable per ASME Section XI, IWB-3510, Allowable Planar Flaws (see Section 1.4 
for additional details); as such, this analysis applies a probabilistic fracture mechanics PFM approach to 
determine the probability of failure of the RPV with the two indications subject to a normal cooldown 
transient. For this hypothetical example, the PFM approach is being proposed as an alternative under 10 
CFR 50.55a(z) for continued plant operation.  

1.2 Step 1: Action 2 – Define the QoI and how it relates to the model output and 
acceptance criteria 

The Quantities of Interest (QoIs) are the Conditional Probability of Crack Initiation (CPI) and the 
Conditional Probability of Failure (CPF) at the current time (48 Effective Full Power Years (EFPY)), at the 
time of the next outage (50 EFPY), at the end of license (56.5 EFPY), and at a hypothetical license 
extension time (72 EFPY). These probabilities are estimated based on the RPV being subject to a normal 
cooldown transient as defined in Section 1.4.  

The CPI and CPF are calculated internally in FAVOR and are output from the FAVPFM module of the 
code. A brief description of each is given below, with further details provided in [2]:  

• CPI – The conditional probability of crack initiation is estimated by comparing the stress 
intensity factor, 𝐾𝐾𝐼𝐼, to the static cleavage fracture initiation toughness, 𝐾𝐾𝐼𝐼𝐼𝐼 , across the transient, 
where 𝐾𝐾𝐼𝐼𝐼𝐼  is defined as a distribution that is dependent on temperature and on 𝑅𝑅𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁.  For a 
given transient, the temperature is time -dependent, and 𝑅𝑅𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁 is a function of material 
chemistry and fluence, among other parameters. 

• CPF – The conditional probability of failure is determined by estimating the probability that an 
initiated flaw will propagate through the RPV wall.  
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Figure 1-1: Schematic of flaw characterization. 

Both probabilities are conditional based on the assumption that the cooldown transient occurs, and it is 
assumed that the probabilities calculated for Flaw A and Flaw B are statistically independent. The 
acceptance criterion for continued operations is not defined by the United States Nuclear Regulatory 
Commission (USNRC), although historically a frequency of 5 × 10−6 per year has been used for thru-wall 
crack frequency (TWCF) expressed in failed vessels per operating year. For the purposes of this analysis, 
the frequency of 1 × 10−6 failures per year acceptance criterion will be used, which is conservative over 
the frequency of 5 × 10−6 per year. Because the transient of interest in this study is a normal cooldown 
transient (see Section 1.4), the transient frequency is assumed to be 1 per year, and thus TWCF = CPF x 
event frequency (= 1/year) = CPF. As a result, in this report, CPF=TWCF is used as the metric to be 
compared against the failure criterion. 

1.3 Step 1: Action 3 – Determine the suitability of PFM code for the specific application  

The two flaws that were identified are in the beltline region of the RPV and it is of interest to assess the 
structural integrity of the RPV during normal operational transients (e.g., cooldown). Fracture Analysis of 
Vessels – Oak Ridge (FAVOR) version 16.1 was used for this analysis. FAVOR is an NRC-approved code 
that has been validated for this specific application under normal cooldown conditions. Details about 
the code can be found in [3] and [2].  

Austenitic steel clad 

Ferritic steel vessel plate 
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1.4 Step 1: Action 4 – Identify key elements of the problem that impact analysis choices  

There are several key elements that may impact analysis choices:  

• Flaw characterization - The flaw category for both cracks can be determined through inspection 
of ASME Section XI, Figure IWB-3610-1: Characterization and Proximity Rules for Analytical 
Evaluation of Clad Components. Flaw A is a circumferential inner surface flaw. The total 
through-wall extent is 0.26 inches and the circumferential extent is 1.4 inches. Since the clad 
thickness is 0.25 inches, the flaw extends completely through the austenitic clad and into the 
ferritic steel vessel plate. Therefore, this flaw is deemed a Category 2 flaw (a surface flaw that 
penetrates through the cladding and into the ferritic steel). 
 
Flaw B is a circumferential embedded flaw. The total through-wall extent is 0.40 inches, with 
distance to ID surface of 0.05 inches and circumferential extent of 2.2 inches. Of course, this 
implies that the crack spans the clad and the vessel plate. Therefore, this is a Category 3 flaw (an 
embedded flaw very close to the surface, that straddles the cladding and the ferritic steel). A 
summary of Flaws A and B is given in Table 1-1. 

Table 1-1: Flaw details 

Flaw 
Indicator 

Category Type a, Deepest 
Point of 

Crack1 (in) 

l, Flaw 
Width 

(in) 

d or 2d, Extent 
of Through-Wall 

Cracking2 (in) 

S, Nearest 
ID Approach 

(in) 

Aspect 
Ratio 
(AR) 

A 2 Surface 0.26 1.4 0.26 0 5.385 

B 3 Subsurface 0.40 2.2 0.35 0.05 5.5 
1 For surface cracks, a = d; for subsurface cracks, a = 2d + S. 
2 For surface cracks, d; for subsurface cracks, 2d 

The determination of flaw size “allowability” is shown in Table 1-2. For Flaw Indicator A, the aspect 
ratio a/l can be calculated directly from Table 1-1. Linear interpolation was used to calculate the 
a/t ratio using the correct wall thickness column in ASME Table IWB-3510-1. The allowable flaw 
depth was then calculated directly using the vessel wall thickness of t = 8.75 inches. For Flaw A, 
the allowable flaw size is 0.2375 inches, smaller than the indicated depth. For Flaw B, the effective 
flaw characterization must first be determined. This is done by solving the inequality: 

𝑆𝑆 �> 0.4𝑑𝑑
≤ 0.4𝑑𝑑  subsurface (a = d)

surface (a = 2d + S) 

From the inequality, Flaw B is effectively a surface flaw with an allowable size of 0.2355 inches. 
Therefore, Flaw B is also deemed unallowable.  In a real analysis, the assumption of a subsurface 
flaw for Flaw B would have to also be included as another alternative request under 10 CFR 
50.55a(z) since under the surface proximity rules of the ASME Code, it is a surface flaw. 
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Table 1-2: Flaw allowability 

Flaw 
Indicator 

Effective 
Flaw Type a/l 

calculated using ASME Table 
IWB-3510-1  a, observed Allowable 

a/t a, allowable 
A Surface 0.186 0.02714 0.2375 0.26 No 
B Surface 0.182 0.02691 0.2355 0.40 No 

 

• Flaw geometry – The inspector identified the crack length and depth for both flaws in the 
inspection report, though there is some uncertainty on the precision of the tools used to 
estimate these geometries. Therefore, uncertainty in the flaw geometry is a key element to be 
considered in the analysis and it will be discussed in more detail in Section 2.1.  

• Loading modeling – The transient that was assumed for this analysis was defined by the 
cooldown pressure and temperature measured at Plant 8 in 2007. A visual depiction of the 
cooldown transient is provided in Figure 1-2.  
 

 

Figure 1-2: Cooldown temperature (left) and pressure (right) for Plant 8 as a function of time. 

 

2 STEP 2: MODEL INPUT UNCERTAINTY CHARACTERIZATION  

2.1 Step 2: Action 1 – Identify uncertain model inputs 

2.1.1 Deterministic Inputs 

Model inputs relating to the vessel geometry and thermo-elastic properties for the cladding and base 
materials are treated deterministically in this analysis. The RPV dimensions (i.e., internal radius (IRAD), 
thickness of wall (W) and cladding thickness (CLTH)) are considered well-defined per plant records. The 
thermo-elastic temperature-dependent inputs for the cladding and base materials are based on well-
known material properties for the base (ferritic steel) and the cladding (austenitic stainless steel) 
according to the following sources [3]:  
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Base Steel  

• Thermal conductivity – Table TCD – Material Group A – p. 592 [4] 

• Thermal diffusivity – Table TCD – Material Group A – p. 592 [4] 

• Young’s Modulus of Elasticity – Table TM-1 – Material Group A – p. 606 [4] 

• Coefficient of Expansion – Table TE-1 – Material Group D – p. 580-581 [4] 

• Density = 489 lbm/ft3 [4] 

Cladding  

• Thermal conductivity – Table TCD – High Alloy Steels – p. 598 [4] 

• Thermal diffusivity – Table TCD – High Alloy Steels – p. 598 [4] 

• Young’s Modulus of Elasticity – NESC II Project – Final Report – p. 35 [5] 

• Coefficient of Expansion – Table TE-1 – High Chrome Steels – p. 582-583 [4] 

• Density = 489 lbm/ft3 [4] 

The base and cladding stress-free temperature (T) is defined as 488 °F based on [2]. Crack-face pressure 
loading (CFP) and both axial (NRAX) and circumferential (NCRC) residual stresses are turned on. The 
time period of the transient (TOTAL) is defined based on the cooldown transient described in Section 1.4 
and the time increment (DT) was chosen as 1 minute based on a convergence study described in Section 
3.2.   

The distribution of flaws (IPFLAW) is specified as all surface-breaking flaws are internal, and category 3 
flaws were not analyzed (PC3_Option set to 0) such that only embedded flaws in the first 1/8th of the 
wall thickness are considered (there were no other flaws in this analysis, so choosing these options 
allowed for quicker run times without otherwise changing the outcome of the analysis). Warm prestress 
(WPS) was turned off to impose a slight conservatism in our result based on uncertainty in the cooldown 
transient. While the WPS criteria might be satisfied by the transient used in the analysis, it was of 
interest to assess the results in the case the transient did not meet the criteria. The Eason 2006 [6] 
correlation was used for the correlation for irradiation shift calculations (IRTNDT) and ductile tearing 
(IDT_OPTION) was considered as a failure criterion for the ferritic steel (in addition to fracture 
mechanics driven failure). While a failure criterion (FAILCR) depth of 95% of the fraction wall thickness is 
recommended in [2], a value of 90% was used for this analysis, imposing a slight conservatism in what is 
considered a vessel failure.   

Table 2-1 and Table 2-2 provide an exhaustive list of all deterministic inputs for the FAVLoad and 
FAVPFM input decks, respectively. Inputs with an asterisk were analyzed during a sensitivity study as 
described in Section 4.1. Additionally, the plate and weld embrittlement map was kept constant 
throughout the analysis and the full map is provided in APPENDIX B.  
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Table 2-1: Deterministic inputs - FAVLoad 

Input Description Deterministic 
Value 

IRAD Internal Radius of RPV (in.) 86 
W Thickness of wall including cladding (in.) 8.75 
CLTH Cladding thickness (in.) 0.25 
K Base thermal conductivity (btu/hr-ft-°F) 24 
C Base specific heat (btu/lbm-°F) 0.120 
RHO Base density (lbm/ft3) 489.00 
E Base elastic modulus (ksi) 28000 
ALPHA Base thermal expansion coefficient (1/°F) 0.00000777 
NU Base Poisson's ratio (-) 0.3 
NTE Base time-dependence flag off/on [0/1] 1 
NK Base thermal conductivity table See APPENDIX B 
NC Base specific heat table See APPENDIX B 
NE Base Young’s modulus table See APPENDIX B 
NALF Base coefficient of thermal expansion table See APPENDIX B 
K Clad thermal conductivity (btu/hr-ft-°F) 10.0 
C Clad specific heat (btu/lbm-°F) 0.120 
RHO Clad density (lbm/ft3) 489 
E Clad elastic modulus (ksi) 22800 
ALPHA Clad thermal expansion coefficient (1/°F) 0.00000945 
NU Clad Poisson's ratio  0.3 
NT Clad time-dependence flag off/on [0/1] 1 
NK Clad thermal conductivity table See APPENDIX B 
NC Clad specific heat table See APPENDIX B 
NE Clad Young’s modulus table See APPENDIX B 
NALF Clad coefficient of thermal expansion table See APPENDIX B 
T Base and cladding stress-free temperature (°F) 488 
CFP Crack-face pressure loading applied off/on [0/1] 1 
NRAX Axial weld residual stresses off/on [0/101] 101 
NCRC Circ weld residual stresses off/on [0/101] 101 
TOTAL Time period for transient analysis (min) 2980 
DT* Time increment (min) 1 
MTRAN Number of transients to be input 1 
ITRAN PFM transient number  1 
ISEQ Thermal-hydraulic sequence number 1 
NHTH Time history table for the convective heat transfer 

coefficient (btu/hr-ft2-°F) 
Constant: 
10,000 

NTTH* Time history definition for the coolant temperature See Figure 1-2 
NPTH Time history definition for the coolant pressure See Figure 1-2 
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Table 2-2: Deterministic inputs - FAVPFM 

Input Description Deterministic 
Value 

NSIM* Number of RPV simulations 20000 
IPFLAW Distribution of surface-breaking and 

embedded flaws 
SB internal, 
embedded uniform 
in inner 3/8th 

IGATR Applied per flaw in the Initiation-Growth-
Arrest (IGA) model 100 

WPS_OPTION* Warm prestress (off/on) [0/1] 0 
PC3_OPTION Sets calculations for category 3 flaws 0 
CHILD_OPTION Sets child subregions 1 
IRTNDT* Correlation for irradiation shift calculations 2006 
TC Normal operating coolant temperature 532 
EFPY Effective full power years 48, 50, 56.5, or 72  
IDT_OPTION Ductile tearing in IGA submodel (off/on) [0/1] 1 
IDT_INI Additional reporting for flaw initiation due to 

ductile tearing (off/on) [0/1] 0 

ILONG_OUT Additional reporting for contribution to CPI 
and CPF from the major regions in the belt 
line (off/on) [0/1] 

0 

FLWSTR* Flow stress (ksi) 80 
USKIA* Upper bound KIc and Kia (ksi/in^1/2) 200 
KIa_MODEL Arrest model for checking stable arrest Model based on 

CCA + large 
specimen data 

LAYER_OPT Weld layer resampling option 0 

FAILCR* Vessel failure criterion (fraction of total wall 
thickness) 

0.9 

 

2.1.2 Uncertain Inputs 

There are two sources of uncertainty that are considered in the probabilistic analysis – uncertainty due 
to flaw location and geometry, and uncertainty due to fluence and embrittlement.  

Flaw location and geometry. Due to limitations in the accuracy and resolution of the inspection tools 
used to characterize the flaws, uncertainty was introduced into the flaw depths and lengths of Flaws A 
and B. As a result of the uncertainty in flaw dimensions, uncertainties regarding whether the flaws 
should be considered surface breaking or embedded, as well as regarding the aspect ratios of the flaws, 
were considered. These uncertainties were ultimately reflected in the generation of the flaw file 
distributions that are taken as input into the FAVPFM module of FAVOR. FAVOR then internally samples 
from the flaw file distributions and propagates the samples through the model. Details on this process is 
provided in Section 2.2.  
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Fluence and embrittlement. Fluence and embrittlement related parameters – nickel, manganese, 
copper, phosphorous, neutron fluence and uncertainties in the unirradiated 𝑅𝑅𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁(0) are sampled from 
distributions that are intrinsic to the FAVOR code [2]. Additionally, the classification of aleatory and 
epistemic uncertainties in the unirradiated 𝑅𝑅𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁(0) is also made internally in FAVOR. The choice of 
these distributions and the characterization of uncertainties was assumed to be sufficient per NRC’s 
approval of the FAVOR code.  

FAVOR takes as input into the FAVPFM module the standard deviations of the normal sampling 
distributions for the weld and plate chemistries. These standard deviations were chosen based on 
recommended values in the FAVOR User’s Guide [3] and are shown in Table 2-3. Again, an asterisk by 
the parameter name indicates that a sensitivity study was performed on this parameter in Section 4.     

 

Table 2-3: Fluence and embrittlement parameters 

Parameter Description Value 
SIGFGL* Fluence standard deviation 0.118 
SIGFLC* Local fluence standard deviation 0.056 
WSIGCU Copper standard deviation in weld 0.167 
WSIGNI Nickel standard deviation in weld 0.162 
WSIGP Phosphorous standard deviation in weld 0.0013 
PSIGCU Copper standard deviation in plate 0.0073 
PSIGNI Nickel standard deviation in plate 0.0244 
PSIGP Phosphorous standard deviation in plate 0.0013 

 

2.2 Step 2: Action 2 – Specify probability distributions on uncertain inputs 

It was decided that flaw dimensions would be considered uncertain inputs. Consequently, a scheme for 
creating different flaw files was sought, ideally through linking any distributions or bounds on 
parameters to realistic observations or flaw detection capabilities. From the SMiRT problem description 
we have the following: 

Flaw A: depth = 0.26 inches, length = 1.4 inches, AR = 5.38, norm_depth = 0.0297 

Flaw B: depth = 0.40 inches, length = 2.2 inches, AR = 5.5, norm_depth = 0.0457 

For deterministic analysis, this led to considering the flaws as inner surface breaking with aspect ratio, 
AR = 6. This is one of the discrete allowable aspect ratios for FAVOR analyses and the practice of 
rounding upward yields conservative predictions. The normalized flaw depths (flaw depth divided by 
vessel thickness) chosen for analysis were Flaw A = 0.03 and Flaw B = 0.05. Of note for this analysis, Flaw 
B was defined as an embedded flaw in the problem statement but is treated as a surface-breaking flaw 
using ASME SC-XI flaw sizing guidance, IWB-3600 (alternatively, Flaw B could be treated like an 
embedded flaw using the appropriate flaw file structure as defined in a FAVOR analysis). 

In the course of arriving at rational bounds or distributions on the flaw length and depth, some potential 
considerations are: 
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• accuracy and resolution of inspection tools 
• crack categorization (e.g. surface breaking or embedded) 
• scheme for assigning flaws to AR and normalized depth bins 
• crack front proximity to clad 

Several generalized sampling schemes were considered and included as possible parameterizations in 
the source derivations. For the purposes of demonstration for this application study, the uncertainty of 
the actual dimensions of each of the flaws was parameterized with a generalized uncertainty, ε, where 
0 ≤  𝜀𝜀 ≤ 1. The bounds for each of the five flaw parameters: (1) Flaw A crack front depth, (2) Flaw A 
crack length, (3) Flaw B outer crack front depth, (4) Flaw B inner crack front depth, and (5) Flaw B length 
are given below. 

𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ =  [max[0.25 0.26(1 − 𝜀𝜀)] 0.26(1 + 𝜀𝜀)] 

𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ =  [1.40(1 − 𝜀𝜀) 1.40(1 + 𝜀𝜀)] 

𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ =  [max[0.25 0.40(1 − 𝜀𝜀)] 0.40(1 + 𝜀𝜀)] 

𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ =  [max[0 0.05 − 0.2𝜀𝜀] min[0.05 + 0.2𝜀𝜀 0.249]] 

𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ =  [2.20(1 − 𝜀𝜀) 2.20(1 + 𝜀𝜀)] 

For example, if the generalized uncertainty for Flaw A depth is ε = 0.5, then the lower bound for the 
crack depth is the maximum of [0.25 0.13] and the upper bound for the crack depth is 0.39. So, the 
bounds are 

0.25 ≤  𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ  ≤ 0.39 

Once the bounds for each of the uncertain parameters have been established, then a probability 
distribution on those bounds can be defined. For all FAVOR simulations, it was assumed that the same 
generalized uncertainty was applied to each variable and the same distribution was applied to each 
variable. In general, though, this is not required and unique ε and distributions could be used for each 
variable. Two distributions were considered: uniform on the bounded interval and normal on the 
interval with the 3rd standard deviation aligned with the interval bounds. 

3 STEP 3: ESTIMATION OF QOI AND ASSOCIATED UNCERTAINTY 

3.1 Step 3: Action 1 – Select a sampling scheme 

The generation of the flaw files is computationally efficient, so one million simple random samples from 
the flaw depth and length distributions are used to construct them. To guarantee that the statistics 
always produce the expected number of existing flaws, the flaw density is scaled to produce 0.1% more 
than the expected number (FAVOR internally rounds down to the closest whole number).  

For each sample of crack depth and crack length, a corresponding aspect ratio was estimated using the 
following binning scheme for surface-breaking flaws:  

• AR < 2 get binned in AR = 2 
• 2 ≤ AR ≤ 6 get binned in AR = 6 
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• 6 ≤ AR ≤ 10 get binned in AR = 10 
• AR > 10 get binned in AR = ∞ 

The four discrete aspect ratio bins are hard-coded into the FAVOR flaw file input structure for surface-
breaking flaws. For embedded flaws, the FAVOR-defined aspect ratio bin structure is different than that 
used for surface-breaking flaws; there are ten aspect ratio intervals for embedded flaws. In all cases the 
crack depth was rounded to the nearest discrete crack depth defined in the FAVOR input structure. 

This resulted in a distribution of crack depths and aspect ratios that were used to generate the flaw file 
that is inputted into FAVPFM. A MATLAB post processing script was used for the sampling and 
generation of the flaw files; this script is available to the NRC upon request.  

 

3.2 Step 3: Action 2 – Assess sampling uncertainty: statistical convergence analysis 

Two parameters were assessed for convergence purposes: the time increment (DT) used in the time 
integration in FAVPFM and the number of simulations (NSIM). This section describes the convergence 
studies that were performed for each of these parameters.  

Time integration time increment (DT). Many cases were run to assess the convergence of CPI and CPF 
with respect to DT. These cases were run for 48 EFPY using the default parameters in Table 2-1, Table 
2-2, and Table 2-3 and the nominal crack depths and aspect ratios for flaws as defined in Table 1-1. The 
uncertain inputs are defined by a normal distribution as defined in Section 2.2 with the uncertainty 
parameter 𝜀𝜀 = 0.25. This study was conducted for two cases: the 2007 Plant 8 normal cooldown 
transient and the ASME maximum cooldown pressure-temperature as defined by Appendix G of ASME 
SC-XI. Analyzing the convergence of the ASME maximum cooldown transient allows the assessment of a 
case which produces higher values of CPI and CPF, indicating that the convergence behavior may extend 
beyond the case considered in this document. The results are summarized in Figure 3-1, indicating that 
the mean CPI and CPF converge as the time step is decreased. Therefore, a time increment of 1.0 is 
selected, which balances simulation expense with the convergence of CPI and CPF. 

Number of simulations (NSIM). Convergence of the CPI and CPF based on the number of simulations 
was assessed using the inputs defined in Table 2-1, Table 2-2, and Table 2-3 and accounting for 
uncertainty in the crack depths and lengths (𝜀𝜀 = 0.25). The converged value of DT=1 was used for this 
analysis. This convergence analysis was performed at 48 EFPY using the normal cooldown transient. Two 
methods were used to assess convergence. 

First, the mean and 99th percentile CPI and CPF were plotted as function of the number of simulations. 
The mean is output directly from FAVPFM and the 99th percentile is estimated from an exponential 
distribution fit to the samples. The results are provided in Figure 3-2. Both estimates are mostly 
converged after 20,000 simulations, which is the sample size selected for the final analysis.  
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Figure 3-1: Convergence analysis of CPI and CPF as DT is refined for the 2007 Plant 8 and ASME 
maximum cooldown transients. 

 

Figure 3-2: Mean and 99th percentile of CPI (left) and CPF (right) versus the number of simulations. 

The second approach was to generate a statistical confidence bound around the mean and 99th 
percentile of the CPI and CPF to provide a quantitative measure of the statistical uncertainty in the 
estimates. This confidence bound was produced using a bootstrap procedure [7] that used the sampled 
CPI and CPF to estimate sampling uncertainty using 20,000 simulations. Here, the statistical results are 
resampled with replacement 1,000 times. For each resample, the mean and 99th percentile are 
estimated from 10,000 samples. Statistical uncertainty in the estimators can be approximated using 
summary statistics of the 1,000 bootstrap samples. A histogram of the mean and 99th percentile 
estimates are provided in Figure 3-3 and Figure 3-4, respectively. For each plot of the CPI or CPI, 95% 
confidence intervals are provided from the bootstrap analysis. These bounds have the interpretation 
that upon repeated samples, the mean CPI would fall in the interval [5.46e-7, 1.09e-6] and the mean 
CPF would fall in the interval [1.71e-8, 3.83e-8] 95% of the time. Similarly, 95% percent of the time, the 
99th percentile of CPI and CPF would fall in the interval [2.51e-6, 5.03e-06] and [7.86e-8, 1.76e-07], 
respectively.  
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Figure 3-3: 95% sampling uncertainty confidence intervals for the mean CPI (left) and CPF (right). 

 

Figure 3-4: 95% sampling uncertainty confidence intervals for the 99th percentile CPI (left) and CPF 
(right). 

 

3.3 Step 3: Action 3 – Conduct sensitivity analyses: input uncertainty importance 
determination 

As FAVOR does not provide the sampled values of the uncertain inputs that are sampled internally in the 
code, a traditional sensitivity analysis was not conducted. However, several sensitivity studies were 
performed to assess the effect of different modeling assumptions on the CPI and CPF. Details are 
provided in Section 4.  



 

14 

3.4 Step 3: Action 4 – Output uncertainty analysis 

FAVOR was run using the inputs defined in Section 2 for the Plant 8 2007 normal cooldown transient at 
48, 50, 56.5, and 72 EFPY. Uncertainty was considered in the crack depth and length for both flaws, as 
well as in the fluence and embrittlement parameters. The uncertainties are characterized by the normal 
distribution defined in Section 2.2 with the uncertainty parameter 𝜀𝜀 = 0.25. A summary of the results is 
presented in Table 3-1. Here, the mean and 99th percentile of CPI and CPF are shown for all four EFPYs. 
Additionally, a 95% confidence interval upper bound on the 99th percentile gives an upper bound on the 
percentile after accounting for sampling uncertainty.  

As established in Section 1.2, the acceptance criterion for CPF is 1e-6. For all EFPY cases, the mean CPF 
and 99th percentile of CPF are about two and one magnitude smaller than the criterion, respectively. 
Therefore, this analysis indicates that all cases are acceptable, even in the presence of uncertainty. 
Additionally, because the 95% upper bound on the 99th percentile is smaller than the acceptance 
criterion, the statistical uncertainty in the 20,000 samples is not sufficiently large to cause unacceptable 
results for any case. 

Table 3-1: Output uncertainty analysis results 

 CPI CPF 

EFPY Mean 99th 
Percentile 

95% Upper 
Bound on 99th 

Percentile 
Mean 99th 

Percentile 

95% Upper 
Bound on 99th 

Percentile 
48 8.01e-7 3.74e-6 5.13e-6 2.72e-8 1.25e-7 1.80e-7 
50 8.38e-7 3.87e-6 5.39e-6 2.83e-8 1.31e-7 1.88e-7 
56 9.57e-7 4.39e-6 6.01e-6 3.56e-8 1.63e-7 2.23e-7 
72 1.15e-6 5.33e-6 7.20e-6 4.94e-8 2.28e-7 3.17e-7 

 

4 STEP 4: SENSITIVITY STUDIES TO ASSESS CREDIBILITY OF MODELING 
ASSUMPTIONS 

4.1 Step 4: Action 1 – Determine set of sensitivity studies 

Several sensitivity studies were performed to assess the effect on the CPI and CPF when changing 
analysis assumptions. Prior to conducting the studies, an initial “default” run was performed using the 
ASME maximum cooldown pressure-temperature at 48 EFPY with the input values shown in Figure 4-1. 
This default case was used to compare the results of plausible alternate assumptions for several of the 
inputs. The flaw depths and aspect ratios were fixed at a single value as defined in Table 1-1. The mean 
CPI and CPF for the default case were estimated at 5.376e-05 and 2.449e-05, respectively.  

Table 4-1 provides an overview of the parameters that were considered for the sensitivity studies, along 
with their default values and possible ranges.  
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Figure 4-1: Default inputs for sensitivity studies. 

Table 4-1: Parameters for sensitivity studies 

Parameter Description Default Range 

IGATR Initiation Growth 
Arrest model flag 

100 [100 1000] 

WPS_OPTION Warm pre-stress 
model flag 

1 (warm prestress mode 1) [0,1,2,3] 

IRTNDT NDT model 2006 [992,2000,2006,20071,
20072,20073] 

IDT_OPTION Ductile tearing flag 1 (use ductile tearing) [0,1] 

FLWSTR Flow stress 80 [60 100] (arbitrary) 

KIa_Model KIa curve 2 [1,2] 

FAILCR Through wall 
depth failure 

0.9 [0.25 0.95] 

SIGFGL SD multiplier best 
estimate fluence 

0.118 0.118±25% 

SIGFLC SD multiplier 
mean fluence 

0.056 

Flaw File file that defines 
flaw sampling 

details 

Two flaws, uniform 
distribution at 0.03t and 0.05t, 

all of AR = 6 

Various definitions 
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4.2 Step 4: Action 2 – Conduct studies and present results 

Table 4-2 provides an exhaustive list of all the sensitivity studies that were performed along with the 
estimated mean CPI and CPF for each study. These inputs were studied as there was not a strong basis 
for choosing their values and it was of interest to understand how these inputs might affect the 
conclusions of the analysis. For each entry in the table, only one input was perturbed from the default 
case. All inputs were analyzed for the 48 EFYP transient for the normal cooldown with uncertain 
parameters set to a normal distribution defined by 𝜀𝜀 = 0.25. Inputs that did not have a significant effect 
on the response include the flow stress (FLWSTR) and the fluence standard deviations (SIGFGL and 
SIGFLC). The remaining inputs had an impact on the mean CPI and/or CPF and were set based on FAVOR 
input recommendations or to achieve conservatism in the resulting probability estimates. 

The number of initiation-growth-arrest trials per flaw (IGATR) had an impact on both CPI and CPI, but it 
was fixed at 100 based on FAVOR input recommendations. Warm prestress (WPS) had an effect on both 
the mean CPI and CPF; however, as mentioned above, it was decided to turn off warm prestress in the 
final analysis to impose some conservatism due to uncertainty that may be present in the cooldown 
transient. The choice of correlation used for the irradiation shift calculations (IRTNDT) had some effect 
on mean CPI and CPF, though the Eason 2006 method was chosen for the final analysis because this 
correlation is believed to be the most accurate at high fluence, given current data. In addition, the Eason 
2000 method is results in the highest CPI and CPF, and therefore it is conservative. The ductile tearing 
off (IDT_OPTION) did affect the simulation, so it is set at the more conservative value. Unsurprisingly, 
the failure criterion (FAILCR) has a large effect on the mean CPF. As mentioned in Section 2.1.1, this was 
fixed at 0.9 based on a slight conservatism over FAVOR recommendations.  

Table 4-2: Mean CPI and CPF for all sensitivity studies 

Case Parameter Mean CPI Mean CPF Notes 
DEFAULT  8.015e-7 2.721e-8  

1 IGATR = 1000 1.020e-6 3.065e-8  

2 WPS_OPTION = 0 8.583e-7 2.830e-8  

WPS_OPTION = 2 8.367e-7 2.678e-8  

WPS_OPTION = 3 3.435e-7 1.260e-8  

3 IRTNDT = 992 6.362e-7 1.258e-8 Regulatory Guide 1.99 Rev. 2 
correlation 

IRTNDT = 2000 5.966e-7 1.502e-8 Eason 2000 correlation 
IRTNDT = 20071 4.720e-7 1.031e-8 Kirk 2007 correlation 
IRTNDT = 20072 1.394e-7 6.221e-10 RADAMO 2007 correlation 
IRTNDT = 20073 3.744e-7 8.209e-9 EasonKirk/RADAMO 2007 correlation 

4 IDT_OPTION = 0 
(KIa_Model = 2) 

8.015e-7 2.721e-8 KIa model based on CCA + large 
specimen data 

5 FLWSTR = 60 8.015e-7 2.721e-8  

FLWSTR = 100 8.015e-7 2.721e-8  
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Case Parameter Mean CPI Mean CPF Notes 
6 IDT_OPTION = 0 

(KIa_Model = 1) 

8.015e-7 3.005e-14 KIa model based on CCA specimens 

7 FAILCR = 0.25 8.015e-7 7.551e-7  

FAILCR = 0.50 8.015e-7 5.275e-8  

FAILCR = 0.75 8.015e-7 2.849e-8  

8 SIGFGL = 0.1475 
(+25%) 

8.003e-7 2.755e-8 Fluence standard deviation increased 
by 25% of nominal value 

SIGFGL = 0.0885 
(-25%) 

8.021e-7 2.767e-8 Fluence standard deviation decreased 
by 25% of nominal value 

9 SIGFLC = 0.07 
(+25%) 

8.016e-7 2.725e-8 Local fluence standard deviation 
increased by 25% of nominal value 

SIGFLC = 0.042 
(-25%) 

8.014e-7 2.699e-8 Local fluence standard deviation 
decreased by 25% of nominal value 

10 Flaw A = 2 x Flaw 
B 

2.134e-6 6.362e-8 Double the distribution of Flaw A 
compared to Flaw B 

2 x Flaw A = Flaw 
B 

6.195e-7 2.057e-8 Double the distribution of Flaw B 
compared to Flaw A 

AR = 2 0 0 All flaws have aspect ratio 2 

AR = 6 4.314e-7 1.365e-8 All flaws have aspect ratio 6 

AR = 10 2.106e-6 6.457e-8 All flaws have aspect ratio 10 

AR = ∞ 1.742e-5 5.792e-7 All flaws have infinite aspect ratio 

0.02t 0 0 All flaws at 0.02t 

0.03t 2.933e-6 8.385e-8 All flaws at 0.03t 

0.04t 5.133e-7 1.940e-8 All flaws at 0.04t 

0.05t 0 0 All flaws at 0.05t 

0.25t 0 0 All flaws at 0.25t 

 

The choice of flaw depth, distribution, and aspect ratio (as described in Case 10) had a large effect on 
the mean CPI and CPF. This result prompted the incorporation of additional uncertainty for the flaw 
depths and lengths, described in Section 2.1.2, as uncertainty due to limitations in the inspector’s tools 
may result in increased uncertainty in the CPI and CPF estimates. Two additional sensitivity studies were 
performed to assess the effect of different assumptions that were required in the generation of the flaw 
files after incorporating crack depth and length uncertainty:  

1) The distributional form of the uncertainty was set to either uniform or normal on a bounded 
interval, and  

2) The categorization of the flaws as either surface-breaking or embedded.  
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4.2.1 Flaw sample distributions 

Using the sampling scheme previously introduced in Section 2.2, a total of four unique scenarios were 
considered: 

1. Flaw parameters uniformly sampled with both flaws assumed surface-breaking 
2. Flaw parameters sampled from a normal distribution with both flaws assumed surface-breaking 
3. Flaw parameters uniformly sampled with Flaw B either surface-breaking or embedded as 

calculated from sampled dimensions and Flaw A surface breaking 
4. Flaw parameters sampled from a normal distribution with Flaw B either surface-breaking or 

embedded as calculated from sampled dimensions and Flaw A surface breaking 

Scripts were used to generate the flaw files, which guarantees that the required minimum densities 
were achieved and two flaws were produced for each simulation. The sampled scheme was also coded 
to preclude the sampling of non-physical crack parameters. New flaw files were created, and the FAVOR 
analyses were re-run. The results for mean CPI and mean CPF are given in Table 4-3 and Table 4-4, 
respectively. In general, the probability of crack initiation and of failure increase slightly as the 
parameter uncertainty increases. Note that for the sampling scheme used, the uncertainty in the flaw 
parameters has been parameterized through the normalized parameter, ε, defined previously in Section 
2.2. With this flaw file creation methodology, embedded flaws don’t exist (i.e., have zero probability) 
until reaching uncertainties of 0.05 and 0.10 under normal and uniform sampling, respectively. 

Table 4-3: Mean CPI for distributed flaw files with various parameter uncertainty 

Parameter 
Uncertainty ε 

Surface-Breaking Mixed 
Uniform 

(Scenario 1) 
Normal 

(Scenario 2) 
Uniform 

(Scenario 3) 
Normal 

(Scenario 4) 

0.00 9.369e-7 9.369e-7 9.369e-7 9.369e-7 

0.01 9.369e-7 9.369e-7 9.369e-7 9.369e-7 

0.05 9.369e-7 9.369e-7 9.369e-7 9.369e-7 

0.10 1.224e-6 9.959e-7 4.863e-7 3.682e-7 

0.20 1.511e-6 1.482e-6 5.890e-7 4.379e-7 

0.25 1.487e-6 8.015e-7 6.162e-7 8.149e-7 

0.50 2.116e-6 2.174e-6 7.426e-7 8.890e-7 

1.00 2.572e-6 1.744e-6 3.416e-6 7.708e-6 
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Table 4-4: Mean CPF for distributed flaw files with various parameter uncertainty 

Parameter 
Uncertainty ε 

Surface-Breaking Mixed 
Uniform 

(Scenario 1) 
Normal 

(Scenario 2) 
Uniform 

(Scenario 3) 
Normal 

(Scenario 4) 

0.00 3.004e-8 3.004e-8 3.004e-8 3.004e-8 

0.01 3.004e-8 3.004e-8 3.004e-8 3.004e-8 

0.05 3.004e-8 3.004e-8 3.004e-8 3.004e-8 

0.10 3.880e-8 3.202e-8 1.630e-8 1.170e-8 

0.20 4.849e-8 4.478e-8 1.927e-8 1.432e-8 

0.25 4.659e-8 2.721e-8 1.995e-8 2.651e-8 

0.50 6.347e-8 6.591e-8 2.140e-8 2.818e-8 

1.00 9.834e-8 5.289e-8 1.164e-7 3.297e-7 
 

An intrinsic feature of using parameter uncertainty to capture the uncertainty of the physical 
dimensions of the indicated flaws is the relationship between flaw size and failure probability. A series 
of visualizations of the relationship between flaw characteristics and parameter uncertainty are shown 
in the APPENDIX A. Figure 4-2 and Figure 4-3 use those data along with selected results provided in 
Table 4-3 and Table 4-4 to plot the empirical CDFs of flaw distributions for families of parameter 
uncertainty, ε, for mean CPI and mean CPF, respectively. The figures show the results obtained with 
surface-breaking flaws sampled from normal distributions (Scenario 2). The plots are a quantitative 
demonstration of the relationship between parameter uncertainty, flaw depth distribution, and the 
resultant probabilities of either crack initiation or vessel failure. A general qualitative observation is that 
increasing parameter uncertainty yields increased flaw density at larger flaw depths, which correlates 
with larger predictions of mean CPI and CPF. Note that although the flaw characteristics were sampled 
continuously, FAVOR employs a binned input structure. Consequently, the plotted flaw depth CDFs are 
discontinuous. 
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Figure 4-2: Empirical CDFs of flaw distributions for families of parameter uncertainty for mean CPI. 

 

Figure 4-3: Empirical CDFs of flaw distributions for families of parameter uncertainty for mean CPF. 
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The mixed flaw case simulations (Scenarios 3 and 4) are not exactly what should be run as indicated by 
the flaw statistics. The results represent a necessary compromise to reflect the way FAVOR is coded. 
Effectively, once the sampling indicates the existence of an embedded flaw, the flaw files are scaled to 
include one surface-breaking flaw, Flaw A, and one embedded flaw, Flaw B. In reality, the uncertainty in 
flaw characteristics would mean that sometimes Flaw B is a surface flaw (‘surface-breaking’ case in Table 
4-3 and Table 4-4; equivalent to saying that the likelihood of having an embedded flaw is zero), and 
other times it is an embedded flaw (‘mixed’ case in Table 4-3 and Table 4-4; equivalent to saying that the 
likelihood of having an embedded flaw is one). The results in Table 4-3 and Table 4-4 show that the 
existence of embedded flaws only slightly changes the probabilities of initiation and failure, so the 
assumption of all flaws as surface-breaking appears to be relatively accurate. Flaw statistics indicate that 
the likelihood of having an embedded flaw is between zero and one. Section 4.2.2 describes a study 
performed to account for this fact while being constrained within the coding structure of FAVOR. 

4.2.2 Flaw Categorization Study 

A subsequent study was formulated to consider how to best capture the true sampling statistics using 
the existing FAVOR input requirements. For example, under the sampling scheme described in Section 
2.2, if parameter uncertainty, ε = 1, two surface-breaking flaws are obtained 75% of the time and one 
surface-breaking flaw and one embedded flaw are obtained 25% of time. Several approaches were 
explored to achieve the expected balance between sampled flaws: 

• Flaw Scaling. Scale the flaw densities to get integer numbers of initial flaws as inputs and then 
rescale the predicted probabilities to represent the correct number of observed initial flaws. 

• Modifying FAVOR Input Structure. Instead of duplicating the 1000 records in the flaw files, 
correctly distribute the flaw densities to reflect the statistical balance between realizations of 
surface-breaking and embedded flaws.  

4.2.2.1 Flaw Scaling 

In this approach, the number of observed flaws for each analysis has been scaled to observe the 
consequence on the prediction of CPI and CPF. Table 4-5 and Table 4-6 show selected results for CPI and 
CPF, respectively, with several surface-breaking and mixed flaw scenarios. Those scenarios consider the 
total number of initial flaws to be 2, 6, or 20; scale factors of 1, 3, and 10 respectively.  

Table 4-5: Mean CPI for distributed flaw files with various parameter uncertainty 

Parameter 
Uncertainty 

Normal, Surface-Breaking Normal, Mixed 
2 Flaws 6 Flaws 20 Flaws 2 Flaws 6 Flaws 20 Flaws 

0.00 9.369e-7 2.989e-6 1.054e-5 9.369e-7 2.992e-6 9.823e-6 

0.05 9.369e-7 2.991e-6 1.066e-5 9.369e-7 2.302e-6 9.299e-6 

0.25 8.015e-7 5.909e-6 2.013e-5 8.149e-7 4.681e-6 1.750e-5 

1.00 1.744e-6 1.628e-5 4.448e-5 7.708e-6 7.708e-6 2.826e-5 
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Table 4-6: Mean CPF for distributed flaw files with various parameter uncertainty 

Parameter 
Uncertainty 

Normal, Surface-Breaking Normal, Mixed 
2 Flaws 6 Flaws 20 Flaws 2 Flaws 6 Flaws 20 Flaws 

0.00 3.004e-8 9.596e-8 3.330e-7 3.004e-8 8.854e-8 2.994e-7 

0.05 3.004e-8 9.612e-8 3.367e-7 3.004e-8 7.598e-8 3.003e-7 

0.25 2.721e-8 1.917e-7 6.589e-7 2.651e-8 1.530e-7 5.406e-7 

1.00 5.289e-8 6.329e-7 1.600e-6 3.297e-7 3.297e-7 8.775e-7 
 

An observation from the above tables is that when all flaws are assumed to be surface-breaking, the 
predicted conditional probabilities for 6 and 20 flaws approximately scale proportionally with the 
probabilities predicted for 2 flaws. This suggests the reverse, namely, given a prediction for a large 
number of (non-interacting) flaws, the probabilities could be scaled to give a reasonable approximation 
for a smaller number of flaws. This may be useful in instances when cases are simulated where the 
statistics imply non-integer representations of different flaw-types. Due to the constraints imposed by 
the FAVOR flaw file structure, the theoretical distribution of flaw types could not be realized for small 
numbers of flaws for the cases shown in Table 4-5 and Table 4-6. Table 4-7 shows the flaws employed in 
analysis compared to the theoretical expectation. 

Table 4-7: Fraction of Surface-Breaking Flaws in Mixed Analyses – Normal Sampling 

Case Parameter 
Uncertainty 

Flaws Theoretical 
Fraction 2 6 20 

Default 0.00 1.0000 1.0000 1.0000 1.0000 

3 0.05 0.5000 0.8333 0.9500 0.9987 

6 0.25 0.5000 0.8333 0.8500 0.8536 

8 1.00 0.5000 0.6667 0.7500 0.7545 
 

Table 4-7 shows that the theoretical flaw distribution can be approximated better when more flaws are 
considered. The implication is that coupling of the detail given in the table with the previous observation 
of employing simple, post-prediction scaling suggests an ability to capture the underlying flaw statistics 
even if the uncertainty implies a non-integer value for flaw type. For example, if we are investigating a 
scenario with two observed flaws, with a parameter uncertainty given as ε = 0.25, running an analysis 
with 20 flaws (10 times the actual number) would allow us to approximately match the required ratio of 
surface-breaking and embedded flaws. Then scaling the CPI and CPF given in Table 4-5 and Table 4-6 
would yield an approximate prediction for a total of two flaws with mixed character. In this case, Table 
4-7 indicates that the flaw distribution should obtain 1.71 surface-breaking flaws and 0.29 embedded 
flaws. The predicted probabilities of initiation and failure are then, [CPI, CPF] = [1.750e-6, 5.406e-8]. 
Compare this to the case of all surface-breaking flaws, [CPI, CPF] = [2.013e-6, 6.589e-8], which indicates 
the expected conservatism for an assumption of surface-breaking flaws. 

The following figures show expanded detail for the theoretical distribution of flaw type under both 
normal and uniform sampling over the modeled range of parameter uncertainty. Figure 4-4 shows the 
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theoretical fraction of surface-breaking flaws for the two sampling schemes. The observed inflection 
points are indicative of reaching thresholds of the physical constraints that are imposed on the sampling 
scheme. 

 

Figure 4-4: Theoretical fraction of surface-breaking flaws for 0 ≤ ε ≤ 1. 

Figure 4-5 is a continuous representation of the data that are contained in Table 4-7, shown for both 
uniform and normal sampling schemes. The theoretical curve for surface-breaking flaws should be used 
if the analysis is intended to preserve the sampling statistics used in the underlying model. The dashed 
lines show the manner in which the statistics are actually captured due to the constraints imposed by 
the FAVOR flaw input structure. 
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Figure 4-5: Convergence of FAVOR flaw statistics to theoretical statistics for normal (top) and uniform 
(bottom) sampling for 0 ≤ ε ≤ 1. 

4.2.2.2 Modifying FAVOR Input Structure 

In the second approach, the flaw file input structure was modified so that the 1000 input records were 
not all identical, but rather were distributed in a manner consistent with the required flaw type. Again, if 
parameter uncertainty 𝜀𝜀 = 1, two surface-breaking flaws are obtained in 75% of the simulations and 
one surface-breaking flaw and one embedded flaw are obtained in 25% of the simulations. Therefore, 
the FAVOR input records were created such that approximately 75% of the records were appropriate for 
two surface-breaking flaws and the other 25% indicated one surface-breaking flaw and one embedded 
flaw. Table 4-8 shows the results of the study. 

Table 4-8: Mean CPI/CPF for distributed flaw files with parameter uncertainty, ε = 1 

Measure Parameter 
Uncertainty 

Normal, 
Mixed 

Normal, Mixed, 2 Flaws 
N = 10000 

Normal, Mixed, 2 Flaws 
N = 25000 

2 flaws Order A Order B Order A Order B 

CPI 
1.00 

7.708e-6 2.849e-6 3.654e-6 3.343e-6 3.648e-6 

CPF 3.297e-7 9.884e-8 1.136e-7 1.414e-7 1.018e-7 
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The third column reports the CPI and CPF for ε = 1 under the assumption that Flaw A is always surface-
breaking and Flaw B is always embedded. The flaw statistics were generated under the assumption that 
all of the sampled parameters were taken from a normal distribution. Again, this is not what the 
sampled statistics would indicate, but rather reflects a limitation in the manner in which FAVOR flaw 
files must be created. In reality, the sample statistics would indicate that Flaw B should be sampled as 
surface-breaking in 75.4% of the simulations and embedded in 24.6% of the simulations for ε = 1 (see 
Figure 4-4). Therefore, the fourth and fifth columns show the results for CPI and CPF when the flaw files 
are constructed such that: Order A - the first 754 records correspond to a surface-breaking Flaw B and 
the final 246 records correspond to an embedded Flaw B and Order B - the first 246 records correspond 
to an embedded Flaw B and the final 754 records correspond to a surface-breaking Flaw B. The order 
that the records appear in the flaw file will matter, due to how FAVOR samples, so the number of trials 
was increased to N = 25000 and the results are reported in the sixth and seventh columns. 
Consequently, it appears that the correct flaw distributions can be achieved using the existing FAVOR 
structure, using a sufficiently large number of trials. 

4.2.2.3 Comparison of Approaches 

A simple comparison of the two approaches can be made by interrogating Table 4-5, Table 4-6, and 
Table 4-8. For the case of normally sampled parameters with 𝜀𝜀 = 1, the flaw scaling approach predicts 
the probabilities of initiation and failure to be [CPI, CPF] = [2.826e-6, 8.775e-8], while modifying the 
FAVOR input structure predicts [CPI, CPF] ≈ [3.5e-6, 1.2e-7]. Although, not confirmatory, this 
comparison suggests the approaches may be reasonable means of capturing more complex 
representations of flaw statistics under an assumption of uncertainties in the measurement of flaw 
parameters. 

5 STEP 5: DRAW CONCLUSIONS FROM ANALYSIS RESULTS 

5.1 Step 5: Action 1 – Interpret analysis results 

For the purposes of this analysis, the annual through-wall cracking (i.e. failure) frequency (TWCF) of 
1 × 10−6 acceptance criteria was used. FAVOR was run using the inputs defined in Section 2 for the 
Plant 8 2007 normal cooldown transient at 48, 50 and 56 EFPY. Uncertainty was considered in the crack 
depth and length for both flaws, as well as in the fluence and embrittlement parameters.  

After accounting for sampling uncertainty, a 95% confidence interval upper bound on the 99th percentile  
gives a conditional probability of failure (CPF) of 1.80e-7  at 48 EFPY (see Table 3-1.) As a reminder, the 
frequency of the transient considered is assumed to be 1 per year, so in this case, CPF=TWCF=1.80e-7 at 
48 EFPY. Although the TWCF is lower than the acceptance criteria, the determination about whether 
acceptance criteria are met are typically not made based on just this calculation. A broad set of 
sensitivity studies was performed on the input parameters for the FAVOR analysis code. the results from 
those studies led to an investigation of a very specific set of uncertainties associated with the knowledge 
of the flaw parameters. Details of flaw parameter uncertainty is given in Section 4.2 and APPENDIX A.  
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5.2 Step 5: Action 2 – Iterate on analysis process to refine model results 

Iteration on the FAVOR analysis led to a significant investigation into flaw parameter uncertainty. This 
analysis led to changes in the FAVOR flaw file input structure, refinements in input uncertainty 
distributions, explorations into different sampling schemes, convergence investigations, and the 
addition of sensitivity studies to identify conservative approaches for capturing flaw parameter 
uncertainty. These model refinements have been propagated into the results reported in Table 3-1. 
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APPENDIX A FLAW STATISTICS 

This section shows some graphical representations of the flaw distributions as a function of the 
parameter uncertainty, ε, and sampling approach. 

A.1 All Flaws are Surface-Breaking 

The following figures show the manner in which the crack parameters are distributed as a function of 
the parameter uncertainty under the assumption that all flaws are surface-breaking. Figure A-1 and 
Figure A-2 show how Flaw A depth is distributed for uniform and normal sampling schemes, 
respectively. Table A-1 provides discrete values of crack depth distributions for Flaw A at a selected set 
of crack parameter uncertainty values for uniform and normal sampling schemes. Figure A-3 and Figure 
A-4 show how Flaw B depth is distributed for uniform and normal sampling schemes, respectively. Table 
A-2 provides discrete values of crack depth distributions for Flaw B at a selected set of crack parameter 
uncertainty values for uniform and normal sampling schemes. Note that the actual sampling scheme 
allows for a continuous distribution of crack depths, but for the purposes of generating a FAVOR flaw 
file, the crack depths have been rounded to the nearest normalized vessel depth. 

Inspection of Figure A-1 and Figure A-2 clearly demonstrate the difference in the sampling schemes. As 
expected, the normal sampling scheme manifests significantly lower uncertainty in flaw depth because 
of the shape of the distribution about the nominal flaw depth value. This observation is reinforced with 
the tighter distribution of flaw depths for a given parameter uncertainty value shown in Table A-1. This 
same observation holds for Flaw B as shown in Figure A-3, Figure A-4, and Table A-2.  

Figure A-5 and Figure A-6 show how Flaw A aspect ratio is distributed for uniform and normal sampling 
schemes, respectively. Table A-3 provides discrete values of aspect ratio distributions for Flaw A at a 
selected set of crack parameter uncertainty values for uniform and normal sampling schemes.  Figure A-
7 and Figure A-8 show how Flaw B aspect ratio is distributed for uniform and normal sampling schemes, 
respectively. Table A-4 provides discrete values of crack depth distributions for Flaw B at a selected set 
of crack parameter uncertainty values for uniform and normal sampling schemes. Note that the actual 
sampling scheme allows for a continuous distribution of aspect ratios, but for the purposes of 
generating a FAVOR flaw file, the aspect ratios have been rounded up to the next largest aspect ratio bin 
designated for use by FAVOR (see Section 3.1). 
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Figure A-1: Flaw A crack depth densities for uniformly sampled realizations. 

 

Figure A-2: Flaw A crack depth densities for normally sampled realizations. 
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Table A-1: Surface-breaking flaw depth density for selected parameter uncertainty, Flaw A 

Sample 
Distribution 

Crack 
Parameter 

Uncertainty ε 

Normalized Crack Depth Density (Percentage of Flaws at a Given 
Normalized Vessel Depth) 

0.03t 0.04t 0.05t 0.06t 

Uniform 
0 1.0000 0.0000 0.0000 0.0000 

0.5 0.4014 0.5986 0.0000 0.0000 
1 0.2077 0.3243 0.3241 0.1439 

Normal 
0 1.0000 0.0000 0.0000 0.0000 

0.5 0.9409 0.0591 0.0000 0.0000 
1 0.6213 0.3751 0.0036 0.0000 

 

 

Figure A-3: Flaw B assumed surface-breaking, crack depth densities for uniformly sampled 
realizations. 
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Figure A-4: Flaw B assumed surface-breaking, crack depth densities for normally sampled realizations. 

Table A-2: Surface-breaking flaw depth density for selected parameter uncertainty, Flaw B 

Sample 
Distribution 

Crack 
Parameter 

Uncertainty ε 

Normalized Crack Depth Density (Percentage of Flaws at a Given 
Normalized Vessel Depth) 

0.03t 0.04t 0.05t 0.06t 0.07t 0.08t 0.09t 

Uniform 
0 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 

0.5 0.1611 0.2496 0.2499 0.2502 0.0892 0.0000 0.0000 
1 0.1026 0.1590 0.1588 0.1586 0.1597 0.1590 0.1024 

Normal 
0 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 

0.5 0.0532 0.4033 0.4606 0.0800 0.0019 0.0000 0.0000 
1 0.1292 0.3199 0.3396 0.1543 0.0303 0.0025 0.0001 
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Figure A-5: Flaw A aspect ratio densities for uniformly sampled realizations. 

 

Figure A-6: Flaw A aspect ratio densities for normally sampled realizations. 



 

33 

Table A-3: Surface-breaking flaw aspect ratio density for selected parameter uncertainty, Flaw A 

Sample 
Distribution 

Crack 
Parameter 

Uncertainty ε 

Normalized Aspect Ratio Density (Percentage of Flaws of a Given 
Aspect Ratio) 

2 6 10 ∞ 

Uniform 
0 0.0000 1.0000 0.0000 0.0000 

0.5 0.0082 0.8393 0.1525 0.0000 
1 0.2753 0.5390 0.1797 0.0060 

Normal 
0 0.0000 1.0000 0.0000 0.0000 

0.5 0.0002 0.8853 0.1145 0.0000 
1 0.0458 0.7582 0.1954 0.0006 

 

 

Figure A-7: Flaw B assumed surface-breaking, aspect ratio densities for uniformly sampled 
realizations. 
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Figure A-8: Flaw B assumed surface-breaking, aspect ratio densities for normally sampled realizations. 

Table A-4: Surface-breaking flaw aspect ratio density for selected parameter uncertainty, Flaw B 

Sample 
Distribution 

Crack 
Parameter 

Uncertainty ε 

Normalized Aspect Ratio Density (Percentage of Flaws of a Given 
Aspect Ratio) 

2 6 10 ∞ 

Uniform 
0 0.0000 1.0000 0.0000 0.0000 

0.5 0.0031 0.6461 0.3092 0.0416 
1 0.2385 0.4718 0.2152 0.0744 

Normal 
0 0.0000 1.0000 0.0000 0.0000 

0.5 0.0001 0.6532 0.3419 0.0038 
1 0.0320 0.5523 0.3453 0.0465 
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A.2 Flaws are of Mixed Character 

The following figures show the manner in which the crack parameters are distributed as a function of 
the parameter uncertainty under the assumption that all the sampled Flaw A are surface-breaking and 
the sampled Flaw B are distributed between surface-breaking and weld-embedded (because all Flaw A 
are assumed to be surface-breaking, refer to Figure A-1, Figure A-2, Figure A-5, and Figure A-6, which are 
not reproduced here). Figure A-9 and Figure A-10 show the fraction of Flaw B that are embedded, as a 
function of the parameter uncertainty, for uniform and normal sampling schemes, respectively.  

 

 

Figure A-9: Density of weld-embedded Flaw B for uniformly distributed sampling. 
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Figure A-10: Density of weld-embedded Flaw B for normally distributed sampling. 

 

Figure A-11 and Figure A-12 show Flaw B depth distributions for uniform and normal sampling schemes, 
respectively. In both figures, the solid lines are families of surface-breaking flaws and the dashed lines 
are families of embedded flaws. Surface-breaking and embedded flaws of the same depth share the 
same color. Table A-5 provides discrete values of crack depth distributions for Flaw B, distributed across 
both flaw types, at a selected set of crack parameter uncertainty values for uniform and normal 
sampling schemes. 

Figure A-13 and Figure A-14 show Flaw B aspect ratio distributions for uniform and normal sampling 
schemes, respectively. As with the crack depth plots, the solid lines are families of surface-breaking 
flaws and the dashed lines are families of embedded flaws. Note that in FAVOR, embedded flaws are 
binned in aspect ratios differently than surface-breaking flaws. However, all flaws were binned in the 
same way that surface-breaking flaws are categorized. . 

 

Table A-6 provides discrete values of aspect ratio distributions for Flaw B, distributed across both flaw 
types, at a selected set of crack parameter uncertainty values for uniform and normal sampling 
schemes. 
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Figure A-11: Flaw B mixed character, surface-breaking flaws (solid) and embedded flaws (dashed), 
crack depth densities for uniformly sampled realizations. 

 

Figure A-12: Flaw B mixed character, surface-breaking flaws (solid) and embedded flaws (dashed), 
crack depth densities for normally sampled realizations. 
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Table A-5: Mixed flaw depth density for selected parameter uncertainty, Flaw B 

Sample 
Distribution ε Flaw Type 

Normalized Crack Depth Density (Percentage of Flaws at a Given 
Normalized Vessel Depth) 

0.03t 0.04t 0.05t 0.06t 0.07t 0.08t 0.09t 

Uniform 

0 
Surface 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 

Embedded 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.5 
Surface 0.0489 0.0956 0.1200 0.1437 0.0573 0.0000 0.0000 

Embedded 0.1114 0.1545 0.1303 0.1060 0.0322 0.0000 0.0000 

1 
Surface 0.0191 0.0367 0.0466 0.0562 0.0651 0.0747 0.0529 

Embedded 0.0830 0.1219 0.1127 0.1030 0.0943 0.0841 0.0496 

Normal 

0 
Surface 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 

Embedded 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.5 
Surface 0.0002 0.1199 0.2794 0.0655 0.0018 0.0000 0.0000 

Embedded 0.0530 0.2832 0.1825 0.0144 0.0001 0.0000 0.0000 

1 
Surface 0.0001 0.0555 0.1423 0.0975 0.0237 0.0022 0.0001 

Embedded 0.1323 0.2709 0.2063 0.0615 0.0072 0.0003 0.0000 
 

 

Figure A-13: Flaw B mixed character, surface-breaking flaws (solid) and embedded flaws (dashed), 
aspect ratio densities for uniformly sampled realizations. 
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Figure A-14: Flaw B mixed character, surface-breaking flaws (solid) and embedded flaws (dashed), 
aspect ratio densities for normally sampled realizations. 

 

Table A-6: Mixed flaw aspect ratio density for selected parameter uncertainty, Flaw B 

Sample 
Distribution ε Flaw Type 

Normalized Aspect Ratio Density (Percentage of 
Flaws of a Given Aspect Ratio) 

2 6 10 ∞ 

Uniform 

0 
Surface 0.0000 1.0000 0.0000 0.0000 

Embedded 0.0000 0.0000 0.0000 0.0000 

0.5 
Surface 0.0021 0.3290 0.1218 0.0127 

Embedded 0.0000 0.1673 0.2206 0.1466 

1 
Surface 0.0916 0.1801 0.0640 0.0156 

Embedded 0.0985 0.1961 0.1616 0.1925 

Normal 

0 
Surface 0.0000 1.0000 0.0000 0.0000 

Embedded 0.0000 0.0000 0.0000 0.0000 

0.5 
Surface 0.0001 0.3643 0.1023 0.0000 

Embedded 0.0000 0.0990 0.3762 0.0581 

1 
Surface 0.0143 0.2271 0.0780 0.0020 

Embedded 0.0100 0.1811 0.3048 0.1824 
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A.3 Uncertainty for SMiRT Analysis 

The uncertainty chosen for SMiRT analysis was ε = 0.25. This was arbitrary, but loosely based on the 
observation that some flaw detection techniques have limitations to detection. One observation 
suggested there may only be a 50% likelihood of detecting a flaw 0.04 inches in depth and 95% 
likelihood of detecting a flaw 0.08 inches in depth. Consequently, it is not unrealistic to assume that a 
similar order of magnitude of error in depth characterization could be applied to the flaws reported in 
the SMiRT problem statement. Based on the previous sensitivity studies, in general, using a normal 
distribution when sampling the crack parameters yields more conservative predictions for CPI and CPF. 

The figures below show scatter plots of the raw sampled crack parameters under consideration for all 
the combinations of flaw type and sampling scheme. Figure A-15 and Figure A-16 show Flaw A and B 
distributions for uniform and normal sampling schemes, respectively, if both are assumed to be surface-
breaking. Figure A-17 and Figure A-18 show Flaw A and B distributions for uniform and normal sampling 
schemes, respectively, if Flaw A is surface-breaking and Flaw B has mixed character. 
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Figure A-15: Sampled parameter space for uniformly sampled surface-breaking realizations, ε = 0.25. 

 

Figure A-16: Sampled parameter space for normally sampled surface-breaking realizations, ε = 0.25. 



 

42 

 

Figure A-17: Sampled parameter space for uniformly sampled mixed character realizations, ε = 0.25. 

 

Figure A-18: Sampled parameter space for normally sampled mixed character realizations, ε = 0.25. 
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APPENDIX B ADDITIONAL PROBLEM STATEMENT DETAILS 

This appendix outlines some temperature-dependent information necessary for the FAVOR Application 
Study that was not included in Section 2. 

B.1 Deterministic FAVLoad Tables 

Table 2-1 describes the deterministic inputs for FAVLoad; however, some of those inputs are 
temperature dependent. These thermal and mechanical properties of the base and clad, which are 
derived from information in the ASME Boiler and Pressure Vessel Code [4], are described in this section. 
The thermal conductivity and specific heat of the base and clad are shown in Table B-1. Young’s Moduli 
and coefficients of thermal expansion are detailed in Table B-2 and Table B-3, respectively. 

Table B-1: Deterministic thermal properties in FAVLoad input 

 BASE Thermal Properties CLAD Thermal Properties 
Temperature 

 [°F] 
Conductivity 
[BTU/(hr ft)] 

Specific Heat 
[BTU/(lbm°F)] 

Conductivity 
[BTU/(hr ft°F)] 

Specific Heat 
[BTU/(lbm°F)] 

70 24.8 0.1052 8.1 0.1158 
100 25.0 0.1072 8.4 0.1185 
150 25.1 0.1101 8.6 0.1196 
200 25.2 0.1135 8.8 0.1208 
250 25.2 0.1166 9.1 0.1232 
300 25.1 0.1194 9.4 0.1256 
350 25.0 0.1223 9.6 0.1258 
400 25.1 0.1267 9.9 0.1281 
450 24.6 0.1277 10.1 0.1291 
500 24.3 0.1304 10.4 0.1305 
550 24.0 0.1326 10.6 0.1306 
600 23.7 0.1350 10.9 0.1327 
650 23.4 0.1375 11.1 0.1335 
700 23.0 0.1404 11.4 0.1348 
750 22.6 0.1435 11.6 0.1356 
800 22.2 0.1474 11.9 0.1367 

 

Table B-2: Young’s Moduli used in deterministic FAVLoad input 

BASE Property CLAD Property 
Temperature 

 [°F] 
Young’s Modulus 

[Mpsi] 
Temperature 

[°F] 
Young’s Modulus 

[Mpsi] 
70 29.2 68 22.05 

200 28.5 302 20.16 
300 28.0 482 18.42 
400 27.4   
500 27.0   
600 26.4   
700 25.3   
800 23.9   
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Table B-3: Coefficients of thermal expansion used in FAVLoad deterministic inputs 

 BASE Property CLAD Property 

Temperature 
 [°F] 

Coefficient of 
Thermal Expansion 

[1/°F] 

Coefficient of 
Thermal Expansion 

[1/°F] 
100 7.06 8.55 
150 7.16 8.67 
200 7.25 8.79 
250 7.34 8.90 
300 7.43 9.00 
350 7.50 9.10 
400 7.58 9.19 
450 7.63 9.28 
500 7.70 9.37 
550 7.77 9.45 
600 7.83 9.53 
650 7.90 9.61 
700 7.94 9.69 
750 8.00 9.76 
800 8.05 9.82 

B.2 FAVPFM Embrittlement Map Data 

To estimate irradiated values for RTNDT, FAVOR requires detailed neutron fluence and chemistry data. 
These parameters are outlined in this section. For an example of embrittlement map input to FAVOR, 
see Figure 4-1. Table B-4 details the fluence for each point in the reactor operating history and Table B-5 
provides the nominal chemical compositions, which are constant for all analyses. 

Table B-4: Deterministic fluence data in FAVPFM input 

Region 48 EFPY Fluence 
[1019 n/cm2] 

50 EFPY Fluence 
[1019 n/cm2] 

56.5 EFPY Fluence 
[1019 n/cm2] 

72 EFPY Fluence 
[1019 n/cm2] 

1 2.1241 2.1816 2.3683 2.8135 
2 2.6524 2.7393 3.0219 3.6958 
3 2.6524 2.7393 3.0219 3.6958 
4 2.6802 2.7690 3.0575 3.7456 
5 2.1408 2.1991 2.3889 2.8412 
6 2.6802 2.7690 3.0575 3.7456 
7 3.4041 3.5104 3.8559 4.6797 
8 3.4010 3.5071 3.8522 4.6750 
9 3.4010 3.5071 3.8522 4.6750 

10 3.4010 3.5071 3.8522 4.6750 
11 3.4346 3.5430 3.8950 4.7346 
12 3.4346 3.5430 3.8950 4.7346 
13 3.4346 3.5430 3.8950 4.7346 
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Table B-5: Deterministic chemistry data in FAVPFM input  

Region Copper 
[wt%] 

Nickel 
[wt%] 

Phosphorus 
[wt%] 

Manganese 
[wt%] 

1 0.231 1.01 0.019 1.315 
2 0.231 1.01 0.019 1.315 
3 0.231 1.01 0.019 1.315 
4 0.231 1.01 0.019 1.315 
5 0.231 1.01 0.019 1.315 
6 0.231 1.01 0.019 1.315 
7 0.203 1.018 0.013 1.147 
8 0.190 0.48 0.016 1.24 
9 0.190 0.50 0.015 1.24 

10 0.120 0.55 0.010 1.27 
11 0.240 0.51 0.009 1.24 
12 0.240 0.50 0.010 1.35 
13 0.240 0.50 0.011 1.29 
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