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ABSTRACT 

 
This report illustrates the application of various probabilistic analysis techniques to a simple, idealized 
mechanical integrity assessment problem. Its development and structure are linked to the Nuclear 
Regulatory Commission’s (NRC) Probabilistic Fracture Mechanics (PFM) NUREG/CR-7278 by 
applying the methods that are introduced in Section 4 of NUREG/CR-7278 to the idealized 
mechanical integrity assessment problem. NUREG/CR-7278 is focused on describing the technical 
basis for a Regulatory Guide outlining expectation for PFM analyses conducted in support of risk-
informed regulatory applications. This report is purely focused on the practical applications of 
analytical techniques used in probabilistic analysis. 
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1. OBJECTIVE 

What is this report? 

This report is intended to be a stand-alone document illustrating the application of various 
probabilistic analysis techniques to a simple, idealized mechanical integrity assessment problem. 
Though the document itself is stand-alone, its development and structure are linked to the Nuclear 
Regulatory Commission’s (NRC) Probabilistic Fracture Mechanics (PFM) NUREG/CR-7278. 
Specifically, this document applies the methods that are introduced in Section 4 of NUREG/CR-7278 
to the idealized mechanical integrity assessment problem. NUREG/CR-7278 is focused on describing 
the technical basis for a Regulatory Guide outlining expectation for PFM analyses conducted in 
support of risk-informed regulatory applications. This report is purely focused on the practical 
applications of analytical techniques used in probabilistic analysis (explained in NUREG/CR-7278, 
Section 4). Of course, the techniques presented can be directly mapped to a PFM analysis of the type 
described in NUREG/CR-7278. 

Who is the intended reader? 

It is expected that the primary user of this report is a solid mechanics/fracture mechanics practitioner 
who is seeking to gain a deeper understanding of the methods and means of leveraging probabilistic 
tools and techniques against a mechanical integrity assessment problem. Many of the concepts should 
not be foreign to the practitioner; however, the mathematical basis, application details, and usage 
rationale may not be well understood. In that sense, this report is intended to serve as a user’s guide 
for fundamental, important probabilistic concepts, as applied to a representative, though accessible, 
mechanics problem. 

Structure of the report 

The report is intended to mirror the structure and sections provided in Section 4 of NUREG/CR-
7278. Because the structure of NUREG/CR-7278 is specifically focused on the procedure for 
developing a PFM analysis in the context of a nuclear regulatory application, the order of certain 
probabilistic concepts in this report may not occur in the sequential order for a standard PFM analysis. 
Indeed, it should be noted that a PFM analysis is not a linear and sequential process. Rather a PFM 
analysis involves the application and iteration of several probabilistic concepts and techniques to meet 
the objectives associated with the mechanical integrity assessment problem at hand.  

Section 2 of this report introduces the mechanical integrity assessment problem, defines the quantity 
of interest (QoI) in the analysis, defines all the relevant variables and their relationship to the QoI, and 
provides the statistics associated with those variables. Sections 3-10 illustrate eight methods (mapping 
to NUREG/CR-7278 given in parenthesis) used in a probabilistic analysis: 

Section 3. Separation of aleatory and epistemic uncertainty (NUREG/CR-7278, Section 4.1.1), 
Section 4. Statistical distribution fitting (NUREG/CR-7278, Section 4.2.1), 
Section 5. Modeling dependence between inputs (NUREG/CR-7278, Section 4.2.2), 
Section 6. Sensitivity analysis (NUREG/CR-7278, Sections 4.3.8, 4.3.9), 
Section 7. Surrogate models (NUREG/CR-7278, Section 4.3.10), 
Section 8. Forward propagation of input uncertainty (NUREG/CR-7278, Sections 4.3.1 – 4.3.3), 
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Section 9. Convergence analysis (NUREG/CR-7278, Sections 4.3.5 – 4.3.7), and 
Section 10. Visualizing uncertainty in the QoI (NUREG/CR-7278, Section 4.3.11). 

 
In each of these sections, fundamental concepts of the method are explicitly illustrated against the 
example mechanical integrity assessment problem described in the first section. There are multiple 
concepts presented for each method. Each concept is developed via step-by-step process descriptions, 
presentation of the results of application of the concept, discussion of common difficulties and 
bounds of applicability of the concept, and a final usage summary. 
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2. EXAMPLE PROBLEM DEFINITION 

Depending on the scope and nature of each unique PFM analysis, various components need to be 
considered. These include: 

(i) a description of the model(s) used, 
(ii) a description of the QoI(s) to be used to evaluate the PFM analysis,  
(iii) a description of the input space to be used with this model, including which inputs are 

considered deterministic or probabilistic, as well as the input values for deterministic 
inputs, and 

(iv) a description of the input uncertainties including the classification of the uncertainties as 
epistemic or aleatory (if applicable), choice of sampling scheme, choice of probability 
distribution, etc. 

Other aspects related to verification and validation of the PFM framework, definition of acceptance 
criteria, and risk-informed decision making against regulatory requirements are outside the scope of 
this document and are addressed in NUREG/CR-7278. 

Model:  An idealized solid mechanics representation of stresses acting on a pressurized steel tank with 
a helical weld. 

Quantity of interest:  Uncertain shear stress acting on the helical weld will be compared to an uncertain 
yield stress tolerance on the weld. For the purposes of this analysis, failure of the weld is defined to 
occur if the shear stress on the weld, 𝜏𝜏, is greater than the yield stress threshold of the weld, 𝑌𝑌. Figure 
2.1 gives an example of the pressurized cylindrical tank with a helical weld [1]. 

The QoI in this example is the probability of weld failure over a population of welds. To illustrate the 
concepts in this report, a “benchmark” probability of weld failure was estimated by sampling from the 
true input distributions (typically unknown in real applications and defined below) until the probability 
converged. This benchmark failure probability - 8.8 × 10−7- will be used as a reference throughout the 
document. 

 

 
Figure 2.1. Pressurized cylindrical tank with a helical weld. 

Input space: Shear stress on the weld, 𝜏𝜏, can be calculated through the following equation: 

𝜏𝜏 =
𝜌𝜌𝜌𝜌
4𝑡𝑡

sin (180 − 2𝛼𝛼) 
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where: 
• 𝜌𝜌: Internal pressure (MPa) 
• 𝑟𝑟: Cylinder radius (m) 
• 𝑡𝑡: Wall thickness (m) 
• α: Helical weld angle (degrees) 

All four inputs that define shear stress are treated as uncertain, as well as the yield stress threshold of 
the weld.  

Uncertain inputs:  While typically unknown in real applications, we define uncertainties on 𝑟𝑟 and 𝑡𝑡 as 
known through the cylinder manufacturing process, 𝛼𝛼 through the welding process, and 𝜌𝜌 based on 
the properties of the tank and the gas contained in the tank. The radius and the angle of the weld are 
modeled as a truncated normal (TN) distribution where the variances are small relative to their means. 
The truncation occurs at ±3 standard deviations to eliminate physically implausible tanks. Thickness 
is modeled with a right-skewed beta distribution because, relative to the design (average) thickness, 
this example tank has a tighter lower tolerance on thickness than an upper tolerance. The pressure is 
modeled with a normal (N) distribution. Finally, the yield stress is modeled using a Weibull distribution 
based on experimental data and expert judgment (discussed further in Section 4)  The following is a 
summary of the true (the input data generating mechanism produces values that follow random 
samples from the distribution.) distributions of these inputs.  

• 𝜌𝜌 ~ 𝑁𝑁(𝜇𝜇 = 50,𝜎𝜎 = 6) 
• 𝑟𝑟 ~ 𝑇𝑇𝑇𝑇(𝜇𝜇 = 0.6,𝜎𝜎 = 0.012, 𝐿𝐿𝐿𝐿 = 0.564,𝑈𝑈𝑈𝑈 = 0.636) 
• 𝑡𝑡 ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼 = 2,𝛽𝛽 = 5, 𝐿𝐿𝐿𝐿 = 0.018,𝑈𝑈𝑈𝑈 = 0.02) 
• 𝛼𝛼 ~ 𝑇𝑇𝑇𝑇(𝜇𝜇 = 55,𝜎𝜎 = 1.1, 𝐿𝐿𝐿𝐿 = 51.7,𝑈𝑈𝑈𝑈 = 58.3) 
• 𝑌𝑌 ~ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝜆𝜆 = 600, 𝑘𝑘 = 50) 

Details on estimating the parameters for these distributions is provided in Section 4. Figure 2.2 shows 
the probability distributions for each uncertain input. All of the analysis and visualization provided in 
this report were performed using the free software environment, R. 
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Figure 2.2. Distribution shape of each shear stress independent variable and the yield stress 

distribution of the weld. 
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3. SEPARATION OF ALEATORY AND EPISTEMIC UNCERTAINTY 

This section applies methods for the separation of aleatory (irreducible randomness) and epistemic 
(lack of knowledge) uncertainty (NUREG/CR-7278, Section 4.1.1) to the pressurized tank example. 
Two concepts are illustrated:  

1. Estimate a QoI without separating uncertainty.  
2. Estimate a QoI when separating aleatory and epistemic uncertainties. 

When to apply this method. The choice of whether to separate aleatory and epistemic uncertainties 
should be tied to the analysis objectives. This decision should be made early in the process as it can 
affect how input distributions are defined (Section 4), as well as methods for uncertainty propagation 
(Section 8) and assessing convergence (Section 9). The choice will also dictate how uncertainty in the 
result is interpreted and visualized (Section 10).  

3.1.  Estimate a QoI without separating uncertainty  

This example illustrates the process of estimating the probability of weld failure without separating by 
type of uncertainty.  

3.1.1. Process:  

1. Determine sample size and sampling scheme 

The sample size must be sufficiently large relative to the size of the probability of weld failure. To 
illustrate the importance for determining a sufficient target sample size up front, Section 9 
(Convergence Analysis) under importance sampling (IS) of pressure and weld yield stress shows that 
a sample size of 4 ×  104 is sufficiently large to get a stable estimate of the probability of failure. If 
there’s an insufficient sample size, a QoI will not sufficiently converge, and a simulation and analysis 
may need to be redone. As will be discussed in Section 8, IS was performed on pressure and weld 
yield stress as they were found to contribute to most of the uncertainty in the probability of failure.  

2. Simulate stress values by sampling from input probability distributions 

Pressure, radius, wall thickness, angle of the helical weld, and weld yield stress values are sampled 
based on the distributions defined in the problem statement (Section 2) and IS is used on pressure 
and weld yield stress since these variables are expected to have a larger impact on the QoI than the 
other inputs. No distinction is made in the classification of aleatory and epistemic uncertainties for 
these inputs. 4 ×  104  samples of the inputs are taken and the resulting stress samples are used to 
approximate the shear stress and weld yield stress distributions, as shown in Figure 3.1. 

3. Compare stress values to calculate the probability of weld failure 

The probability of failure of the weld can be estimated using the following steps: 

i. For the 𝑖𝑖th sample, let 𝑋𝑋𝑖𝑖 = 1 if the shear stress is larger than the weld yield stress and 0 
otherwise. 

ii. The estimated probability of failure is   
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𝑃𝑃�(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) =  1
𝑛𝑛
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1   

 
where 𝑛𝑛 is the sample size. 

 
Figure 3.1. Approximate distributions of the shear stress on the weld and the weld yield stress 

from 4 × 104 importance samples. 

3.1.2. Results and potential difficulties:  

Using 4 ×  104 samples with IS, the probability of weld failure is estimated to be 8.3 ×  10−7. Note 
that this is relatively close to the benchmark (true) probability of failure of 8.8 ×  10−7, but there is a 
difference due to sampling uncertainty. Since aleatory and epistemic uncertainties were not separated, 
this estimate does not distinguish between the likelihood of failure (i.e., aleatory uncertainty) and the 
confidence of failure (i.e., epistemic uncertainty). Consider a probability of failure threshold of 
1 ×  10−6. Looking at the estimated probability of failure alone gives the impression that the true 
probability is below that threshold. However, since uncertainties were not separated, we are unable to 
assess the confidence of that probability with respect to the epistemic uncertainty of the model inputs.  

When uncertainties are not separated, pure sampling uncertainty (i.e., the uncertainty due to a finite 
sample size) can be estimated using techniques described in Section 9. Sampling uncertainty is one 
type of epistemic uncertainty, though it is distinguished from the epistemic uncertainty of the model 
inputs.  

3.1.3. Summary:  

• Without the separation of uncertainties, a point estimate of the failure probability can be 
calculated, but the confidence of that probability cannot be estimated without violating 
assumptions. 
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3.2. Estimate a QoI when separating aleatory and epistemic uncertainties 

This example illustrates the process of separating aleatory and epistemic uncertainties to calculate a 
point estimate of the probability of weld failure along with a measure of the epistemic uncertainty. 
This process is described more completely in the Nuclear Regulatory Commission’s (NRC) 
Probabilistic Fracture Mechanics (PFM) NUREG/CR-7278.  

3.2.1. Process:  

1. Categorize uncertainties as aleatory or epistemic 
All four uncertainties associated with the calculation of the shear stress and the uncertainty in the 
weld yield stress are separated into aleatory and epistemic based on the analyst’s domain 
knowledge and the goals of the analysis. 

Since the goal is to estimate the failure probability across a population of welds, the most natural 
classification in this example would be to categorize all variables as aleatory. The radius, wall 
thickness, angle of the helical weld, and weld yield stress are all physical properties associated with 
manufacturing tolerances. These uncertainties are intrinsic to the tank building and welding 
processes and will vary randomly across the population of tanks. Additionally, pressure also varies 
across multiple pressurized tanks with different known gas properties, providing evidence that 
pressure uncertainty is aleatory. 

Although classifying all uncertainties as aleatory is reasonable in this example, weld yield stress 
will be classified as epistemic to illustrate how to do the analysis with both types of uncertainty.   
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Table 3.1 gives the classification for each uncertain input.  

In practice, variables need not be entirely epistemic or aleatory. For example, weld yield stress 
could be modeled as both aleatory and epistemic, with an aleatory component that represents the 
uncertainty across a population of welds, and an epistemic component that represents the 
uncertainty in the parameters of the weld yield stress distribution. The epistemic component can 
additionally include uncertainty in the distribution for weld yield stress. There can be uncertainty 
in this distribution as it is often chosen empirically from limited measured data with statistical 
distribution fitting techniques (see Section 4). 

If the analyst was only interested in calculating the probability of failure for a single weld, rather 
than the probability of failure in a population of welds, then classifying these uncertainties as 
epistemic would be appropriate. This is because a single weld has one set of true, but unknown, 
values for these parameters and the goal is to assess the probability for a single weld. Collecting 
more information (e.g., measured data) on these quantities for the single weld would reduce the 
uncertainty. 
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Table 3.1. Classification of Inputs as Aleatory or Epistemic 

Input Classification 
Pressure, 𝝆𝝆 Aleatory 
Radius, 𝒓𝒓 Aleatory 

Wall Thickness, 𝒕𝒕 Aleatory 
Angle of Helical Weld, 𝜶𝜶 Aleatory 

Weld Yield Stress, 𝒀𝒀 Epistemic 
 

2. Determine sample size (and sampling scheme): 

Computational costs will be more prevalent when uncertainties are separated. In this case, a 
“double-loop” (also referred to as “nested loop”) sampling procedure is performed: 

i. A set of epistemic variables is sampled randomly from their probability distributions. If 
epistemic uncertainty is not defined probabilistically, a discrete worst-case value can be 
used instead.  

ii. Run a fixed epistemic set with 𝑛𝑛𝑎𝑎 samples of the aleatory variables through a model in 
order to estimate the failure probability across the aleatory samples. Here, 𝑛𝑛𝑎𝑎 is the aleatory 
sample size.  

iii. Steps 1 and 2 are repeated as many times as the epistemic sample size (𝑛𝑛𝑒𝑒). The separation 
of the results by the epistemic uncertainty is maintained. It is recommended that the 
random seed be changed with each epistemic sample.  

This will require a total of 𝑛𝑛𝑎𝑎 × 𝑛𝑛𝑒𝑒 realizations. The aleatory sample size (𝑛𝑛𝑎𝑎) must be large with 
respect to the probability of weld failure and the epistemic sample size (𝑛𝑛𝑒𝑒) must be chosen so 
that there is a strong degree of confidence in the estimation. In practice, the final choice of sample 
size is generally determined using iterative convergence analyses. More information on 
convergence analyses can be found in Section 9. 

With these considerations, the following sample sizes were used with IS on pressure and weld 
yield stress: 

• Aleatory sample size, 𝑛𝑛𝑎𝑎 =  4 ×  104 
• Epistemic sample size, 𝑛𝑛𝑒𝑒 =  1 ×  103 

3. Use a double-loop process to simulate the distribution of the failure probability: 

The double-loop procedure (as described in Step 1) is implemented as follows:  

i. 1 ×  103 epistemic samples of weld yield stress are generated by IS using the importance 
distribution defined in Section 8.2.  

ii. For each sample, 4 ×  104 sample sets of the aleatory variables (cylinder radius, thickness, 
weld angle and pressure) are used to estimate the distribution of the shear stress calculated 
in the weld. Using IS, pressure is sampled using the distribution defined in Section 8.2.  
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iii. The shear stress distribution is compared to the weld yield stress to estimate the probability 
of weld failure. This results in 1 ×  103 estimates of the probability of failure, where each 
epistemic realization represents the epistemic uncertainty in the failure probability. The 
distribution of these estimates is shown in Figure 3.2. 

 
Figure 3.2. The estimated probability of failure across 1000 epistemic samples. The dashed line 

represents the mean estimate.  

3.2.2. Results and potential difficulties: 

The mean estimate of the probability of failure is 8.2 ×  10−7 , approximately the same as in the case 
when aleatory and epistemic uncertainties were not separated (8.3 ×  10−7), and still relatively close 
to the true failure probability (8.8 ×  10−7). However, interpretation of the confidence in that estimate 
has changed. Even though the mean estimate is below the threshold of 1 ×  10−6 also considered in 
Section 3.1, 13.5% of the epistemic samples had estimated failure probabilities that were greater than 
1 ×  10−6. The 95th percentile of the probability estimates is 1.99 ×  10−6, which can be considered 
an upper 95% epistemic confidence bound on the failure probability.  

When uncertainties are separated into aleatory and epistemic, confidence in inferences about the 
failure probability can change [2]. These insights cannot be seen if uncertainties are not separated 
before the simulation is performed. 

While the 95% bound does not include epistemic sampling uncertainty since the epistemic sample set 
was held fixed, it does include two other types of uncertainty: the uncertainty due to the epistemic 
variables, and sampling uncertainty from the aleatory variables. It is important that the aleatory sample 
size be large enough to minimize the aleatory sampling uncertainty; otherwise, the two types of 
uncertainties will be confounded.  

In the above example, all uncertainties associated with shear stress are aleatory. Therefore, the 
distribution of shear stress does not change across epistemic samples, as shown in the left plot of 
Figure 3.3. However, if pressure had been classified as epistemic instead of aleatory, significantly 
different distributions for resulting shear stress would be generated for each epistemic sample, as seen 
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in the right plot of Figure 3.3. These results emphasize two points. First that, the characterization of 
aleatory and epistemic uncertainties can potentially affect the results of an analysis, and second, when 
epistemic uncertainty is large, estimates of aleatory distributions conditioned on epistemic variables 
can vary significantly.  

 
Figure 3.3. 100 epistemic empirical CDFs of shear stress when pressure uncertainty is aleatory 

(left) and epistemic (right). 

3.2.3. Summary: 

• Characterization of uncertainty types depends on both the goal of the analysis and the analyst’s 
domain knowledge. 

• The double-looping procedure requires a larger sample size than when uncertainties are not 
separated.  

• The classification of aleatory and epistemic will not change the point estimate of the failure 
probability (as long as the sample size is large enough), but it will affect the interpretation of the 
uncertainty associated with the failure probability. 

• When epistemic uncertainty is large, estimates of the failure probability for different epistemic 
values can vary significantly.  
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4. STATISTICAL DISTRIBUTION FITTING 

This section applies methods for statistical distribution fitting (NUREG/CR-7278, Section 4.2.1) to 
the pressurized tank example. Two concepts are illustrated: 

1. Estimating an input distribution from measured data.  
2. Restricting the range of an input through distribution truncation. 

When to apply this method. Statistical distribution fitting should occur in a PFM analysis after a list 
of uncertain inputs has been established and those inputs have been classified as aleatory or epistemic 
(Section 3). Once distributions are fit to the data, they can be used in the forward propagation of 
uncertainty (Section 8).  

4.1. Data-driven distribution estimation 

This example illustrates the process of estimating the probability distribution of weld yield stress from 
available measured data. 

4.1.1. Process:  

There are 5 steps in input distribution specification: 

1. Determine relevant data. 

Suppose there are 75 experimental measurements of weld yield stress in MPa (Table 4.1): 

Table 4.1. Experimental Measurements of Weld Yield Stress 

Measurement Weld Yield 
Stress [MPa] 

Measurement  Weld Yield 
Stress [MPa] 

Measurement Weld Yield 
Stress [MPa] 

1 608.64 26 593.23 51 606.33 
2 586.67 27 600.12 52 599.93 
3 587.70 28 602.95 53 612.45 
4 618.17 29 605.02 54 614.56 
5 607.84 30 582.91 55 581.05 
6 597.89 31 612.83 56 604.24 
7 590.48 32 598.86 57 606.36 
8 604.67 33 562.70 58 598.88 
9 596.59 34 614.95 59 604.53 
10 583.76 35 575.00 60 588.70 
11 613.08 36 618.82 61 593.54 
12 593.97 37 602.99 62 601.27 
13 589.40 38 594.36 63 614.19 
14 598.95 39 597.73 64 597.00 
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Measurement Weld Yield 
Stress [MPa] 

Measurement  Weld Yield 
Stress [MPa] 

Measurement Weld Yield 
Stress [MPa] 

15 600.38 40 597.91 65 601.50 
16 600.55 41 600.23 66 616.28 
17 614.83 42 592.72 67 581.08 
18 580.26 43 596.97 68 593.01 
19 550.59 44 537.39 69 595.47 
20 578.81 45 582.17 70 581.57 
21 604.76 46 602.87 71 601.59 
22 600.94 47 597.86 72 608.42 
23 562.31 48 601.44 73 590.71 
24 595.49 49 601.31 74 608.50 
25 591.08 50 574.12 75 603.58 

 

For the data to be relevant, these measurements should be collected from a representative sample of 
relevant welds. Furthermore, testing should not introduce any measurement bias in the data. 
Specifically, the weld yield stress measurements should not be systematically biased high or low; if 
there is bias, measurements should be first calibrated to remove the bias. If there is random 
measurement noise in the data (not systematic), then this measurement error can be accounted for in 
the analysis. 

If the data are not sufficiently relevant, expert judgment can be used to determine how the input 
distribution should be adjusted to account for any biases in the data. 

2. Select candidate probability distributions. 

For illustrative purposes, the normal, lognormal, and Weibull distributions are considered as candidate 
probability distributions. These distributions are characterized by a shape and scale parameter. More 
flexible distributions can be considered. 

3. Fit the distributions to the data. 

Estimation:  The parameters for the distributions are estimated using maximum likelihood estimation, 
which is an optimization procedure for finding the most likely values of the model parameters given 
the available data. For the normal and lognormal distributions, these parameters are a special case of 
simply the sample mean and standard deviation of the original and log-transformed data, respectively.  

Uncertainty quantification:  Because only 75 data points representing a sample from the population are 
available, the estimated distribution parameters will contain uncertainty. The statistical bootstrap 
(NUREG/CR-7278 Section 4.3.7) can be used to characterize sampling uncertainty in the distribution 
parameters (other methods for quantifying sampling uncertainty could have been applied, such as the 
asymptotic standard error based on maximum likelihood estimation). One-sided 90% confidence 
bounds are calculated for the parameters, calculating sampling uncertainty in the “conservative 
direction”. Specifically, for the normal and lognormal distributions, the probability of failure increases 
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with the standard deviation and decreases with the mean. For the Weibull distribution, the probability 
of failure decreases with both the shape and scale parameters. 

Parameter estimates using maximum likelihood estimation and uncertainties using statistical 
bootstrapping are displayed in Table 4.2. 

Table 4.2. Parameter Estimates and Sampling Uncertainties 

Distribution Parameter Point-
estimate 

Parameter uncertainty 
One-sided 

90% confidence bound 
Normal Mean 

Standard deviation 
596.4 
12.5 

594.0 (lower bound) 
16.3 (upper bound) 

Lognormal Log-mean 
Log-standard deviation 

6.4 
0.02 

6.4 (lower bound) 
0.03 (upper bound) 

Weibull Shape 
Scale 

56.7 
602.3 

49.6 (lower bound) 
600.7 (lower bound) 

 

4. Evaluate the fit of the distributions to the data. 

QQ plots (Figure 4.1) are used to graphically evaluate the statistical distribution fit. A straight line 
between the empirical and model-based quantiles provides evidence that the model fits the data. A 
two-sided 95% confidence interval [3] around the line is also plotted as the shaded region to graphically 
visualize how much sampling uncertainty in the quantile comparisons is expected when 𝑛𝑛 = 75. There 
is evidence of a deviation from the straight line for both the normal and lognormal fitted models. 
While the QQ plots for the normal and lognormal fitted models look similar, the two confidence 
intervals on the normal and lognormal QQ plots have several points that fall outside the interval. The 
Weibull model appears to follow the straight line more closely, though due to the limited sample size, 
it is difficult to assess the distributional fit in the tails of the distribution.  
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Figure 4.1. QQ plots for evaluating distributional fit. (Top left) normal distribution; (top right) 
lognormal distribution; and (bottom) Weibull distribution. 

Additionally, the Anderson-Darling statistical goodness of fit test [4] suggests that there is enough 
evidence in the data to conclude a lack of fit at the 10% significance level for the log-normal 
distribution. This is consistent with the results in the QQ plots. Unfortunately, the nature of goodness 
of fit tests makes them unable to positively identify a distribution, but they can help to eliminate poor-
fitting distributions from consideration. In this example, the Anderson-Darling test eliminated the 
lognormal distribution.  

5. Select a final input distribution model. 

The Weibull distribution produces a reasonable fit to the data, but the sample size is limited. Therefore, 
the final input distribution should be supported using subject-matter judgment. For example: 



17 

It is possible for the distribution of weld yield stress to be left-skewed. Yield strength in steels (all 
metals) depends on its microstructural characteristics and is therefore considered a structure sensitive 
property. For a given class of steel (grade, composition, heat treatment, grainsize), there is an upper 
bound on its ability to work harden, resulting in yield data with left-skewness. Other types of skew 
could also exist in a population. During mill inspections, material that does not fulfill a specified 
strength generally is detected in routine control tests and is not included in the sample. The Weibull 
distribution is the only candidate distribution that allows for left-skewness; therefore, the Weibull 
distribution is selected as most appropriate. 

There is no additional expert judgment about the location and scale parameter values. Therefore, one 
option is to apply a confidence bound on the parameters (e.g. 90% one-sided confidence bounds 
(Figure 4.2)) that represents parameter sampling uncertainty. Using a higher confidence level would 
result in more conservatism, and the selection of the confidence level is somewhat arbitrary based on 
the desired level of conservatism and amount of available domain knowledge. Therefore, the final 
model selection should use expert judgment to ensure the selected distribution adequately represents 
uncertainty.  

Note that there are many other ways to incorporate parameter sampling uncertainty. For instance, 
sampling uncertainty can be considered as a source of epistemic uncertainty and looped over in the 
analysis.  

To adequately represent the uncertainty, the final input distribution for weld yield stress is 
𝑌𝑌 ~ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝜆𝜆 =  600, 𝑘𝑘 =  50). This corresponds to the 90% one-sided confidence bound on the 
Weibull parameters.  

 
Figure 4.2. Weibull distributions on weld yield stress defined by different one-sided confidence 

levels on the Weibull parameters. 

4.1.2. Results and potential difficulties:  

Input distribution estimation can be inaccurate with limited data because: 
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• The exact form of the input distribution cannot be identified with limited data. 
• Even if the distributional form is correct, parameter uncertainty can be underestimated. 
• It is difficult to characterize the tails of the distribution, and when estimating failure probabilities, 

the tails can drive the results. 

Therefore, it is important to consider the above sources of uncertainty when estimating input 
distributions; furthermore, the analyst should be cognizant that excessive conservatism is not a 
prudent solution and can produce inaccurate results. Accurately capturing the tails of probability 
distributions with limited data requires expert judgment and cannot be a solely data-driven activity. 

The same process described above is performed for pressure and thickness and their final distributions 
are:  

𝜌𝜌 ~ N(𝜇𝜇 = 50,𝜎𝜎 = 6) 

𝑡𝑡 ~ Beta(𝛼𝛼 = 2,𝛽𝛽 = 5, 𝐿𝐿𝐿𝐿 = 0.018,𝑈𝑈𝑈𝑈 = 0.02) 

4.1.3. Summary:  

• Evaluating distributional fits using limited data cannot be solely data-driven and requires expert 
judgment, particularly when the tails of the distribution are important to the analysis results.  

• Failure probability calculations are sensitive to the tails of the input distributions. Sensitivity 
studies should be applied to important inputs when there is uncertainty about the probability 
distribution. 

• The ‘best-estimate’ of an input distribution should account for sampling uncertainty when data 
are limited. Sampling uncertainty in probability distribution parameters can increase the input 
parameter uncertainty. 

4.2. Distribution truncation  

This example illustrates the process of restricting the range of an input through truncation and 
potential difficulties.  

4.2.1. Process:  

There are several steps in specifying truncated distributions. 

1. Determine the range of the distribution.  

Suppose that any cylinders with radius less than 0.564 m or greater than 0.636 m were scrapped during 
manufacturing, such that 𝑟𝑟 is in [0.564, 0.636] m. Modeling 𝑟𝑟 ~𝑁𝑁(0.6, 0.012) is not appropriate as the 
normal distribution can take on values (−∞,∞), but 𝑟𝑟 is restricted to the range [0.564, 0.636] m.  

2. Select a distributional form given the distributional range.  
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The new distribution should be restricted to the range [0.564, 0.636] m. Two candidate distributions 
are a shifted and scaled beta distribution or a truncated normal distribution (Figure 4.3). The beta 
distribution is a continuous distribution with a domain of finite measure that can take on a variety of 
shapes, and therefore is a good candidate for modeling inputs with a bounded range. The truncated 
normal distribution is a normal distribution with restricted upper and/or lower bounds. When 
truncation occurs, the distribution is normalized so that the area of the non-truncated region integrates 
to one [5].  

 
Figure 4.3. Different distributions with a domain of finite measure, relative to the original normal 

distribution. The right figure is zoomed into the bottom tails of the distributions. 

Because the data were generated by scrapping parts with radii that were outside the valid range, the 
truncated normal distribution is likely more appropriate for this application. The uncertainty in the 
radius can be estimated as:  

𝑟𝑟 ∼ 𝑇𝑇𝑇𝑇(μ = 0.6,σ = 0.012, LB = 0.564, UB = 0.636) 

where the mean is 0.6, standard deviation is 0.012, and upper and lower truncation limits are 0.564 
and 0.636, respectively.  

4.2.2. Results and potential difficulties:  

The first row of Table 4.3 shows the analysis results for radius with and without truncation using the 
limits that were previously set. In this case, the truncation does not remove a significant amount of 
area under the normal distribution, so the estimated failure probability is similar with and without 
truncation.  

Now, consider a case where the lower and upper bounds of the radius were 0.590 and 0.610. 
Performing the same analysis gives the results in the second row of Table 4.3. With these new limits, 
more area under the curve is truncated, resulting in a failure probability that is smaller. If the truncated 
distribution was the correct distribution, then the failure probability would be over-estimated by failing 
to truncate. 
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Table 4.3. Impact of Truncation of r on Failure Probability 

Bounds (m) With Truncation Without Truncation 
[0.564, 0.636] 8.6 × 10−7 8.8 × 10−7 
[0.590, 0.610] 6.4 × 10−7 8.8 × 10−7 

 

A similar process is performed for the angle of the helical weld and its distribution is chosen as: 

𝛼𝛼 ~ 𝑇𝑇𝑇𝑇(𝜇𝜇 = 55,𝜎𝜎 = 1.1, 𝐿𝐿𝐿𝐿 = 51.7,𝑈𝑈𝑈𝑈 = 58.3) 

4.2.3. Summary: 

• Identifying limits on important inputs can help prevent non-physical realizations and can result in 
more appropriate failure probability estimates. 
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5. MODELING DEPENDENCE BETWEEN INPUTS 

This section applies methods for modeling dependence between inputs (NUREG/CR-7278, 
Section 4.2.2) to the pressurized tank example. Two concepts are illustrated: 

1. Induce dependence between inputs using rank correlation.  
2. Importance sampling with correlated inputs.  

When to apply this method. In PFM analyses, some uncertain model inputs may be correlated. For 
instance, the inner and outer diameter of a pipe may be uncertain, and these diameters will be positively 
correlated because, by definition, the inner diameter must be smaller than the outer diameter. When 
propagating input uncertainty through the model (Section 8), these correlations must be properly 
accounted for to obtain valid uncertainties on the model outputs.  

5.1. Induce dependence between inputs using rank correlation 

Using the welded pressure vessel, this example illustrates the process of incorporating dependence 
between inputs by inducing correlation on the ranks of the inputs [6]. This method can be used with 
both simple random sampling (SRS) and Latin hypercube sampling (LHS). 

Most input variables in a PFM analysis will be uncorrelated, such that changes in one input do not 
affect the values of other inputs. However, some inputs will exhibit either positive or negative 
correlations. Positive correlations occur when one variable increases and another increases; negative 
correlations occur when one variable increases and another decreases. Measures of correlation take 
on values between -1 and 1, where -1 and 1 represent perfect negative and positive correlation between 
two variables, respectively. Perfect correlation occurs when there is a deterministic linear relationship 
between two variables. Uncorrelated variables have a correlation of 0. 

The pressurized tank example is modified slightly in this section to induce correlation between two 
variables for pedagogical reasons. Specifically, suppose that tanks with a smaller radius, 𝑟𝑟, have higher 
internal pressure, 𝜌𝜌. That is, the radius and pressure inputs are negatively correlated.  

5.1.1. Process:  

There are four primary steps for inducing dependence via the rank correlation method: 

1. Sample the full set of realizations for all inputs independently from their respective 
uncertainty distributions, initially ignoring correlation. These independent inputs are later 
transformed to induce correlation. 

2. Specify correlation between the ranks of the inputs. In this method, correlation is specified 
on the ranks of the inputs, rather than on the inputs themselves. The rank of a continuous input 
is simply an integer-value representing the order of all of its values. Assume in this example that 
the rank correlation between radius and pressure is -0.9 (this correlation value induces a strong 
negative correlation between these inputs). The correlation matrix 𝐶𝐶 is the matrix defining the 
correlations between input ranks. As an example, for the ranks of radius and pressure, this matrix 
is 𝐶𝐶 =  � 1 −0.9

−0.9 1 �. The diagonal of the matrix is 1, representing the fact that the correlation 



22 

of an input with itself is 1; the off-diagonal elements of the matrix correspond to the rank 
correlation between radius and pressure. 

3. Transform the independent samples to induce correlation. 

The premise of the rank correlation method is that if correlation is induced between the ranks 
of the inputs, then the inputs are reordered to preserve this rank correlation. For more details 
and methodological extensions, see [6]. 

Specific steps are: 

i. Calculate the Cholesky decomposition 𝑃𝑃 of the rank correlation matrix 𝐶𝐶, such that 𝑃𝑃𝑃𝑃𝑇𝑇 =
 𝐶𝐶. 

ii. Construct a matrix R with columns comprised of scores, defined here as a random 
permutation of 𝛷𝛷−1[𝑖𝑖 (𝑛𝑛 + 1⁄ )] for 𝑖𝑖 =  1, … ,𝑛𝑛, where n is the total number of samples 
and 𝛷𝛷 is the cumulative distribution function for the normal distribution. For more 
information about score selection, see [6]. 

iii. Calculate 𝑅𝑅∗ = 𝑅𝑅𝑃𝑃𝑇𝑇 . The correlation matrix for 𝑅𝑅∗ will be close to 𝐶𝐶. 

iv. Reorder the columns of the independently sampled inputs to have the same ordering as 
the columns of 𝑅𝑅∗. 

4. Verify correlation between dependent inputs. 
To verify that the correlation method has worked as intended, the correlation between the 
dependent inputs, as well as the correlation between the ranks of the dependent inputs, can be 
calculated after applying the rank transformation. In this example, the correlation can be 
estimated using the standard formula for correlation: 

𝑟̂𝑟 =  
∑ (𝑥𝑥𝑖𝑖 −  𝑥̅𝑥)(𝑦𝑦𝑖𝑖 −  𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 −  𝑥̅𝑥)2(𝑦𝑦𝑖𝑖 −  𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

 

where 𝑥̅𝑥,𝑦𝑦� are the sample means of variables 𝑥𝑥 and 𝑦𝑦. In the example, the correlation between 
the ranks of pressure and radius should be approximately -0.9 and the correlation between the 
raw values of pressure and radius should be negative. 

5. Propagate uncertainty through the model using the dependent inputs. 
The distribution of weld shear stress and the corresponding failure probability can be estimated 
based on the sampled dependent inputs. 

5.1.2. Results and potential difficulties:  

The rank correlation method is used to induce correlation between 𝑟𝑟 and 𝜌𝜌. The distributions of the 
individual inputs (i.e., marginal distributions) are the same in the correlated and uncorrelated samples, 
but the joint distribution clearly differs and reflects the negative correlation using the rank correlation 
method (Figure 5.1). The estimated empirical correlation between the radius and pressure after 
applying the rank correlation method is -0.90 and the estimated correlation between the ranks is -0.89, 
suggesting the method worked as intended to induce a negative correlation of -0.9 between the ranks 
of the inputs.  
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Figure 5.1. (Left) Correlated dependent inputs generated using the rank correlation method; (right) 

input distributions without correlation. 

When propagated through the model, the correlated inputs result in a narrower shear stress 
distribution as compared to uncorrelated inputs (Figure 5.2). Given the relationship between shear 
stress, pressure, and radius, this change in distribution is expected. Increasing both radius and pressure 
increases shear stress. When radius and pressure are negatively correlated, extreme values of shear 
stress are less likely because high values of pressure are accompanied by low values of radius. 
Therefore, the probability of failure decreases with this correlation; the estimated probability of failure 
is ~3 ×  10−8 after inducing correlation, compared to ~6 ×  10−7 with independent samples. While 
the probability of failure clearly decreases, the difference between the distributions of shear stress 
using correlated and uncorrelated samples is difficult to discern because uncertainty in the radius has 
little impact on the shear stress distribution (due to the narrow range of uncertainty in the radius 
distribution).  
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Figure 5.2. Distribution of shear stress based on uncorrelated samples (red) and correlated samples 

(green); the distribution of yield stress is shown in blue for reference. 

If the radius had more uncertainty, accounting for dependence between inputs would have a larger 
impact on the estimated failure probability. To illustrate this point, the distribution of the radius is 
changed from: 

𝑟𝑟 ~ 𝑇𝑇𝑇𝑇(𝜇𝜇 = 0.6,𝜎𝜎 = 0.012, 𝐿𝐿𝐿𝐿 = 0.564,𝑈𝑈𝑈𝑈 = 0.636) 

to: 

𝑟𝑟 ~ 𝑇𝑇𝑇𝑇(𝜇𝜇 = 0.6,𝜎𝜎 = 0.05, 𝐿𝐿𝐿𝐿 = 0.5,𝑈𝑈𝑈𝑈 = 0.7) 

With more uncertainty in the radius, the dependence between the inputs results in a much narrower 
stress distribution than the stress distribution without accounting for input dependence (Figure 5.3). 
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Figure 5.3. Distribution of shear stress based on uncorrelated samples (red) and correlated 

samples (green) with more uncertainty in the radius; the distribution of yield stress is 
shown in blue for reference. 

 
 

5.1.3. Summary:  

• Accounting for dependence between inputs using rank correlation is straightforward for many 
sampling schemes and can substantively impact final analysis results. 

• Failing to include correlation between inputs that should be correlated can be misleading 

5.2. Importance sampling with correlated inputs 

In the pressurized tank problem, IS on pressure can improve failure probability estimation (see Section 
8.2 for more information). Recall that IS is a variance reduction technique where the input sampling 
distribution is changed to focus on the failure region and samples are weighted accordingly.  

If pressure is correlated with the radius of the cylinder, as in the previous example, then the correlation 
between the pressure and radius should be considered when using IS. The rank correlation method 
from the previous concept cannot be applied under IS because the inputs are sampled from the 
importance distribution, rather than the marginal distributions of the inputs. Inducing correlation 
between inputs sampled from their importance distribution would not necessarily produce the correct 
correlation structure on the target distribution.  

In this example, pressure and radius are sampled using IS while accounting for their correlation. To 
use IS with dependent inputs, the joint distribution of the inputs must first be identified, unlike in the 
rank correlation method. 
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5.2.1. Process:  

There are three primary steps for inducing dependence when inputs are sampled using IS: 

1. Identify the joint distribution of the correlated inputs that will be importance sampled. 

In this case, pressure and radius are sampled from a joint truncated multivariate normal 
distribution with correlation -0.9. The joint truncated multivariate normal distribution is a 
generalization of the univariate normal distribution for multiple dimensions. It is formed using the 
normal marginal distribution for pressure and the truncated normal marginal distribution for 
radius. This distribution allows for the specification of the correlation between the inputs. Figure 
5.4 shows a notional example of a highly negatively correlated bivariate normal distribution 
between two inputs.  

 

Figure 5.4 Notional example of a highly negatively correlated bivariate normal joint 
distribution between two variables, 𝒙𝒙𝟏𝟏 and 𝒙𝒙𝟐𝟐. 

 
 

 
2. Identify an importance distribution for the correlated inputs.  

The selection of the importance distribution should consider both the importance region and the 
correlation between inputs. Failing to include correlation between inputs in the importance 
distribution could decrease efficiency of failure probability estimation.  

The selected importance distribution in this example is again a joint truncated multivariate normal 
distribution with correlation -0.9. The mean values of the pressure and radius distributions are 
incremented by +3 and -3 standard deviations, respectively; and the standard deviations of both 
pressure and radius are increased by a factor of 1.5. These changes shift the input distribution 
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toward the important failure region while preserving the relationship between pressure and radius 
(Figure 5.5). 

Note that the importance weights are now constructed based on the joint distribution of radius 
and pressure before and after IS. Specifically, define 𝑝𝑝(𝑟𝑟𝑖𝑖 ,𝜌𝜌𝑖𝑖) and 𝑞𝑞(𝑟𝑟𝑖𝑖 ,𝜌𝜌𝑖𝑖) as the joint probability 
density functions for the target distribution and importance distribution, respectively, for radius 
and pressure evaluated at 𝑟𝑟𝑖𝑖 ,𝜌𝜌𝑖𝑖 . Then, the importance weights are: 

𝑤𝑤𝑖𝑖 =  
𝑝𝑝(𝑟𝑟𝑖𝑖 ,𝜌𝜌𝑖𝑖) 
𝑞𝑞(𝑟𝑟𝑖𝑖 ,𝜌𝜌𝑖𝑖) 

 

3. Sample inputs and propagate uncertainty through the model. 

For more information about estimating a failure probability based on an importance sample, see 
Section 8.2.  

5.2.2. Results and potential difficulties: 

The original target and importance sampled distributions for pressure and radius are plotted in Figure 
5.5. Note that the importance distribution covers the failure region (high pressures) more densely than 
the original distribution. Additionally, the importance distribution preserves the correlation between 
radius and pressure. Using 105 importance samples (IS on pressure and radius, as well as weld yield 
stress), the estimated failure probability is 8 × 10−8, an order of magnitude lower than the estimated 
failure probability without dependent inputs (8 × 10−7). 

This example considers IS with only two correlated inputs; specifying an importance distribution that 
increases efficiency in failure probability estimation becomes more difficult as the number of 
correlated inputs increases. 

 
Figure 5.5. Distribution of correlated inputs radius and pressure when inputs are sampled from 

the importance distribution (left) and the target distribution (right). 
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5.2.3. Summary: 

• When dependent inputs are importance sampled, the joint distribution of the inputs must be 
considered when determining how to importance sample.  
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6. SENSITIVITY ANALYSIS 

This section applies methods for analyzing sensitivity (NUREG/CR-7278, Section 4.2.3 and 4.2.4) to 
the pressurized tank example. Four concepts are illustrated:  

1. Choose a relevant response on which to conduct sensitivity analysis.  
2. Use exploratory data analysis to visualize input/output relationships.  
3. Estimate local sensitivity metrics.  
4. Estimate global sensitivity metrics. 

When to apply this method. Sensitivity analysis (SA) helps identify which uncertain inputs explain a 
high proportion of the uncertainty in the output. SA is typically performed iteratively with the forward 
propagation of uncertainty (Section 8). SA can take place after an initial set of inputs have been 
propagated through the model and the results of the SA may be used to determine an updated 
sampling scheme before assessing for convergence (Section 9).  

6.1. Choose a relevant response on which to conduct sensitivity analysis 

Prior to starting a sensitivity analysis, it is important to decide whether the failure probability or a 
model output will be used in the analysis.  

6.1.1. Process:  

Determine which output(s) to use for sensitivity analysis 

In the pressurized tank example, the model returns an indicator value that is equal to 1 if shear stress 
is larger than weld yield stress and 0 otherwise. Using this indicator for sensitivity analysis poses two 
problems:  

• The probability of failure is rare (i.e., most indicator values will be equal to 0), so many samples 
will be needed to quantify the input/output relationship. 

• Binary/categorical responses in regression inherently contain less information than continuous 
responses. Often a binary response is a function of continuous variables. These continuous 
variables can provide better information on directional effects with fewer samples.  

Because of these issues, it is beneficial to use a continuous variable for sensitivity analysis when 
possible.  

6.1.2. Results and potential difficulties:  

In this example, shear stress will be used because it is used in the calculation of the indicator value, 
and it is known that higher values of shear stress result in more failures. Note that weld yield stress is 
not considered in the sensitivity analysis as it is clear in this example problem that weld yield stress 
has a large impact on the probability of failure.  

There could be cases where using a continuous response in place of an indicator can pose problems. 
For example, if there are conjoint influences on the indicator, there may not be a single continuous 
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response that is sufficiently correlated with the indicator. In that case, the indicator would need to be 
used for the sensitivity analysis and a larger sample size would likely be required. 

6.1.3. Summary  

• A model output may be better suited for sensitivity analysis than a failure probability.  

6.2. Use exploratory data analysis to visualize input/output relationships 

A scatterplot is a visualization tool that can be used to understand the relationship between model 
inputs and outputs. They can be used as a first step to assess the nature and magnitude of the 
input/output relationships.  

6.2.1. Process:  

1. Determine which inputs and outputs should be plotted 

The choice of which inputs and outputs should be plotted depends on the number of each:  

• If there are a small number of input and output variables, scatterplots can be produced for each 
combination of input and output. In this problem, there are only 4 uncertain inputs and 1 output, 
so scatterplots are produced for each combination. 

• With many inputs/outputs, visualizations can be selectively chosen based on subject matter 
knowledge or by first calculating sensitivity metrics to get an estimate of which input/output 
relationships are most important.  

2. Sample from the uncertain inputs and calculate the output  

• 1 ×  102 simple random sample (SRS) values of pressure, radius, wall thickness, and angle of the 
helical weld are sampled from the distributions defined in the Problem Statement (Section 1) and 
the model is applied to generate a distribution of shear stress. Note that the goal here is to 
understand the input/output relationship. With a continuous outcome (shear stress), fewer 
samples are generally needed to estimate this relationship as compared to estimating a rare 
probability. 

3. Generate scatterplots and assess the input/output relationships 

Scatterplots can be used for many purposes, including:  

• Determining whether relationships are roughly linear, monotonic (i.e., entirely increasing 
or decreasing), or more complex. This can help hypothesize statistical models that may be used 
to generate the global sensitivity metrics. For example, if the scatterplots show that the 
input/output relationships are roughly linear, a simple linear regression may be appropriate for 
calculating the metrics. However, if more complex relationships are present, more flexible models 
may be required.  

• Identifying two-way interactions between inputs. A two-way interaction is present when the 
effect one dependent variable has on the response depends on the value of another dependent 
variable. An option for generating a two-way interaction with continuous inputs is to create a heat 
map with the inputs along the x and y axis, and the output representing the heat of the map. When 
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there are many uncertain inputs, subject matter expertise can be leveraged to select candidate 
inputs to plot. 

• Confirming results that are generated during a global sensitivity analysis. If possible, results 
from a global sensitivity analysis should be confirmed to be as expected visually via scatterplots. 
For example, if a visual trend is present in a scatterplot, it will likely indicate that the output is 
sensitive to that input.  

 
Figure 6.1. Scatterplots for shear stress versus pressure, radius, weld thickness, and angle of the 

helical weld. 

6.2.2. Results and potential difficulties:  

Figure 6.1 shows the scatterplots for shear stress versus pressure, radius, wall thickness, and angle of 
the helical weld. Here, it appears that pressure has a strong, approximately linear relationship with 
shear stress, while radius, wall thickness, and angle of helical weld do not have clear relationships with 
the output. 

The main difficulties in sensitivity analysis are failing to visualize important relationships and 
misinterpreting the visualizations. More complex relationships, such as interactions amongst the input 
variables, will usually not be obvious in univariate scatterplots such as those in Figure 6.1. Some 
relationships are inherently more difficult to visualize, and often statistical modelling is needed to 
understand if a relationship exist. Estimating global sensitivity metrics (Section 6.4), often relies on 
statistical modeling.  
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6.2.3. Summary  

• Scatterplots are a simple way to understand the nature and magnitude of the relationship between 
uncertain inputs and the output.  

6.3. Estimate local sensitivity metrics  

Local sensitivity analysis is a tool to assess how outputs of interest are affected by changes to each 
input at or near a specific reference point in the input space [7]. This contrasts with global sensitivity 
analysis, which looks at how outputs of interest are affected across the entire input space. Local 
sensitivity analysis can be used as a first step in a sensitivity analysis, or as a computationally 
inexpensive (but limited) alternative to global sensitivity analysis.  

6.3.1. Process:  

1. Execute the model using a fixed set of inputs 

For this example, local sensitivity on shear stress is assessed for an initial set of input variables. 
The choice of these variables is not trivial and may depend on the regions of the input space of 
most concern for the application. In practice, multiple sets should generally be explored, 
particularly if the input/output relationship is expected to be non-linear. For this example, the 
mean of each input is used as the initial value, as shown in the second column of Table 6.1.  

2. Perturb a single input and execute the model again, keeping all other model inputs fixed. 
Repeat this for each input.  

The amount of the perturbation should be large enough so that a change in the output can be 
observed, but small enough to stay within the region of concern in the input space. The choice of 
perturbation depends on the objective of the analysis. If the goal is to rank the influence of inputs, 
a percentage (e.g., ±1%) of the initial value for each input can be used as the amount of 
perturbation. However, if the goal is to assess the importance of an input (as is often the case), the 
perturbation should incorporate a measure of the uncertainty of each input. A variable’s influence 
only concerns its effect on the output as it is varied. Importance also incorporates the assumed 
uncertainty of an input variable. For example, changing an input could have a large impact on the 
output. Such a variable would have high influence. However, if the true value of the variable is 
precisely known, its impact within its range of uncertainty can be small. Such a variable would 
have low importance. In this example, perturbations of both ±1% and ±0.1𝜎𝜎 were used for each 
input, shown in the third and fourth columns of Table 6.1, respectively.  

Table 6.1. Set of Initial Values and Perturbations for Local Sensitivity Analysis 

Input Initial Value ±1% Perturbation ±0.1𝜎𝜎 Perturbation 
Pressure, 𝝆𝝆 50 0.50 0.6 
Radius, 𝒓𝒓 0.6 0.006 0.0012 
Wall Thickness, 𝒕𝒕 0.0186 0.00186 3.2 × 10−5 
Angle of Helical Weld, 𝜶𝜶 55 0.55 0.11 
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3. Measure the change in the output by estimating the partial derivative for each input 

The partial derivative of the output with respect to each input can be approximated using the finite 
difference formula provided in NUREG/CR-7278 Section 4.2.4.  

4. Compare the partial derivative across inputs to assess variable influence/importance   

Inputs that have a partial derivative with a large magnitude are influential/important (depending 
on the type of perturbation used) at the local region where the model was executed in Step 1. The 
results of the local sensitivity analysis depend on the initial values that were used, and the local 
sensitivity of an output to an input can change significantly over the domain of interest. 

6.3.2. Results and potential difficulties:  

The partial derivatives for each input are given in Table 6.2. Looking at the case where ±1% 
perturbation was used, it appears that pressure, radius, and wall thickness have similar influence on 
shear stress. This result is unsurprising considering how shear stress is calculated. However, when 
uncertainty information is included in the perturbation (i.e., when ±0.1𝜎𝜎 perturbation is used), variable 
importance can be assessed, and pressure stands out as the most important variable. This is because 
the uncertainty with pressure is large relative to the uncertainty associated with radius and wall 
thickness.  

Table 6.2. Partial Derivatives of Shear Stress for Each Input 

Input Partial Derivative (±1% 
Perturbation) 

Partial Derivative (±0.1𝜎𝜎 
Perturbation) 

Pressure, 𝝆𝝆 7.49 9.12 
Radius, 𝒓𝒓 7.49 1.47 
Wall Thickness, 𝒕𝒕 -7.34 -1.26 
Angle of Helical Weld, 𝜶𝜶 -5.15 -1.03 

 

Since local sensitivity analysis only requires two model realizations per input (at a minimum), it is a 
relatively inexpensive way to assess variable importance. That said, as mentioned above, the local 
sensitivity can change across the input space. Even if local sensitivity analysis is conducted at multiple 
initial values, a pitfall is the potential to miss regions of high importance/influence. This can especially 
occur if the model is complex with a high dimensional input space that is difficult to understand. 
Additionally, these techniques assume the relationship is locally-linear and results can be misleading if 
this assumption is not a good approximation of the local behavior. The use of the mean value as an 
initial value may in some cases focus the analysis on an inappropriate region; the mean value can be 
an improbable point in the tail of a distribution. 

6.3.3. Summary  

• Local sensitivity analysis is a relatively inexpensive and effective first step toward learning the 
important inputs of a model.  

• The local sensitivity to an input can change significantly over the domain of interest.  



34 

6.4. Estimate global sensitivity metrics  

Global sensitivity analysis attempts to quantify the amount of output uncertainty attributed to 
uncertainty in input variables across the entire input space. It can be a useful tool for understanding 
which inputs drive the problem. This understanding can prompt the refinement of those input 
distributions, as well as determine candidate inputs for IS. As global sensitivity analysis accounts for 
the uncertainty in an input, it provides a measure of variable importance (as described in Section 6.3).  

6.4.1. Process:  

1. Choose method for estimating metrics  

Global sensitivity metrics are often estimated using regression techniques (e.g., linear regression) 
or variance-based methods. For this example, variance-based indices are used as they can handle 
complex relationships and they are easy to interpret. The calculation of variance-based indices 
generally requires a Monte-Carlo integration approach (NUREG/CR-7278 Section 4.2.3) which 
may require the use of surrogate models to reduce the computational cost. However, since this is 
a simple problem, a surrogate model is not required.  

2. Sample the uncertain inputs and calculate the output  

1 ×  103 values of pressure, radius, wall thickness, angle of the helical weld and weld yield stress 
are sampled from the distributions defined in the Problem Statement (Section 1). These values are 
used as a base sample that is then used to estimate the sensitivity metrics following the Monte-
Carlo approach described in [8]. The Monte Carlo approach recommends that this base sample, 
𝑁𝑁, is sufficiently large (i.e., 500 samples or more). The approach then uses this base sample to 
generate a total of 𝑁𝑁(𝑘𝑘 + 2) realizations of the model, with 𝑘𝑘 being the number of parameters.  

3. Calculate global sensitivity metrics for each input/output  

The first order and total effects indices [8] [9] are the most commonly used variance-based 
sensitivity metrics. They are calculated (as described in NUREG/CR-7278 Section 4.2.3) for each 
uncertain input and shear stress. Recall that first order indices (𝑆𝑆𝑗𝑗) provide a measure of the 
proportion of the total output uncertainty that is explained by the uncertainty in the 𝑗𝑗𝑡𝑡ℎ input 
alone. Total effects indices (𝑇𝑇𝑗𝑗) give the fraction of output uncertainty that is explained by the 
uncertainty in the 𝑗𝑗𝑡𝑡ℎ input and its interactions with other inputs. 

4. Compare the global sensitivity metrics across inputs to assess variable importance  

Higher values of first order and total effects indices correspond to variables that contribute the 
most to the uncertainty in the output. Variables that are high contributors may be candidates for 
IS or input uncertainty refinement.  

6.4.2. Results and potential difficulties:  

Table 6.3 provides the first order and total effects variance-based indices for each input. Pressure 
alone contributes to 92% of the uncertainty in shear stress, while the remaining three inputs contribute 
only marginal amounts. These results are consistent with what was seen in Sections 6.2 and 6.3.  
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Table 6.3 also shows that the uncertainty in shear stress is not heavily driven by the interactions 
between the input variables as the total effects indices are similar in magnitude to the first order indices 
for each input.  

Table 6.3. First Order and Total Effects Indices for Each Input  

Input Shear Stress, 𝑆𝑆𝑗𝑗 Weld Yield Stress, 𝑇𝑇𝑗𝑗 

Pressure, 𝝆𝝆 0.92 0.93 
Radius, 𝒓𝒓 0.03 0.03 

Wall Thickness, 𝒕𝒕 0.02 0.03 
Angle of Helical Weld, 𝜶𝜶 0.02 0.02 

 

Since pressure is an important variable, it may be a good candidate for IS. Looking at the scatterplot 
in Figure 6.1, it is apparent that higher values of pressure result in higher values of shear stress and 
consequently, a higher probability of weld failure. Therefore, IS on the upper tail of the pressure 
distribution may improve the estimation of the probability of weld failure. The results of IS on 
pressure are shown in Section 8.2.  

Several difficulties in estimating global sensitivity metrics are worth noting:  

• Most importantly, the metrics often depend on an assumed statistical model. If this model poorly 
fits the data, the metrics can be misleading. Model checking to assess the quality of the statistical 
fit is an important aspect of obtaining meaningful metrics.  

• Interpretation of the sensitivity metrics is often nuanced and depends on the types of interactions 
the assumed statistical model can estimate.  

• Since these metrics are calculated from sample data, they contain statistical uncertainty. 
Confidence intervals [10] can be computed using bootstrapping or other techniques to help assess 
if the variable effects are real. However, when estimated metrics are close between two or more 
variables, accurate ordering of variable importance is not straightforward, and likely not 
meaningful. It is often sufficient to group variables with similar metric values as having similar 
importance.  

• Results should be interpreted within the context of the physical model and should make sense to 
the analyst. If the results do not make sense, it is possible the physical model is not being 
implemented correctly or there was a mistake in conducting the sensitivity analysis. This pitfall is 
related to all sensitivity analysis (SA) techniques, both local and global. 

6.4.3. Summary  

• Global sensitivity analysis is more computationally expensive, but it allows for the quantification 
of the effects of uncertain inputs across the entire input space.  

• Global sensitivity analysis can be helpful for determining candidate inputs for IS. 
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7. SURROGATE MODELS 

This section applies methods for fitting surrogate models (NUREG/CR-7278, Section 4.2.5) to the 
pressurized tank example. Two concepts are illustrated: 

1. Surrogate models for forward propagation of uncertainty.  

2. Surrogate models for sensitivity analysis. 

When to apply this method. PFM models are often computationally expensive to run. In this case, 
using an inexpensive computer model to approximate the full model is often useful when conducting 
sensitivity analyses (Section 6) or when propagating input uncertainty to the model outputs (Section 8). 
Unlike the full computer model, predictions from the inexpensive model are computationally cheap, 
allowing the number of model evaluations to increase by many orders of magnitude. Empirical 
statistical models, called surrogate models, are often used as an inexpensive model approximation.  

7.1. Build surrogate models for forward propagation of uncertainty 

In this section, a surrogate model is constructed for shear stress and is used to estimate the failure 
probability. The surrogate model is constructed for shear stress, rather than for the failure binary 
outcome, (i.e. an indicator for whether shear stress exceeds weld yield stress). Statistical surrogate 
models can be built directly for binary outcomes to predict a probability across the input space. 
However, substantially more training points are needed for binary outputs compared to continuous 
outputs, because continuous data contains more statistical information than binary data; further, the 
number of required training points increases as the failure probability decreases. Hence, building 
surrogates for binary data will often not save computing time, since training set sizes must be large. 
Additionally, building flexible surrogates for binary data is often more challenging than building 
flexible surrogates for continuous outcomes. For instance, standard software programs often do not 
have options to build flexible Gaussian process (GP) surrogates for binary data. Failing to achieve 
surrogate model convergence is another common issue. Therefore, in this section, surrogates are 
considered for continuous outcomes only. 

7.1.1. Process:  

There are four primary steps for using surrogate models for forward propagation of uncertainty: 

1. Select a training set of inputs for building the surrogate model. 

The training set is the set of model inputs and outputs used to construct a surrogate model. The 
training set inputs should cover the model input space thoroughly to ensure that the full model is 
accurately approximated by the surrogate in important regions (i.e., regions of the input space 
where the probability of failure is non-negligible). Therefore, using the original input distributions 
is often not a prudent choice for sampling training points for surrogate modeling, as demonstrated 
in the example below.  

2. Build the surrogate model using the training set. 

There are many ways to build surrogate models. GPs for example are a common choice due to 
their flexibility [11]. Linear and non-linear regression models are also commonly used as 
surrogates, as they provide a simple analytical form for the surrogate. An insufficiently flexible 
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surrogate model will bias estimation of the failure probability, as demonstrated in the example 
below.  

When the number of model inputs is high, including all model inputs in the surrogate model is 
often unnecessary. Inputs with negligible influence on the model output can be omitted from the 
model; these inputs can be identified using a global sensitivity analysis (Section 6). 

3. Evaluate the accuracy of the surrogate model. 

Evaluating a surrogate using a test set. Surrogates are often evaluated by using a test set of sampled 
inputs that are propagated through the full model. A test set is a set of model inputs and outputs 
used to evaluate the surrogate’s accuracy. Typically, the test set inputs are sampled using the 
sampling scheme selected for forward propagation of uncertainty. Using the test set, the computer 
model outputs are compared to predictions from the surrogate model to determine how accurately 
the surrogate approximates the full model. The comparison is often made both graphically (by 
plotting surrogate predictions versus observed model outputs) and by calculating metrics. 

Two metrics are considered for evaluating surrogate accuracy:  

• Estimated failure probability from the surrogate, 𝑝𝑝�, compared to the estimated failure probability 
without the surrogate, 𝑝̂𝑝, based on 𝑛𝑛 test set observations. 

• Root mean-squared error (RMSE) in shear stress, defined as: 

�
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

where 𝑦𝑦𝑖𝑖 is the shear stress from the original computer model realization for test set 
observation 𝑖𝑖 and 𝑦𝑦𝚤𝚤�  is the corresponding predicted value from the surrogate model. 

In this example, the test set is comprised of 1 ×  105 inputs sampled using IS. Note that, for 
practical applications where the model is expensive, the test set size will be much smaller. With a 
small test set, comparing the estimated failure probability from the surrogate to the estimate 
without a surrogate may be more difficult, since estimates of this probability may be inaccurate in 
small samples. A large test set is used here to illustrate how surrogate accuracy can vary across 
different surrogate models, training point designs, and numbers of training points.  

Evaluating a surrogate using statistical convergence metrics. If a test set is not available for evaluating 
surrogate accuracy (e.g., if the full model is very expensive and all realizations must be used in the 
training set), then sampling uncertainty associated with a surrogate model can be estimated using 
statistical theory. For example, if a linear regression model is used, confidence intervals on the 
regression model coefficients can be calculated and the width of these intervals can be assessed to 
determine whether there is sufficiently low sampling uncertainty. If the sampling uncertainty is 
too high for the application, additional samples will be needed in the training set. However, this 
approach relies on the assumption that the surrogate model is an accurate approximation to the 
full model.  
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In this case, sampling uncertainty can be summarized using the same types of convergence metrics 
as described in Section 9, including standard errors, coefficients of variation, and confidence 
interval widths.  

4. Estimate the failure probability based on the surrogate model. 

The surrogate model is used in place of the full computational model to predict model outputs 
and estimate the failure probability. Because the surrogate model is computationally inexpensive, 
the number of samples for forward propagation can be increased. In the examples below, 1 × 105 
samples are generated for the surrogate model inputs using IS. These inputs are propagated over 
the surrogate to estimate shear stress, which is ultimately used to estimate the failure probability. 

7.1.2. Results and potential difficulties:  

In this example, three different surrogate models are evaluated using a test set:  

1. A linear regression model, where shear stress is assumed to be a linear function of the inputs. 
This linear model is clearly inadequate and is included solely to illustrate how an inadequate 
surrogate model can lead to poor failure probability estimates [8]. 

2. A GP model that interpolates shear stress over the input space [12]. 

3. A multivariate adaptive regression splines (MARS) model, where shear stress is modeled as a 
flexible function of the inputs [13]. 

Each surrogate model includes all uncertain model inputs that impact shear stress: internal 
pressure (𝑟𝑟), cylinder radius (𝑟𝑟), wall thickness (𝑡𝑡), and helical weld angle (𝑎𝑎). 

Training set selection. LHS was used to select training points for the surrogate. When selecting 
training points, directly using the input distributions would result in very few training points placed in 
the important region of the input space, where failure is most likely to occur. As an alternative, uniform 
sampling over the inputs was used to oversample the important region. The distribution of the internal 
pressure 𝜌𝜌 was unbounded, so bounds were constructed for 𝜌𝜌 based on knowledge of the problem; 
specifically, 𝜌𝜌 was bounded at 2 standard deviations below its mean and 7 standard deviations above 
its mean, since the important region was known to lie above the mean of 𝜌𝜌. Choosing 7 standard 
deviations above the mean resulted in reasonable confidence that the surrogate would predict 
accurately over the important region. 

Poor selection of training points can result in bad surrogate predictions. The implications of training 
point selection are illustrated using three different training set designs: (1) the design described above; 
(2) input distributions corresponding to the importance distribution (Section 8.2); and (3) input 
distributions corresponding to the original input distributions. For each set of training points, a GP 
surrogate was constructed and tested on an importance sample of shear stress. The training point 
designs that cover the important region of the input space (i.e., the uniform design and IS design) have 
superior performance to the design based on the original input distributions in terms of both shear 
stress RMSE and failure probability estimation (Figure 7.1). 
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Figure 7.1. Comparing three training set designs using 1,000 training points. (Left) Root mean-

squared error for shear stress. A horizontal line is drawn at the ideal RMSE = 0. (Right) 
Estimated failure probability. A horizontal line is drawn for the ideal failure probability 

estimate without using a surrogate. 

Size of training set. Determining the number of training points used to train the surrogate model 
requires a trade-off between the computational burden of executing the computer model and the 
desired accuracy of the surrogate. Using an insufficient number of training points will result in poor 
failure probability estimates. Figure 7.2 illustrates how the predictive accuracy of the GP surrogate 
increases with the number of training points. Specifically, the failure probability estimate using the 
surrogate gets closer to the failure probability estimate without a surrogate as the number of training 
points increases. However, the GP is quite accurate even with 100 training points, likely due to the 
simplicity of the true ‘computer model’ in this case. The number of training points will need to grow 
with the number of model inputs and the complexity of the input-output relationships. 
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Figure 7.2. Root mean-squared error (left) and failure probability estimate (right) as a function of 

training set size. 

Inadequate model flexibility. Surrogate models should allow for flexible relationships between 
inputs and outputs, including non-linearities and interactions. GPs are commonly used surrogates 
because they are flexible interpolators. Linear and non-linear regression in contrast do not offer as 
much flexibility in their functional form. Using an insufficient model approximation reduces accuracy 
in failure probability estimates. In Figure 7.3, predictions from a GP surrogate and linear regression 
surrogate built using 1,000 training points are compared to the true model output, illustrating how the 
increased flexibility in the GP model results in improved prediction, particularly in the upper tail of 
shear stress. Figure 7.4 compares the predictive accuracy of three different surrogates: a GP model, a 
MARS model, and a linear regression model. The root mean-squared error of shear stress is much 
higher for the linear model than the MARS and GP models; the GP model provides the most accurate 
estimate of the failure probability. Clearly, the linear regression model is not flexible enough to 
accurately capture the input-output relationship. The GP outperforms MARS, though the predictive 
accuracy of the MARS model may still be sufficient depending on the desired accuracy. Linear 
regression requires explicitly specifying an input-output relationship; in this case, the model assumed 
the output is a linear function of the inputs. If this is substantively wrong, the model will not perform 
well. On the other hand, flexible models like GP and MARS require less prior knowledge on the input-
output relationship and flexibly adapt to the data. 

Excessive model flexibility. Surrogate models can also be too flexible. When a model is too flexible, 
it may predict trends that are spurious and lead to misleading results. The tendency for some models 
to overfit can be controlled using model fitting options and separate training and validation data sets. 
Additionally, trends predicted by a surrogate model that do not make physical sense in the context of 
the problem are suspect and should be further investigated.  
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Figure 7.3. Predicted shear stress from surrogate model compared to true shear stress value from 

the model for: linear regression surrogate (left) and GP surrogate (right). 

 
Figure 7.4. (Left) Mean-squared error of shear stress as a function of training set size. (Right) 

Failure probability estimate as a function of training set size. 

7.1.3. Summary:  

• Surrogate models can serve as computationally efficient approximations to a full computational 
model. 



42 

• Training points for a surrogate should be selected such that the surrogate model predicts accurately 
over all important regions of the input parameter space. The number of training points will need 
to grow with the number of model inputs and the complexity of the input-output relationships. 

• Surrogate models will be inadequate approximations of the full model if the number of training 
points is insufficient and/or the surrogate model is not sufficiently flexible. 

7.2. Surrogate models for sensitivity analysis 

While surrogate models often need to be very accurate for failure probability estimation, surrogate 
models for sensitivity analysis often can be rough approximations to the full model. The surrogate 
must be sufficiently accurate to identify sensitive model parameters but does not necessarily need to 
accurately predict the model output. In this case, sensitivity analysis results reflect trends but cannot 
be interpreted as quantifying the proportion of variance in the QoI that is accounted for by each input.  

7.2.1. Process 

There are three primary steps for using surrogate models for sensitivity analysis. As in Concept 1, we 
build a surrogate model for shear stress. 

1. Select a training set of inputs for building the surrogate model. 

The training set, in general, can be smaller for sensitivity analysis, compared to forward 
propagation of uncertainty. Due to the simplicity of the model in this example, training sets of 
size 10 and 100 are considered. Training points are selected using uniform distributions over the 
inputs as described in Concept 1. 

2. Build the surrogate model using the training set. 

Three surrogate models are again considered: GP, MARS, and linear model. See NUREG/CR-
7278 Section 4.2.5 for details. 

3. Estimate sensitivity metrics based on the surrogate model. 

The surrogate model is used in place of the full computational model to predict sensitivity indices 
because the surrogate model is computationally inexpensive. Sensitivity indices are estimated 
based on the original input parameter distributions. 

7.2.2. Results and potential difficulties: 

When building the surrogates for the example problem using 100 training points, the total effects 
sensitivity index estimates are essentially indistinguishable from the estimates without a surrogate 
(Figure 7.5); even using as few as 10 training points to build the surrogate appears to adequately 
approximate the total effects sensitivity indices in this example (Figure 7.5). Note that the surrogate 
performs well with few training points for several reasons:  

1. The model is very simple, including only 4 input parameters.  

2. Of the 4 input parameters, only one of the parameters (𝜌𝜌) drives the variability in the output. 
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3. The relationship between the sensitive parameter and model output is approximately linear 
and there are no strong interactions/synergies between inputs. In the presence of such 
nonlinearities and interactions, the surrogate model would need to be sufficiently flexible to 
capture this behavior.  

As in Concept 1, the number of training points will need to grow with the number of model inputs, 
number of sensitive parameters, and complexity of the input-output relationships. 

 
Figure 7.5. Total effects sensitivity index estimates without a surrogate and using 3 different 

surrogates built using: (Left) 10 training points and (right) 100 training points. 

7.2.3. Summary 

• Surrogate models built for sensitivity analysis do not need to be as accurate when predicting the 
model outcome as surrogate models built for forward propagation of uncertainty.  

• When building a surrogate model for sensitivity analysis, the number of training points will need 
to grow with the number of model inputs, the number of sensitive parameters, and the complexity 
of the input-output relationships. 
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8. FORWARD PROPAGATION OF INPUT UNCERTAINTY 

This section applies methods for sampling from uncertain inputs (NUREG/CR-7278, Section 4.3) to 
the pressurized tank example. Three concepts are illustrated: 

1. Estimating the QoI using SRS.  
2. Estimating the QoI using IS. 
3. Estimating the QoI using LHS.  

When to apply this method. The forward propagation of uncertainty is performed iteratively with 
several steps in the PFM analysis process. It is used when conducting sensitivity analyses (Section 6), 
fitting a surrogate model (Section 7), and producing a converged estimate of the QoI (Section 9).  

8.1. Estimate the QoI distribution using SRS 

8.1.1. Process:  

There are four steps for taking a SRS: 

1. Specify probability distributions for the uncertain inputs 

This was performed in Section 4. 

2. Choose the sample size 

As mentioned in Section 2, the true probability of failure, 𝑝𝑝, in this example is known to be 
8.8 × 10−7,  which is on the order of 1 ×  10−6. Since the SRS sample size should be at least 10 
to 20 times larger than 1/𝑝𝑝, ideally [14], the sample size would be at least 1 ×  107 . However, 
computational costs can often prohibit such a large sample size. To illustrate the effect of a smaller 
sample size on SRS estimates (and the potential benefit of using alternative sampling options), a 
sample size of 𝑛𝑛 =  1 ×  106 will be compared to a sample size of 𝑛𝑛 =  1 ×  107. 

3. Implement SRS by randomly sampling the inputs from their probability distributions 

The implementation of SRS is straightforward. A single value is sampled from each of the 
following distributions0F

1: 

𝜌𝜌 ~ 𝑁𝑁(𝜇𝜇 = 49,𝜎𝜎 = 5) 

𝑟𝑟 ~ 𝑇𝑇𝑇𝑇(𝜇𝜇 = 0.6,𝜎𝜎 = 0.012, 𝐿𝐿𝐿𝐿 = 0.564,𝑈𝑈𝑈𝑈 = 0.636) 

𝑡𝑡 ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼 = 2,𝛽𝛽 = 5, 𝐿𝐿𝐿𝐿 = 0.018,𝑈𝑈𝑈𝑈 = 0.02) 

𝛼𝛼 ~ 𝑇𝑇𝑇𝑇(𝜇𝜇 = 55,𝜎𝜎 = 1.1, 𝐿𝐿𝐿𝐿 = 51.7,𝑈𝑈𝑈𝑈 = 58.3) 

𝑌𝑌 ~ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝜆𝜆 = 600, 𝑘𝑘 = 50) 

The first four inputs are used to calculate a single shear stress value while the last input is the 
corresponding weld yield stress value. This process is repeated 𝑛𝑛 times and the sampled points are 

 
1 Parameter definitions can be found in the problem definition, Section 2. 
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then used to approximate the shear stress and weld yield stress distributions, as shown in Figure 
8.1. 

 
Figure 8.1. Comparison of shear stress and yield stress distributions. 

4. Estimate the probability of failure 

The probability of failure of the weld can be estimated using the following steps: 

i. Let 𝑋𝑋𝑖𝑖 = 1 if the 𝑖𝑖𝑡𝑡ℎ shear stress is larger than the 𝑖𝑖𝑡𝑡ℎ weld yield stress and 0 otherwise. 

ii. The estimated probability of failure is 𝑃𝑃�(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) =  1
𝑛𝑛
∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1  where 𝑛𝑛 is the sample size. 

8.1.2. Results and potential difficulties:  

Replicate simulations are performed to characterize the sampling uncertainty in the failure probability 
under this sampling scheme and sample size. Specifically, 100 different failure probabilities are 
estimated using SRSs of size 1 ×  106 and 1 ×  107 , and the variability in the failure probability is 
characterized over these replicate estimates (the method of using replicate simulations to characterize 
sampling uncertainty is described in more detail in Section 9).  

Figure 8.2 provides boxplots of the failure probability estimates under SRS with sample sizes of 
1 ×  107 (red) and 1 ×  106 (blue). The upper and lower horizontal edges of the boxplot represent 
the 75th and 25th percentiles of the SRS samples, also called the third quartile (Q3) and first quartile 
(Q1), respectively. The difference between Q3 and Q1 is called the interquartile range (IQR). The 
ends of the vertical lines represent the effective minimum and maximum estimates, which is the 
smallest sample greater than 𝑄𝑄1 − 1.5 × 𝐼𝐼𝐼𝐼𝐼𝐼, and the largest sample less than 𝑄𝑄3 + 1.5 × 𝐼𝐼𝐼𝐼𝐼𝐼. The 
points that fall outside of these lines are considered to be outliers based on the definition of a boxplot. 
With the smaller sample size, the failure probability boxplot has a larger IQR, as shown in Figure 8.2 
as distance between the upper and lower edges of the boxplot.  
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When the sample size is increased, the IQR decreases, giving a more precise estimate. Table 8.1 
includes the mean probability of weld failure across all replicate simulations, along with the median 
IQR, and effective minimum and maximum. While the mean probability estimate is similar for both 
sample sizes, the median and IQR using 1 ×  106 samples are larger than the values estimated using 
1 ×  107 samples. Additionally, the estimate using the larger sample size is closer to the true probability 
of failure, 8.8 ×  10−7. 

 
Figure 8.2. Boxplots for 100 replicate simulations using an SRS of sizes 1 × 107 (red) and 1 × 106 

(blue).  

Table 8.1. Failure Probability Estimates for SRS Across Replicate Simulations 

Sample 
Size 

Average 
Failure Probability Median IQR Effective 

Minimum 
Effective 
Maximum 

1 × 106 7.9 × 10−7 1 × 10−6 1 × 10−6 0 2 × 10−6 
1 × 107 9.0 × 10−7 9 × 10−7 3.3 × 10−7 4 × 10−7 1.4 × 10−6 

 
 
8.1.3. Summary:  

• SRS is relatively easy to implement. 

• If the sample size is not sufficiently large with respect to the failure probability, SRS estimates of 
a failure probability can be imprecise. If more precision is needed for a given sample size, 
alternative sampling methods may be needed.  
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8.2. Estimate the QoI using IS 

This example illustrates estimating the probability of weld failure through IS, a sampling technique 
that can increase precision in the estimated probability.  

8.2.1. Process:  

There are 4 steps for performing an IS: 

1. Determine the most sensitive inputs 

Because the probability of failure occurs at the intersection of the distribution tails of shear stress 
and weld yield stress, efficiently sampling in those tails will produce more failures (and 
consequently, a more accurate probability of failure estimate). Importance sampling from the weld 
yield stress tail is straightforward, since weld yield stress is a single distribution, and it is known 
that smaller values of weld yield stress result in more failures. On the other hand, the shear stress 
distribution is a composite of four different uncertain inputs.  

To sample from the tail of the shear stress, two steps are required:  

i. Determine which inputs (𝛼𝛼,𝜌𝜌, 𝑟𝑟, and 𝑡𝑡) contribute the most to the uncertainty in shear 
stress using a sensitivity analysis (as described in Section 6). In this example, pressure 
explains a large fraction of the variance of shear stress.  

ii. Establish which region of the pressure distribution results in high shear stress (i.e., the 
upper tail of the shear stress distribution). A scatterplot of pressure vs. shear stress, as 
shown in Figure 8.3, indicates that higher pressures result in high values of shear stress. 
Therefore, higher values of pressure should be targeted for IS.  

 
Figure 8.3. Scatterplot of shear stress versus pressure. 
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2. Choose an importance distribution for the sensitive inputs 

Importance distributions must now be defined for weld yield stress and pressure. Importance 
distributions should be chosen such that the probability density function (PDF) for the importance 
distribution is greater than the original PDF of the input at all points in the important region of 
the uncertain inputs (e.g., the upper tail of the pressure distribution and lower tail of the weld yield 
stress distribution). If this property does not hold, then the areas in which the importance 
distribution is smaller than the original distribution will be sampled less efficiently than they would 
under SRS. Additionally, the support (bounds of the sampling region) of the importance 
distributions must contain the support of the original distribution. Without this property, 
theoretical properties that allow IS to work will not hold. 

For this example, normal distributions were chosen as the importance distributions for both 
pressure and weld yield stress. As can be seen in Figure 8.1, the overlap region between shear 
stress and weld yield stress is small. The importance distributions were centered around the 99th 
percentile of the pressure distribution and the 1st percentile of the weld yield stress distribution, 
and the standard deviation was chosen to ensure that the important region (i.e. the region of 
overlap between shear stress and weld yield stress, was sufficiently covered): 

𝜌𝜌𝐼𝐼𝑆𝑆 ~ 𝑁𝑁(𝜇𝜇 = 60.61,𝜎𝜎 = 7.5)       𝑌𝑌𝐼𝐼𝐼𝐼 ~ 𝑁𝑁(𝜇𝜇 = 547.2,𝜎𝜎 = 22.5) 

Figure 8.4 shows the importance distributions in relation to the original distributions of pressure 
(left) and weld yield stress (right). There may be more efficient importance distributions for this 
application, and more sophisticated approaches (e.g., adaptive IS, [15] could be applied to find a 
near-optimal importance distribution. However, as illustrated below, this selection of importance 
distribution is sufficient to produce a reasonably precise estimate of the failure probability.  
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Figure 8.4. The importance distributions for both the pressure (top) and weld yield stress (bottom) 

distributions. 

3. Sample inputs from the importance distribution and execute the model at these inputs 

The process of simulating shear stress and weld yield stress values is the same as in SRS. However, 
for pressure and weld yield stress, the importance distribution is sampled. All remaining inputs are 
sampled from their original input distributions using SRS. For this example, 1 ×  104  samples 
were used.  

4. Estimate the failure probability  

The estimated probability of failure is now defined as  𝑝̂𝑝 =  1
𝑛𝑛
∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 , where 𝑤𝑤𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ IS 

weight, 𝑋𝑋𝑖𝑖 = 1 if the 𝑖𝑖𝑡𝑡ℎ shear stress is larger than the 𝑖𝑖𝑡𝑡ℎ weld yield stress and 0 otherwise, and 𝑛𝑛 
is the sample size. When a single input is importance sampled, the weights are defined as: 
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𝑤𝑤𝑖𝑖 =
𝜋𝜋(𝑢𝑢𝑖𝑖)
ℎ(𝑢𝑢𝑖𝑖)

 

where 𝑢𝑢𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ sampled value of the input, ℎ is the probability density of the importance 
distribution from which 𝑢𝑢𝑖𝑖 is sampled, and  𝜋𝜋 is the original probability density.  

If 𝑚𝑚 inputs are importance sampled independently, then the importance weights will simply be 

𝑤𝑤𝑖𝑖 =  �
𝜋𝜋𝑗𝑗(𝑢𝑢𝑗𝑗𝑗𝑗)
ℎ𝑗𝑗(𝑢𝑢𝑗𝑗𝑗𝑗)

𝑚𝑚

𝑗𝑗=1

 

where 𝑢𝑢𝑗𝑗𝑗𝑗 is the 𝑖𝑖𝑡𝑡ℎ sampled value of the 𝑗𝑗𝑡𝑡ℎ input. In this example, the importance weights are: 

𝑤𝑤𝑖𝑖 =
𝜋𝜋𝜌𝜌(𝜌𝜌𝑖𝑖)𝜋𝜋𝑦𝑦(𝑦𝑦𝑖𝑖)
ℎ𝜌𝜌(𝜌𝜌𝑖𝑖)ℎ𝑦𝑦(𝑦𝑦𝑖𝑖)

 

where 𝜋𝜋𝜌𝜌 is the original input distribution for pressure, 𝜋𝜋𝑦𝑦 is the original input distribution for 
weld yield stress, ℎ𝜌𝜌 is the importance distribution for pressure, and ℎ𝑦𝑦 is the importance 
distribution for weld yield stress. 

8.2.2. Results and potential difficulties: 

Three implementations of IS were considered: IS on the pressure distribution, IS on the weld yield 
stress distribution, and IS on both distributions. Figure 8.5 shows the approximation of the bivariate 
density of weld yield stress and shear stress for each of these implementations. Here, IS on both 
pressure and weld yield stress results in samples that are in the failure region, whereas IS on either 
input alone results in few samples in the failure region. 
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Figure 8.5. Sampling density contours for three implementations of IS. 

The empirical CDFs of replicated failure probability estimates for all three IS implementations using 
1 ×  104 samples are compared to SRS using 1 ×  107 samples (Figure 8.6). The most precise estimate 
occurred when both pressure and weld yield stress were importance sampled, and this estimate is like 
the one that is produced using SRS. Similarly, the results in Table 8.2 show that when IS is applied to 
both pressure and weld yield stress, the IQR of the estimates is smaller than that of SRS. For this 
example, using IS provides a more precise failure probability estimate using many fewer samples than 
SRS. Note that while in this case it is beneficial to importance sample on both pressure and weld yield 
stress, IS on too many inputs can be inefficient.  

 
Figure 8.6. Empirical CDFs for 100 replicate simulations using 1 × 104 samples for IS on pressure, 

weld, and both, along with 1 × 107 samples for SRS. 
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Table 8.2. Failure Probability Estimates for Different Sampling Schemes and Importance Sampling 
Implementations 

Sampling 
Method 

Sample 
Size 

Average 
Failure Probability Median IQR 

IS Weld 1 × 104 5.7 × 10−7 5.0 × 10−7 9.0 × 10−7 
IS Pressure 1 × 104 1.0 × 10−6 6.1 × 10−7 6.0 × 10−7 
IS Both 1 × 104 8.6 × 10−7 8.1 × 10−7 1.4 × 10−7 
SRS 1 × 107 9.0 × 10−7 9 × 10−7 3.3 × 10−7 

 

 

Assessing the importance distribution. It is important to carefully choose the importance 
distribution, as using an inappropriate distribution will make IS less efficient [15]. To illustrate this, 
1 × 104 samples will be generated using IS on both pressure and weld, but now the IS on pressure 
will have the following distribution: 

𝜌𝜌𝐼𝐼𝐼𝐼 ~ 𝑁𝑁(𝜇𝜇 = 55.4,𝜎𝜎 = 3)        

This distribution is now centered around the 90th percentile of the pressure distribution and the 
standard deviation has been reduced. Figure 8.7 illustrates this importance distribution in relation to 
the original distribution. The right plot of this figure is zoomed into the upper tail region; here, the 
importance distribution density is not greater than the original distribution density in this important 
region. A summary of replicated failure probability estimates is given in Table 8.3, which show that by 
choosing a poor importance distribution, IS can be less efficient than SRS.  

 
Figure 8.7. Importance distribution in relation to the original distribution for pressure. 
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Table 8.3. Failure Probability Estimates for Different Choices of the Importance Sampling 
Distribution Compared to SRS 

Sampling Method Sample Size Average Failure 
Probability Median IQR 

IS Both (Good IS 
Distribution) 

1 × 104 8.4 × 10−7 8.2 × 10−7 1.7 × 10−7 

IS Both (Poor IS 
Distribution) 

1 × 104 7.7 × 10−7 4.9 × 10−7 4.2 × 10−7 

SRS 1 × 107 9.0 × 10−7 9.0 × 10−7 3.3 × 10−7 
 
 
8.2.3. Summary: 

• When the importance distribution is chosen properly, IS can significantly decrease the variance in 
failure probability estimates. 

• Once an importance distribution is selected, IS is not much more difficult to implement than SRS.  

• Poor implementation of IS can increase the variance of an estimate, resulting in less precision. 

8.3. Estimate the QoI using LHS 

This example illustrates estimating the probability of weld failure when using Latin Hypercube 
Sampling (LHS), a sampling technique designed to reduce variation in the estimated probability [16] 
[17].  

8.3.1. Process:  

Most standard statistical and engineering software packages contain implementations of LHS, where 
the user only must supply the uncertain input distributions. Manual implementation of LHS requires 
four steps: 

1. Stratify the input space by dividing the range of each input, 𝒙𝒙𝒋𝒋, into 𝒏𝒏 disjoint intervals 
of equal probability. 1 ×  104 samples using LHS with IS will be compared to 
1 ×  104 samples using SRS with IS; therefore, the distribution of each uncertain input is 
partitioned into 1 ×  104 disjoint intervals of equal probability. Since IS is used on pressure 
and weld, the importance distributions for those variables are partitioned.  

2. For each input, sample a single value from each interval, resulting in 𝒏𝒏 sampled values 
for each input. For a given input and interval, the sample is taken from the conditional 
distribution of the input on the interval. For each uncertain model input, a value is sampled 
from each of the 1 ×  104 intervals (because they were defined such that they have equal 
probability).  

3. Randomly combine samples without replacement. The 1 ×  104samples from each input 
are randomly combined into 1 ×  104 tuples, defined as a vector of model inputs. For 
example, a possible tuple may look like this: 
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(𝛼𝛼 = 53.84, 𝜌𝜌 = 42.56, 𝑟𝑟 = 0.59, 𝑡𝑡 = 0.019, 𝑦𝑦 = 606.30) 

4. Calculate the failure probability:  For a given tuple, 𝛼𝛼, 𝜌𝜌, 𝑟𝑟, and 𝑡𝑡 are used to calculate a 
single shear stress value which is then compared to the weld yield stress value. Once the 
1 ×  104 shear stress and weld yield stress values have been calculated, the probability of weld 
failure is estimated the same way as it is calculated when using SRS with IS. 

8.3.2. Results and potential difficulties:  

Table 8.4 provides the average failure probability estimate, median and IQR for LHS and IS with 
1 ×  104 samples compared to SRS and IS with 1 ×  104 samples. Here, the average failure probability 
estimate is relatively close to the estimate found under SRS, though the IQR is slightly smaller with 
LHS, indicating higher precision.  

One thing to note is that the improvement of using LHS over SRS decreases as the sample size 
increases. To show this, the same analysis was performed using 1 ×  105 samples for both SRS and 
LHS, and the results are given in  

Table 8.5. With 1 ×  104 samples, the percent change in the IQR from SRS to LHS is 11.8%. When 
the sample size is increased to 1 ×  105, the percent change is 7.8%, showing that the variance 
reduction obtained when using LHS decreases as sample size increases.  

 

Table 8.4. Failure Probability Estimates for SRS with IS and LHS with IS and 1 × 104 Samples 
Across Replicate Simulations 

Sampling 
Scheme 

Sample 
Size 

Average Failure 
Probability Median IQR 

SRS 1 × 104 8.4 × 10−7 8.2 × 10−7 1.7 × 10−7 
LHS 1 × 104 8.6 × 10−7 8.4 × 10−7 1.5 × 10−7 

 

Table 8.5. Failure Probability Estimates for SRS with IS and LHS with IS and 1 × 105 Samples 
Across Replicate Simulations 

Sampling 
Scheme 

Sample 
Size 

Average Failure 
Probability Median IQR 

SRS 1 × 105 8.5 × 10−7 8.5 × 10−7 6.4 × 10−8 
LHS 1 × 105 8.7 × 10−7 8.6 × 10−7 5.9 × 10−8 

 

The results of this section showed that LHS reduces the variance in the estimate of a failure probability 
compared to SRS. Though the amount of variance reduction will depend on the sample size, LHS will 
typically be more efficient than SRS.  

8.3.3. Summary: 

• LHS is typically easy to implement.  
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• LHS will generally be more efficient than SRS, though the improvement in efficiency will decrease 
with sample size.  
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9. CONVERGENCE ANALYSIS 

This section applies methods for assessing convergence of an estimated QoI (NUREG/CR-7278, 
Section 4.3.5) to the pressurized tank example. Four concepts are illustrated: 

1. Assess convergence using a closed-form statistical metric under simple random sampling.  

2. Assess convergence using the statistical bootstrap.  

3. Assess convergence of an estimated QoI as a function of the sample size.  

4. Assess convergence of an estimate of the QoI by performing replicate simulations.  

When to apply this method. When propagating input uncertainty through a model (Section 8), the 
user must decide the sampling scheme and how many random samples to propagate (i.e., the sample 
size). Convergence analysis is used to evaluate whether the selected sampling scheme and sample size 
are sufficient for estimating a converged QoI.  

9.1. Assess convergence using closed-form statistical metrics under simple 
random sampling 

This example illustrates the process of estimating the sampling variance of the estimated probability 
of weld failure using closed-form statistical metrics [18] when the model outputs are generated from 
an SRS.  

9.1.1. Process:  

The steps for assessing convergence of SRS using closed-form statistical metrics are: 

1. Decide the sample size, use SRS to sample values from the uncertain inputs, and 
estimate the failure probability. 

The selected SRS sample size is 𝑛𝑛 =  1 ×  107. 

2. Use closed-form statistical metrics to assess the amount of sampling variability in the 
failure probability estimate. 

Common statistical metrics for measuring sampling variability include the standard error, 
coefficient of variation, and statistical confidence intervals: 

i. Standard Error: 

𝑠𝑠𝑠𝑠𝑝𝑝� = �𝑝̂𝑝(1 − 𝑝̂𝑝)
𝑛𝑛

 

where: 
• 𝑛𝑛: The sample size 
• 𝑝̂𝑝: The estimated probability of failure 

ii. Coefficient of Variation: 
𝐶𝐶𝐶𝐶𝑝𝑝� =

𝑠𝑠𝑠𝑠𝑝𝑝�
𝑝̂𝑝
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iii. Confidence Interval: there are numerous ways to calculate confidence intervals for a 
failure probability, such as: 

• Large-sample approximation: the (1 − 𝛼𝛼) ∗ 100% confidence interval is defined as: 
𝑝̂𝑝 ± 𝑧𝑧𝛼𝛼/2 ∗ 𝑠𝑠𝑠𝑠𝑝𝑝� where 𝑧𝑧𝛼𝛼/2 is the 1 − 𝛼𝛼 critical value of the standard normal 
distribution. Here, 𝛼𝛼 is the significance level of the confidence interval. Note that this 
confidence interval relies on the assumption that n is large relative to 𝑝̂𝑝, such as 
 (𝑛𝑛 × 𝑝̂𝑝 ≥  5) and 𝑛𝑛(1 − 𝑝̂𝑝 ) ≥ 5.  

• Exact binomial confidence interval: an exact confidence interval for 𝑝𝑝 can be 
constructed using the fact that the number of observed failures follows a binomial 
distribution with sample size 𝑛𝑛 and probability of success 𝑝𝑝 [18]. When 𝑛𝑛 is small 
relative to 𝑝𝑝 (𝑛𝑛 × 𝑝̂𝑝 <  5 or 𝑛𝑛(1 − 𝑝̂𝑝) < 5), exact confidence intervals are conservative 
and are preferable to large-sample approximations that can underestimate uncertainty. 

9.1.2. Results and potential difficulties:  

The convergence estimate metrics are shown in Table 9.1. The analyst can use these metrics to 
determine whether sampling uncertainty is sufficiently low, keeping in mind that sampling uncertainty 
can be underestimated when convergence has not yet been achieved. For instance, the approximate 
95% confidence interval gives a plausible uncertainty interval for the true probability of weld failure. 
However, this interval relies on the SRS sample size being “large enough;” a common rule of thumb 
for SRS samples is 𝑛𝑛𝑝̂𝑝 ≥ 5 and 𝑛𝑛(1 − 𝑝̂𝑝) ≥ 5; in this case, 𝑛𝑛𝑝̂𝑝 = (1 × 107)( 6 × 10−7) = 6, which 
meets the sample size criteria. This rule of thumb should not be considered a universal criterion and 
should be used with caution. 

Table 9.1. Closed-form Convergence Metric Results 

Failure 
Estimate 6.00 × 10−7 

Standard 
Error 2.45 × 10−7 

Coefficient 
of 
Variation 

0.410 

95% 
Confidence 
Interval – 
Exact 

(2.20 × 10−7, 
1.31 × 10−6) 

95% 
Confidence 
interval – 
Approx. 

(1.20 × 10−7, 
1.08 × 10−6) 

 
 
9.1.3. Summary: 

• Closed-form metrics for SRS are simple to calculate on a replicate using SRS. 
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9.2. Assess convergence using the statistical bootstrap to estimate 
convergence metrics  

This example uses the statistical bootstrap [19] to estimate convergence metrics for the failure 
probability estimate. Unlike the closed-form metrics in Section 9.1, the bootstrap can also be used to 
estimate convergence metrics under IS. The bootstrap can be applied to many, but not all, sampling 
schemes; for instance, the bootstrap fails for LHS. 

9.2.1. Process:  

There are 4 steps for assessing convergence with bootstrap statistical metrics: 

1. Decide the sample size, sample values from the uncertain inputs, and execute the 
model to estimate the failure probability. For this example, both SRS and IS are 
implemented. The SRS sample size is 𝑛𝑛 = 1 × 107, and the IS sample size is 𝑛𝑛 = 1 × 104.  

2. Using the generated samples, re-sample the model outputs with replacement and 
calculate the failure probability over the re-sampled values. In the bootstrap procedure, 
the outputs are re-sampled with replacement, to generate a new bootstrap sample of size n. The 
failure probability is then re-estimated in the newly generated bootstrap sample. When IS is 
used, the output is resampled with replacement in proportion to its weight. Since the bootstrap 
relies on resampling from the model outputs after executing the model, the bootstrap is 
computationally tractable. 

3. Repeat step 2 many times to generate many bootstrapped estimates of the failure 
probability. In this example, 1,000 different bootstrap samples, 𝑚𝑚∗, of sample size 𝑛𝑛 were 
generated by resampling from the model outputs with replacement. 

4. Use the bootstrap samples to estimate convergence metrics. The standard error can be 
estimated from the bootstrap samples using the formula:  

 𝑠𝑠𝑠𝑠�𝑝𝑝� = �∑ (𝑝̂𝑝𝑖𝑖∗ − 𝑝̂𝑝∗)2𝑛𝑛
𝑖𝑖=1
𝑚𝑚∗ − 1

 

• 𝑚𝑚∗: The number of bootstrap samples 
• 𝑝̂𝑝𝑖𝑖∗: Estimated probability of failure for the i-th bootstrap sample. 
• 𝑝̂𝑝∗ =  1

𝑚𝑚∗ ∑ 𝑝̂𝑝𝑖𝑖∗𝑚𝑚∗
𝑖𝑖=1    

Given the standard error, the coefficient of variation can also be calculated.  

Bootstrap confidence intervals can be estimated in many ways; the simplest method is to use 
quantiles of the empirical distribution of the bootstrapped estimates. 
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9.2.2. Results and potential difficulties: 

Distributions of the bootstrapped failure probability estimates are shown in Figure 9.1. Under SRS, 
the convergence metric estimates using the bootstrap (Table 9.2) are similar to the closed form metrics 
(Table 9.1). 

The bootstrap generates ‘resamples’ of the failure probability from the model outputs to estimate 
uncertainty in the failure probability. The bootstrap is more accurate with larger sample sizes, because 
the model output distribution is better approximated as the sample size increases. Under SRS, 
considering the value of n×p, as in Section 9.1, is again helpful to gauge the accuracy of the bootstrap. 

  
Figure 9.1. Histograms of the failure probability based on 1000 bootstrap samples using SRS (left) 

and using IS (right). 

Table 9.2. Convergence Metrics for Both Sampling Methods Using Bootstrap Samples 

 SRS IS 

Estimated 
failure 
probability 

6.00 × 10−7 8.01 × 10−7 

Standard 
Error 2.95 × 10−7 8.87 × 10−8 

Coefficient 
of 
Variation 

0.322 0.114 

95% 
Confidence 
Interval 

(4.00 × 10−7, 
1.50 × 10−6) 

(6.14 × 10−7, 
9.71 × 10−7) 
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9.2.3. Summary: 

• The statistical bootstrap can be used to estimate convergence metrics under different sampling 
schemes, including SRS and IS. 

• Since the bootstrap relies on resampling from the model outputs after executing the model, the 
bootstrap is computationally tractable. 

9.3.  Assess convergence of the QoI as a function of the sample size 

This example illustrates the process of iteratively increasing the sample size until the variability in the 
calculated failure probability is sufficiently low. The sample size is gradually increased, and 
convergence metrics are calculated as the sample size grows. The method is illustrated using both SRS 
and IS but can also be applied with LHS. Note that differentiating between types of uncertainty 
(aleatory vs. epistemic uncertainty) may result in additional steps in the process depending on the goals 
of a convergence analysis (NUREG/CR-7278, Section 4.1.1, 4.3.11, 4.3.5).  

9.3.1. Process:  

There are two steps for assessing convergence as a function of the sample size: 

1. Determine the sequence of sample sizes to use, sample values from the uncertain 
inputs, and estimate the failure probability. This step can be further broken down into 
three steps: 

i. Determine the starting sample size 
ii. Determine the tentative maximum size 
iii. Determine the step size between sample sizes 

In this example, the starting sample size for SRS is 1 × 105. This selection should be driven 
by a best-guess about the order of magnitude of the true failure probability. A step size of 
1 × 105 was chosen. The maximum sample size should be determined based on when the 
model has converged. However, in some cases, the maximum sample size will be determined 
by computational feasibility. If the maximum sample size is reached and convergence has not 
yet been achieved, a different, more efficient sampling scheme should be used. For this 
example, 1 × 108 was chosen as the maximum sample size.  

The starting sample size for IS is 1 × 103; step size is 1 × 103; and maximum sample size is 
1 × 105. 

2. Evaluate convergence of the failure probability estimate as the sample size increases. 
For the IS example, 1 × 103  new samples are added to the previous samples at each increment; 
the failure probability and statistical convergence metrics are then calculated with the 
additional new samples. Specifically, the standard error, coefficient of variation, and statistical 
confidence intervals are estimated for the failure probability estimate. 

Plotting the failure probability estimate as the sample size increases demonstrates evidence of 
convergence. If evidence of convergence is strong at a specific sample size, then sampling can 
stop and results can be presented for the converged failure probability estimate. If the process 
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ends at the selected maximum sample size and it is not clear whether the estimate has 
converged, then the analyst has several options: 

i. Increase the maximum sample size 
ii. Choose a different sampling method 

9.3.2. Results and potential difficulties:  

To visualize evidence of convergence, the failure probability estimate and upper confidence interval 
were plotted as a function of the sample size (Figure 9.2). For SRS, exact and asymptotic confidence 
intervals were calculated (Section 9.1); for IS, bootstrap confidence intervals were calculated 
(Section 9.2). For SRS, the conservatism of the exact confidence interval relative to the asymptotic 
interval is clear. 

As expected, variability in the failure probability estimate decreases as the sample size increases, but 
the gains in efficiency decrease as the sample size grows (Figure 9.2). For SRS, the probability estimate 
seems to stabilize around 5 × 107 samples; for IS, the estimate stabilizes around 4 × 104 samples. IS 
converges much faster than SRS (Figure 9.3) in this example. 

When using LHS, it is often of interest to augment the existing LHS sample with additional points, as 
opposed to resampling an entirely new LHS sample with a larger sample size. The LHS design depends 
on a known sample size, and therefore, care must be taken to preserve the properties of an LHS if the 
sample size increases. Incremental LHS is a common approach for adding samples to an existing LHS 
[20].  

 
Figure 9.2. Probability of weld failure as a function of the sample size using SRS (left) and IS 

(right) with upper confidence bounds. The scales of the plots differ. A horizontal line is 
drawn at the true failure probability. 
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Figure 9.3. Comparison of SRS and IS failure probability estimates as the sample size increases. 

A horizontal line is drawn at the true failure probability. 

9.3.3. Summary: 

• Plotting the failure probability as a function of the sample size is a valuable visual diagnostic for 
convergence.  

• If it is unclear whether convergence has been obtained, more samples should be obtained, or a 
different sampling method applied. 

9.4. Assess convergence of an estimate of the QoI by performing replicate 
simulations 

This example illustrates the process of estimating the sampling variance of the estimated probability 
of weld failure by performing many replicate simulations. Replicate simulations are simply repeated 
simulations with a fixed sample size, regardless of whether the variable uncertainty is considered to be 
aleatory or epistemic. When the failure probability is estimated many times in replicate simulations of 
the same sample size, the variation in the estimate can be assessed.  

Conducting replicate simulations will often not be a practical solution. Specifically, executing replicates 
may not be feasible for computationally expensive models. For computationally inexpensive problems, 
the model can be executed enough times that demonstrating convergence should not be an issue. 
Further limitations of conducting replicate simulations are discussed below. 

In this section, convergence metrics for replicate simulations are calculated under two different 
sampling schemes: SRS and IS.  

9.4.1. Process:  

There are three primary steps for performing the replicate simulations: 
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1. Determine the sample size of a single simulation. For this example, the selected sample 
size for SRS is 1 × 107. Since IS reduces variation in the estimate significantly, a smaller sample 
size of 1 × 104 was selected for IS. These sample sizes were selected based on knowledge that 
the probability of failure is expected to be very small (close to 1 × 10−6). 

2. Estimate the failure probability based on the above sample size in a single simulation. 
Then repeat this step over many simulations to produce replicate estimates of the 
failure probability. Determining the number of replicate simulations involves a trade-off 
between accuracy and computation time; more replicate simulations will produce more 
accurate convergence metrics, but the computational burden is higher. If the computational 
burden is not a consideration, a large number of replicates could be executed. However, in 
many applications, executing even a single replicate may be too expensive. In this example, a 
large number of replicates (100) as well as a more moderate number (10) are considered to 
illustrate how the convergence metrics perform on different replicate numbers. Using 100 
replicates, each with 1 × 107 samples, was feasible in this example because the model is 
computationally inexpensive. 

3. Use convergence metrics to assess the amount of sampling variability. Different 
convergence metrics can be applied to the replicate simulations. Commonly used metrics 
include: 

i. Standard Error: 

𝑠𝑠𝑠𝑠𝑝𝑝� = �∑ (𝑝̂𝑝𝑖𝑖 − 𝑝̅𝑝)2𝑚𝑚
𝑖𝑖=1
𝑚𝑚 − 1

 

• 𝑚𝑚: The number of replicate simulations 
• 𝑝̂𝑝𝑖𝑖: Estimated probability of failure for the i-th replicate simulation. 
• 𝑝̅𝑝  =  1

𝑚𝑚
∑ 𝑝̂𝑝𝑖𝑖𝑚𝑚
𝑖𝑖=1  

ii. Coefficient of Variation: 
𝐶𝐶𝐶𝐶𝑝𝑝� =

𝑠𝑠𝑠𝑠𝑝𝑝�
𝑝̅𝑝 

 

• By dividing the standard error by the estimated failure probability, the standard 
error is scaled by the estimate and is a unitless quantity.  

iii. Normal Distribution Prediction Interval: 

𝐶𝐶𝐶𝐶1−𝛼𝛼 = 𝑝̅𝑝  ± 𝑡𝑡1−𝛼𝛼;𝑚𝑚−1 × 𝑠𝑠𝑠𝑠𝑝𝑝� �1 + 1/𝑚𝑚 

• The prediction interval is distinct from the confidence interval. It is effectively 
wider than confidence intervals because it attempts to predict the range in which 
a future individual observation will fall, while confidence interval shows the likely 
range of values associated with statistical parameter of the data. 

• 1 − 𝛼𝛼: The confidence level for the prediction interval; 95% confidence is a 
common choice. 
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• 𝑡𝑡1−𝛼𝛼;𝑚𝑚−1: The 1 − 𝛼𝛼 critical value of a t distribution with 𝑚𝑚 − 1 degrees of 
freedom. 

• Note that the distribution of 𝑝̂𝑝𝑖𝑖 should be approximately normal to use this 
interval. The validity of the metric will decrease as the distribution becomes more 
non-normal. The analyst should assess the distribution of the estimates of 𝑝𝑝 over 
the replicates to determine if this is a reasonable assumption. 

The metrics can be compared to a pre-determined allowable value. For instance, standard error is an 
estimate of the standard deviation in 𝑝̂𝑝𝑖𝑖 over replicate simulations; if the analyst has an idea of what 
an acceptable standard error is, then the estimated standard error can be compared to this threshold 
to assess convergence. 

9.4.2. Results and potential difficulties:  

After conducting replicate simulations, the estimates of the failure probabilities can be plotted in a 
histogram to assess the shape of the sampling distribution of the failure probabilities (Figure 9.4). The 
sampling distribution based on SRS is more symmetric than the sampling distribution using IS (Figure 
9.4). However, there is less variation in the IS estimates than the SRS estimates despite the sample size 
of each replicate being far less for IS (1 × 104) versus SRS (1 × 107).  

In many scenarios, executing 100 replicates is not feasible. Therefore, consider the distribution of the 
failure probabilities with only 10 replicate simulations (which may still be a high number of replicates 
for some applications). Figure 9.5 shows histograms of the failure probability estimates over 10 
replicate simulations. In this case, the histograms do not capture the shape of the true sampling 
distributions due to the limited number of replicates; however, they do still provide valuable 
information about variability in the failure probability estimates across replicates (Table 9.3). Because 
the shape of the sampling distribution is more accurately estimated as the number of replicates 
increases from 10 to 100, the estimated convergence metrics (which measure properties of this 
sampling distribution) will also be more accurate with a larger number of replicates. 
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Figure 9.4. Histograms of 100 failure probability estimates based on SRS (left) and IS (right) 

replicate simulations. 

 
Figure 9.5. Histograms of 10 failure probability estimates based on SRS (left) and IS (right) 

replicate simulations. 

Table 9.3. Convergence Metrics for Both Sampling Methods 

 Number of replicates: 10 Number of replicates: 100 

SRS IS SRS IS 

Mean 
estimate 8.90 × 10−7 8.46 × 10−7 8.68 × 10−7 8.60 × 10−7 
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Standard 
Error 3.60 × 10−7 1.55 × 10−7 3.16 × 10−7 1.66 × 10−7 

Coefficient 
of 
Variation 

0.405 0.183 0.364 0.192 

Prediction 
interval 

[7.47 × 10−8, 
1.71 × 10−6] 

[4.95 × 10−7, 
1.20 × 10−6] 

[2.41 × 10−7, 
1.49 × 10−6] 

[5.32 × 10−7, 
1.19 × 10−6] 

 

For SRS, the coefficients of variation are approximately 0.4; that is, the standard deviation of the 
estimated failure probability is 0.4 times the failure probability. This coefficient of variation is large, 
suggesting the sample size may need to be increased. For IS, the coefficient of variation is lower and 
prediction intervals are narrower. Even though the sample size is three orders of magnitude smaller, 
this highlights the benefits of IS. 

The prediction interval provides an indication of the range of variability in the failure probability 
estimate for a single replicate with a given sample size. However, the prediction interval relies on a 
normality assumption that is violated for the IS case, decreasing the accuracy of the prediction interval. 
Plotting the data to look for skewness and outliers is informative when interpreting the convergence 
metrics, particularly the prediction interval. The non-normality in the IS distribution was more evident 
with 100 replicate simulations than with only replicate 10 simulations.  

Limitations of replicate simulations. Conducting m different replicate simulations at a sample size 
of n is typically equivalent to (or less efficient than) simply conducting a single simulation of size 
𝑛𝑛 × 𝑚𝑚. Therefore, the final estimate of the failure probability can be based on all 𝑛𝑛 × 𝑚𝑚 outputs, 
increasing the stability in the failure probability estimate far beyond the stability with sample size 𝑛𝑛. 
Hence, replicate simulations require a lot of additional computing to evaluate whether a sample of size 
𝑛𝑛 is sufficient, and, after conducting replicate simulations, the analyst has essentially increased the 
sample size to 𝑛𝑛 × 𝑚𝑚. However, replicate simulations may still be a useful tool. For instance, in some 
cases, a replicate simulation convergence analysis may be conducted on a single nominal case and the 
results applied to other scenarios where replicates are not conducted.  

9.4.3. Summary:  

• Performing replicate simulations is computationally expensive. 

• Convergence metrics are estimated over the replicate simulations and are more accurate with more 
replicates. 
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10. VISUALIZING UNCERTAINTY IN THE QOI  

This section applies methods for visualizing uncertainty in the QoI (NUREG/CR-7278, Section 4.3.8) 
to the pressurized tank example. Two concepts are illustrated:  

1. Visualizing uncertainty without separation of aleatory and epistemic uncertainties.  

2. Visualizing uncertainty with separation of aleatory and epistemic uncertainties and IS.  

When to apply this method. Uncertainty can be visualized after it has been propagated through the 
model (Section 8).  

10.1. Visualizing uncertainty without separation of aleatory and epistemic 
uncertainties  

Recall that the QoI in this problem is the probability of weld failure. When aleatory and epistemic 
uncertainties are separated, there is epistemic uncertainty in the failure probability estimate that can 
be visualized. When separation does not occur, visualizing uncertainty in one or more continuous 
model outputs that contribute to the failure probability is a reasonable choice.  

10.1.1. Process:  

1. Determine what should be visualized:  When there is no separation of aleatory and 
epistemic uncertainties, each realization will produce values of shear stress and weld yield 
stress, as well as a discrete indicator variable that is equal to 1 if shear stress is larger than weld 
yield stress and 0 otherwise. Taking the average of these indicator variables across all 
realizations provides a single probability of failure estimate.  

Plotting a single probability of failure estimate is not informative, so another option in this 
case is to plot the two model outputs that determine the probability of failure, namely shear 
stress and weld yield stress, as weld failure occurs in the region where shear stress is higher 
than weld yield stress. If the probability of failure estimate changes across some dependent 
variable (such as time), an option for visualization would be to plot the failure estimates across 
the dependent variable with a confidence interval that represents the sampling uncertainty.  

2. Choose an appropriate plot based on Step 1:  SRS is used to generate 1 × 107 samples of 
shear stress and weld yield stress. The resulting histograms for both are plotted.  

10.1.2. Results and potential difficulties:  

Figure 10.1 gives histograms of shear stress (green) and weld yield stress (purple). The area where the 
two histograms overlap (as shown in the right plot in Figure 10.1) provides the region where weld 
failure will occur.  
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Figure 10.1. Histograms of shear stress (green) and weld yield stress (purple). The right plot 

provides a zoomed in view of the region where shear stress and weld yield stress 
overlap. 

10.1.3. Summary:  

• Visualizing uncertainty in important model outputs provides useful information when the QoI 
is a failure probability.  

10.2. Visualizing uncertainty in the QoI with separation of aleatory and epistemic 
uncertainties  

When uncertainties are separated, 𝑛𝑛𝑒𝑒 estimates of the failure probability are calculated: one for each 
set of aleatory samples. The differences between these estimates can be plotted to visualize the 
epistemic uncertainty in the failure probability estimate.  

10.2.1. Process:  

1. Determine the output to be visualized:  For this concept, pressure, radius, wall thickness 
and angle of the helical weld are categorized as aleatory and weld yield stress is categorized as 
epistemic. The aleatory and epistemic sample sizes are 4 × 104 and 1 × 103, respectively, based 
on the results found in Section 9. Importance sampling is used on pressure and weld yield 
stress using the importance distributions that are described in Section 8.2. Since there is a 
separation of uncertainty, 1 × 103 probability of failure estimates will be plotted.  

2. Estimate the failure probability for each epistemic sample. The probability of weld failure 
is estimated for each of the 1 × 103 epistemic samples. When IS is used, recall that the inputs 
are no longer equally probable, and each aleatory sample that indicates failure (indicator 
function = 1) must be reweighted when calculating the failure probability (Section 8.2).  
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3. Choose an appropriate plot based on Step 1. An empirical CDF of the probability of weld 
failure across epistemic samples is plotted along with a measure of the epistemic uncertainty 
(e.g., the 95th percentile across the epistemic samples). A histogram of the failure probability 
could also be plotted, but a CDF was chosen because percentiles of the failure probability 
estimate can easily be seen from the plot. 

10.2.2. Results and potential difficulties:  

Figure 10.2 shows the empirical CDF of the estimated probability of weld failure (blue solid line) for 
each epistemic sample, along with the 95th percentile (black dashed line). As described in Section 3, 
when input uncertainties are separated, the output contains two types of uncertainty: 1) epistemic 
uncertainty dictated by the epistemic uncertainty of weld yield stress and 2) epistemic uncertainty due 
to a finite aleatory sample size. The 95th percentile in Figure 10.2 includes both uncertainties. 
Therefore, it is important that the aleatory sample size be large enough that it has a negligible effect 
on the overall output uncertainty. Otherwise, the uncertainty due to the epistemic uncertainty of only 
weld yield stress will not be accurately assessed.  

 
Figure 10.2. Empirical CDF of the probability of weld failure (blue solid) with vertical line at 95th 

percentile (black dashed). 

10.2.3. Summary  

• The failure probability can be plotted across epistemic samples.  

• The aleatory sample size should be large enough so that uncertainty due to the aleatory sample 
size does not significantly contribute to the uncertainty in the failure probability estimate. 
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