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FOREWORD

This work establishes the key system parameters to enable rapid fuel inventory generation for pebble-based
HTGR systems within SCALE. For light water reactor light water reactor (LWR) assemblies this process is
well-established. For example, in the boiling water reactor (BWR), the moderator density and burnup were
found to be the key system parameters affecting inventory calculations.

This study uses the PBMR-400 (pebble bed modular reactor) benchmark problem as a basis for quantifying
the effects of system parameters on the multi-group energy spectrum and its attendant effects on the effective
one-group cross-sections used for depletion calculations. Examples of these effects include the relative
pebble location within the core (axially and radially with respect to the graphite reflectors), the system
isotherm temperature, and the effective pebble burnup.

Our findings indicate that, unlike in traditional LWR assemblies, the primary drivers of the effective neu-
tron spectrum and one-group cross-sections are the pebble radial distance from the reflector region and the
system temperature (chiefly attributable to the temperature-dependent scattering effects in the graphite mod-
erator). Because of the continuously circulating nature of the fuel (including continuous replacement of
fully burned pebbles with fresh ones), factors such as fuel burnup (which are typically first-order parame-
ters) exhibit significantly attenuated response compared with factors such as the radial location and system
temperature. This finding would imply that the development of ORIGEN reactor libraries for pebble-based
HTGR systems will require substantively new approaches for parameter interpolation for rapid depletion
calculations, compared with methods presently employed for LWR libraries.
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ABSTRACT

This report provides an evaluation of present SCALE capabilities for modeling depletion of pebble-bed
reactor systems, using the PBMR-400 benchmark as a test case. A specific aim of this work is to understand
the system characteristics required to generate production-quality reactor data libraries for rapid depletion
calculations with ORIGEN. This report includes a discussion of present SCALE capabilities for modeling
doubly heterogeneous fuels, prior SCALE work modeling pebble bed–type reactors, and a detailed neutronic
analysis of the PBMR-400 core for both fresh and equilibrium-composition core conditions.

Validation of the PBMR-400 reactor model is provided through comparisons of the system keff at different
temperatures for fresh and equilibrium full-core models evaluated using the CSAS for eigenvalue analysis
and TRITON for depletion analysis. For the fresh core, absolute differences in eigenvalues of 97–570 percent
mille (pcm) were observed between SCALE/CSAS calculations in comparison to the VSOP reference calcu-
lation, indicating relatively good agreement with the benchmark. For the equilibrium-composition core, the
observed differences ranged from +728 to -737 pcm, indicating general overall agreement with the VSOP
benchmark. Notable factors influencing the keff agreement included representation of the pebble distribution
within the core, particularly near the reactor boundaries. Because of the nature of random close packing of
hard spheres, regularly spaced lattice representations (such as a face-centered cubic (FCC) dodecahedral
lattice) exhibited challenges in representing local packing fractions near the core boundary compared with
what would be observed in a random close-packed (RCP) arrangement, despite the fact that these represen-
tations were able to reproduce the prescribed global average pebble packing fraction (61%). Models that
made use of a non-physical approximation of truncated or “clipped” pebbles at the core boundary showed
the best agreement to the system benchmark, although based upon prior experience, the introduction of a
random close-packing capability would be expected to show superior agreement.

Based upon an analysis of the spatial and time-dependent characteristics of the neutron spectrum of the
equilibrium-composition core, the primary dimensions defining the response space for the development
of one-group reactor data libraries (i.e., the parameters used for interpolation of reactor data libraries to
problem-specific conditions) were identified. For the PBMR-400 core, these first-order parameters of inter-
est included the fuel initial enrichment, the system temperature, and the pebble radial location relative to the
graphite reflector. However, owing to the continuously circulating nature of the fuel (including continuous
replacement of pebbles at the terminal discharge burnup by fresh pebbles), for equilibrium core conditions,
burnup exhibits a relatively attenuated effect on the neutron energy spectrum (and thus the one-group cross-
sections); its effect is far more prominent for the case of the fresh core. Moreover, with the exception of axial
regions adjacent to inserted control rods, the shape of the neutron energy spectrum (in terms of the thermal
to fast neutron flux ratio) is relatively invariant axially. This would potentially indicate that explicit axial
location tracking of the pebbles may not be necessary for performing accurate depletion analyses. Rather,
tracking the radial positions of the pebbles relative to the reflector region, combined with the effective tem-
perature of the reflector medium and the accumulated pebble burnup, would appear to be sufficient to give
accurate cross-sections useful for rapid depletion analysis.

Finally, we conclude with recommendations for future feature development to facilitate higher-fidelity anal-
ysis of the core behavior, including the transient evolution from the initial fresh core to the equilibrium
compositions, as well as enhancements to the ORIGAMI interface to ORIGEN to facilitate rapid, whole-
core evaluations of core inventories from depletion calculations.
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1. INTRODUCTION

Pebble-bed reactors, fueled by graphite-coated, spherical fuel elements composed of doubly heterogeneous
tri-structural oxide (TRISO) fuel kernels, represent a radical departure from conventional light water reac-
tors in terms of operational characteristics. Among these differences, modular pebble bed reactors (PBRs)
(including variants such as the South African PBMR-400 design, the Chinese HTR-10, and the German
Arbeitsgemeinshaft Versuchsreaktor, or AVR) all function at high operating temperatures (800–950 °C)
with fuel pebbles that are continuously circulated through the core over multiple passes to reach relatively
high burnup (on the order of 90–100 GWd

MTIHM ) [1]–[3]. PBR systems thus require fundamentally different
approaches to neutronics and source term analysis, in particular accounting for the nonstationary nature of
the fuel, wherein the axial transit of the fuel pebble results in exposure to substantial swings in the neutron
flux spectrum characteristics (i.e., average lethargy).

The goal of this analysis is to establish first-order effects on discharge isotopics for evaluating pebble de-
pletion cases, with the intent of creating standardized one-group ORIGEN reactor data libraries to facilitate
rapid depletion calculations. Essential to the process of creating accurate, one-group depletion libraries is
characterizing the magnitude of various effects within the core on the discharge isotopic composition, rang-
ing from proximity to graphite reflector layers (producing an overall softer spectrum) to the time-dependent
power resulting from the axial transit through the core.

To perform this analysis, we relied on the PBMR-400 international reactor physics benchmark [2], [3] using
Monte Carlo transport and depletion capabilities present in the latest pre-release version of SCALE 6.3
[4]. While it is expected that individual design aspects may vary among PBRs, many of the most important
phenomena for analysis of this class of reactors are shared among these designs: high-temperature operation,
high burnup discharge, graphite moderation, TRISO fuel particles embedded within fuel pebbles which
experience multiple passes through the core. Thus, it is anticipated that key analysis principles developed
here would likewise apply to other pebble bed-based variants.

The remainder of this section thus consists of a review of prior analyses conducted with PBR-class designs
and a brief overview of the computational methods in SCALE to model “doubly heterogeneous fuel“–
a term used extensively within SCALE to denote a fuel element that does not contain a homogeneous
fuel mixture but rather a heterogeneous mixture of discrete fuel particles within a larger medium. For
the PBR, the fuel element is a pebble and the fuel mixture is the thousands of discrete TRISO fuel particles
interspersed throughout the pebble’s graphite matrix. Following chapters then introduce the PBMR-400
benchmark and cases considered to provide validation of the model to be used, followed by analysis of
neutronic characteristics at the core level (including axial and radial power distributions and neutron energy
flux profiles).

The core-level characteristics established are used to inform single-pebble depletion analysis by providing a
means of estimating the effects of nonuniform power histories, as well as differences in the neutron spectrum
arising as results of changing axial and radial locations within the core over the pebble lifetime. This
component will focus on macroscopic-level characteristics of depletion, including the change in observable
characteristics such as decay heat, activity, and isotopic distribution within the fuel resulting from core-
averaged vs. regional features.

Following this, we broaden the analysis to consider the effects of including nearest neighbors to estimate
average neutron flux characteristics for depletion, in order to determine their effects on one-group cross-
sections and ultimately calculated isotopic inventories.
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Finally, this report presents summary findings and recommended strategies for developing accurate ORI-
GEN reactor libraries for PBMR source term analysis and the extension of these depletion capabilities to
the ORIGAMI interface to ORIGEN.

1.1 PRIOR ANALYSES USING SCALE OF PEBBLE-BED TYPE SYSTEMS

Although an exhaustive review of previous computational studies of PBR neutronic and thermal hydraulic
behavior is beyond the scope of this report, numerous studies have been performed to characterize the
physics environment of PBR-type systems, including the HTR-10 and PBMR-400 benchmarks. This section
will present a brief summary of some of the findings from those studies that are most relevant to the analysis
discussed in this report.

1.1.1 HTR-10 BENCHMARK

Among the most closely related studies to this work are prior benchmarking studies performed using SCALE
to evaluate the HTR-10 initial core critical benchmark [5], [6]. This study provided validation of the newly-
developed SCALE capability for accurate self-shielding of fuel in doubly heterogeneous systems. The chief
figure of merit in this validation study was in the k-eigenvalue (keff ) for the initial critical core configuration.
No studies on depletion or core power distributions were documented in the available reports.

To perform this validation, the HTR-10 initial core critical benchmark model from the International Hand-
book of Evaluated Reactor Physics Benchmark Experiments (IRPhE-Handbook) was created with SCALE
6.0 and compared with the reported benchmark model created using MCNP [7]. The SCALE/CSAS keff re-
sults with KENO-VI Monte Carlo transport and ENDF/B-VII.0 cross-sections were consistent with the
benchmark reference MCNP, with a difference of −73 ± 34 pcm [6]. Both SCALE and MCNP showed a
consistent positive reactivity bias of (1.4 ± 0.4)% compared to the actual system [6].

The HTR-10 design shares a number of similar features with the PBMR-400 benchmark used for the current
study. Like the PBMR-400 benchmark, the HTR-10 uses graphite-coated, spherical fuel elements with
TRISO fuel particles of approximately the same dimensions as the those in the PBMR (with a pebble radius
of 3 cm), which are placed at the top of the core at the beginning of the pebble cycle, continuously circulating
downward to the core discharge outlet at the end of cycle. Neutron moderation is provided by outer graphite
reflector regions. Notable differences in the HTR-10 design, however, include its cylindrical core design
(unlike that of the PBMR-400, which is composed of an annular core region with both an inner and an
outer graphite reflector) and a higher average pebble enrichment (17 w/o 235U for the HTR-10 compared with
9.6 w/o for the PBMR-400).

1.1.2 HTR-PROTEUS BENCHMARK

The PROTEUS facility is a zero-power research reactor located at the Paul Scherrer Institut in Switzerland
that is used for reactor design studies. Key design features of PROTEUS include a flexible layout which
can be reconfigured to represent different reactor types [5]1. From 1992 to 1996, PROTEUS was configured
as a pebble bed critical facility (designated HTR-PROTEUS) to study PBR-based configurations. During
this period, reactor physics experiments were performed on 13 critical configurations of the core that are
captured by the benchmark reported in [5].

For these experiments, the pebble configuration was similar in dimensions to the HTR-10 and PBMR-400
benchmarks, with a 2.35 cm spherical fuel region (containing 9,394 UO2 fuel kernels) in a 3 cm graphite
matrix at an enrichment of 16.7 w/o.

1Thus, much like the HTR-10 benchmark, the effective core shape is a right cylinder filled with packed spheres.

3



Ten deterministic pebble arrangements within the core were evaluated as part of these experiments, in addi-
tion to three configurations consisting of RCP arrangements. Of these, the ten deterministic arrangements,
four hexagonal close-packed (HCP) and six columnar hexagonal point-on-point (CHPOP) were modeled
using SCALE [5]. A summary of the configurations evaluated is presented as Table 1.

Table 1. Deterministic pebble configurations modeled with SCALE for the HTR-PROTEUS bench-
marks (adapted from [5]).

Core ID State(s) Packing Pebble configuration(s) Ratio of fuel to
moderator pebbles

1 State 1 HCP 22 layers 2.00425

1A
State 1

HCP
21 layers

2.00445
State 2 Same as State 1 but with slightly different

control rod locations

2 State 1 HCP
16 layers

2.00425
17th layer: moderator pebbles only

3 State 1 HCP
17 layers

2.004518th layer partially filled
327 cylindrical polyethylene rods

5
State 1

CHPOP
22 layers 2.000378

State 2 23rd layer 0.6188

6
State 1

CHPOP
22 layers 2.000378

State 2 23rd layer 0.6188
654 triangular polyethylene rods

7 State 1 CHPOP
17 layers 1.99951
18th layer 0.5628
654 triangular polyethylene rods

8 State 1 CHPOP
22 layers 2.0378
23rd layer 0.6188
654 triangular polyethylene rods

9
State 1

CHPOP
27 layers 0.998565

State 2 28th layer of pure moderator 0.929744

10 State 1 CHPOP
27 layers 0.998565
654 cylindrical polyethylene rods

For benchmark comparisons with MCNP5, the analysts used ENDF/B-VI cross-sections to improve consis-
tency between codes. The difference in keff between the SCALE and MCNP models for HCP arrangements
was cited as 252 ± 93 pcm, with a maximum difference of 353 ± 84 pcm [5]. For the columnar hexagonal
point-on-point (CHPOP) configurations, an average difference in keff was 422 ± 93 pcm, with a maximum
difference of 667 ± 82 pcm [5].

When the reported IRPhE-Handbook benchmark values were compared with calculations using SCALE
with a 238-group ENDF/B-VII.0 library, an average keff difference of 797 pcm was observed, with a max-
imum deviation of 1302 ± 81 pcm [5]. In all cases observed, SCALE exhibited an overestimation of the
system keff .
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1.2 SCALE COMPUTATIONAL METHODS

This section provides a brief review of the computational methods employed for the analysis performed in
this report, including SCALE capabilities used for treatment of doubly heterogeneous TRISO fuel as well
as an algorithm developed to facilitate the efficient generation of hexagonal pebble arrays for an annular
volume. Unless otherwise noted, all criticality and flux distribution calculations for this analysis were per-
formed using multi-group Monte Carlo transport within the CSAS criticality sequence using KENO [8]
and/or Shift [9].

1.2.1 DOUBLY HETEROGENEOUS FUEL TREATMENT METHODS IN SCALE

Traditional LWR fuel represents a single level of heterogeneity, i.e. within each material in the reactor
(coolant, cladding, fuel), it may be treated as a homogeneous mixture. For example, we do not model the
grains in UO2 or Gd2O3, simply assume uniform initial compositions. The SCALE/XSProc module is used
to determine the correct spatial and energy self-shielding effects necessary for accurate multi-group transport
[10].

Fuels like TRISO-impregnated pebbles and prismatic block fuel employed in HTGR systems present a sec-
ond level of heterogeneity. Inside this type of fuel, there are flux depressions at each individual TRISO and
moderation in the graphite matrix that requires special treatment. Neglecting this second level of heterogene-
ity by homogenizing the fuel region based on mass/volume preservation results in substantial underestimates
of reactivity on the order of several thousand pcm [11].

The SCALE/XSProc self-shielding module (specifically the CENTRM component) accounts for randomly
distributed fuel particles using Equivalence Theory [10], [12]. First, the flux spectrum in spherical unit cells
representing an infinite array of fuel grains contained within the graphite matrix is calculated using CEN-
TRM [12]. This spectrum is then used to calculate disadvantage factors to create reaction-rate preserving
equivalent cross-sections for a “homogenized“ mixture in the pebble interior. A second XSProc-CENTRM
calculation is used to determine the flux spectrum which includes the effect of materials outside the peb-
ble/prismatic block. For example, the influence of an adjacent pebble, control element, or reflector. for the
macroscopic lattice (i.e., pebble-to-pebble or a prismatic block matrix) to calculate a pointwise flux used as
a weighting function for calculating multi-group cross-sections [12].

This Equivalence Theory–based method has been extensively tested, including direct comparisons of the
multi-group treatment to Monte Carlo calculations using randomly distributed fuel particles [11] and has
been used for prior SCALE analyses of HTGR systems [13], [14]. In general, the errors associated with this
method, compared with those from direct calculation using continuous energy Monte Carlo with explicit
fuel grain representations, have been found to be small (on the order of 100 pcm or less) [11].

1.2.2 SHIFT CAPABILITIES SPECIFIC TO TRISO FUEL PARTICLES

Shift is a relatively new Monte Carlo transport code which will eventually replace KENO and Monaco in
SCALE. Shift was designed for high-performance computing, including massively parallel operation with
GPUs [9]. Shift will be available in the next major SCALE release, version 6.3. This section will provide
additional background on features unique to Shift that will be used in this analysis in addition to the doubly
heterogeneous methods already outlined previously.

One particularly important feature for single-pebble depletion analysis is Shift’s capability to represent
random particle distributions within a fuel pebble which can be used to benchmark the SCALE/XSProc
methodology recommended for fast, production calculations. Array-based placement of kernels have been
studied but compared to the more realistic random placement, a negative keff bias of a few hundred pcm has
been noted [14].
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Shift introduces two stochastic fuel particle generation capabilities for use with continuous energy calcu-
lations: distributing fuel particles throughout the entire fuel domain and distributing within a user-defined
mesh using a fixed number of particles per mesh cell, but within each mesh cell placed randomly [14]. The
latter method represents a compromise that preserves the random spatial distribution of fuel particles yet
affords greater performance by reducing the number of surfaces that must be tracked within an individual
mesh voxel between neutron interactions [14].

The memory and runtime required for continuous energy Monte Carlo with explicit representation of TRISO
fuel particles is impractical for full-core models, however this approach will be used with single-pebble
depletion models to assess the multi-group method bias.

1.3 PRIOR APPROACHES TO PEBBLE-BED REACTOR PHYSICS ANALYSIS

The unique challenges of flowing-pebble systems, particularly for systems employing mutli-pass fuel cy-
cles, serve to frustrate traditional reactor physics analysis methods, namely in that these systems violate
many cardinal assumptions underlying the validity of tools typically used for LWR analysis. Some of these
include:

• Continuous movement of pebbles during operation. Regardless of whether the reactor fuel cycle is
One Through Then Out (OTTO) or MEDUL (translated as “multiple pass-through”), flowing-pebble
systems introduce the challenge of capturing the continuous motion of pebbles through the core during
irradiation. This includes capturing variation in the neutron spectrum and power profile as a result of
changing position. Moreover, in the case of MEDUL cycles, this likewise includes capturing the
continuous recirculation and mixing of pebble batches as they are recycled from the bottom of the
core.

• Large problem domain relative to neutron mean free path. In most LWR assemblies, the relatively
high efficiency of water as a moderator results in a neutron mean free path that is much smaller than
the typical assembly unit size, thus limiting the impact of neighboring assemblies upon the accuracy
of the transport and depletion solution. As such, single-assembly models with reflective boundary
conditions perform quite well at capturing depletion behavior. By contrast, the relatively small size
of the fuel pebbles in PBR systems (typically on the order of 3 cm diameter), combined with the
relatively long neutron mean free path for graphite-moderated systems (wherein L ≈ 59 cm), mean
that neighboring pebbles within the core exhibit significant influence over the spectral characteristics
of a given pebble and thus must be explicitly accounted for within models.

• Strong temperature feedbacks. A characteristic feature of graphite-moderated systems such as the
PBMR is a strong coupling of reactivity to temperature. For the PBMR, this specifically translates to
a strong negative reactivity feedback from elevated temperatures, touted as an inherent safety feature.
However, this also introduces a challenge for modeling in that accurately capturing spectral shifts
arising from spatial temperature variations requires explicit coupling of reactor physics to thermal
hydraulics modeling. While for steady-state, equilibrium calculations this can be bypassed by using a
priori information about temperature distributions, its effects are sufficiently pronounced as to require
its careful inclusion in reactor models.

In the following sections, we will present a summary of historical approaches to capturing pebble-bed reactor
behavior, including how the modeling challenges outlined above have been addressed.

1.3.1 VSOP

The VSOP code system is a comprehensive physics package for the simulation of pebble-bed HTGRs,
combining neutron transport (via P1 diffusion theory) with cross-section processing, thermal hydraulics, and
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fuel depletion, shuffling, and management [15]. VSOP’s basic method of solution shares many features with
conventional LWR core simulator tools, specifically in its approach to establishing region-wise flux shapes
to derive few-group cross-sections and leakage corrections such to produce a core-wide power profile.

VSOP handles the challenge of treating continuously-shuffling fuel by iteratively solving the coupled physics
relationships (neutron diffusion, fuel depletion, and thermal hydraulics) for a given time step, illustrated as
Figure 1. This depletion feedback loop is repeated until the core reaches a pre-set value of keff , whereupon
the fuel is shuffled and the core physics calculation is repeated [15].
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Figure 1. VSOP calculation flow for MEDUL (multi-pass) cores [15]

VSOP’s basic unit of materials tracking within reactor calculations is that of a “batch,” effectively a cohort
of pebbles entering the core at the same time and having experienced the same number of passes. Within
a physical region of the core, pebbles from multiple batches (i.e., comprising a range of burnups and com-
positions) are presumed to experience the same local neutron flux. Hence, fine-group cross-sections are
calculated for each fuel pebble within a physical region (allowing for separate depletion of individual peb-
bles from multiple batches); the compositions within the region are then volume-weighted to produce a
homogenized region-wise material mixture. The homogenized region mixtures are then used to produce
few-group cross-sections for solving the 2-D / 3-D core diffusion calculation giving the core spatial flux
distribution and leakage correction terms which are subsequently applied back to fine-group cross-sections
used for depletion [15]. Within a region, fuel elements are individually depleted based on the local region-
wise flux (with corresponding leakage corrections) and the step time. VSOP likewise handles out-of-core
fuel management and decay, including separating pebbles that have reached the discharge burnup limit and
calculating reload batches of new and recycled pebbles.
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Diffusion calculations in VSOP rely on ENDF/B-V and JEF-1 cross-sections, using the 68-group GAM-I
library for fast neutrons (ranging from 10 MeV through 0.414 eV), with cross-sections for 171 materials
and six additional short-lived heavy metal isotopes (233Th, 239U, 238Np, 240Np, 243Pu, and 244Am) which
do not have explicit capture cross-sections within the library but are considered for their contributions to
build up of actinide inventories [15]. Treatment of thermal-energy absorption is treated by a 30-group
THERMOS library (ranging from 10−5 to 2.05 eV), which includes absorbers from the GAM-I library as
well as scattering information for an additional 38 nuclides (consisting of isotopes of hydrogen, deuterium,
oxygen, carbon, and beryllium).

Depletion calculations in VSOP use the matrix exponential solver based upon the same solver subroutine
historically used in ORIGEN [15], [16]. For the iterative in-core solution, VSOP relies upon the limited
subset of materials in the GAM-I and THERMOS libraries described above, however users can also perform
more detailed depletion calculations using stored inventories and power histories (provided by VSOP in
terms of the ORIGEN-JÜL-II variant of ORIGEN) [15], [17].

One of the main advantages of the VSOP approach is in its ability to establish the time-dependent evolution
of the core from initial fresh conditions to the equilibrium state. This generally affords VSOP maximum flex-
ibility in simulating PBR cores at the cost of additional computational time. Notably, newer codes designed
to simulate HTGR systems such as the HINT package largely reproduce much of the same computational
flow as VSOP with different physics implementations and more modern nuclear data [18].

1.3.2 PEBBED

The PEBBED code for HTGR simulation was developed by Idaho National Laboratory (INL) in 1999.
Unlike VSOP, PEBBED does not calculate the intermediate (“running-in”) states of the core, but rather is
designed to converge directly upon the equilibrium core flux and composition [19], [20]. PEBBED does this
by imposing an axial boundary condition of the set of pebbles entering the top of the core and taking a user-
defined “initial guess” flux spectrum to iteratively solve for the equilibrium flux profile and compositions
using a known fuel recirculation pattern (i.e., a matrix describing the weighted probability of pebbles exiting
and entering the system based on the radial position and burnup, referred to as the “recirculation matrix”)
[19], [21], [22]. In effect, PEBBED solves a modified version of the neutron diffusion equation (containing
an additional advection term), expressed as Eq. (1) [22].

∂Nk (r, z, t)
∂t

+
∂Nk (r, z, t)

∂z
vz (r, z) = φ (r, z, t)

m∑
i=l

Ni (r, z, t)σi
f yi→k + φ (r, z, t)

q∑
s=r

Ns (r, z, t)σs
aγs→k

+

p∑
j=n

N j (r, z, t) λ jα j→k − λkNk (r, z, t) − φ
(
~r, t

)
Nk (r, z, t)σk

a

(1)

In converging upon the “equilibrium” solution, PEBBED effectively assumes the leftmost term in Eq. 1
converges to zero (i.e., no change in the nuclide inventory with respect to time) [22]. PEBBED’s solution
flow is otherwise similar to VSOP, using few-group macroscopic cross-sections for core-wide diffusion
calculations to update local microscopic cross-sections for depletion, performing an iterative calculation on
the neutron source and keff until convergence is reached [21]. Like VSOP, PEBBED explicitly accounts for
thermal feedbacks via detailed thermal hydraulic treatments.

PEBBED assumes a strictly axial flow of pebbles through the core [22], although differential flow velocities
(as a function of radial position) are accounted for. Notably, this assumption of strictly-axial flow is a default
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for VSOP, however the latter package allows for user-specification of specific flow trajectories based upon
external information [15].

PEBBED’s physics treatment for depletion rely upon a 167-group spectrum, using a Bonderenko Method for
unresolved resonance treatment [22], similar to the technique used in BONAMI in SCALE [10]. Treatment
of the fuel double heterogeneity is treated using separate Dancoff factors for the TRISO fuel microparticles
and the larger fuel pebbles [22]. Depletion calculations via Laplace transform of the Bateman Equations,
requiring a linearization of the burnup chains [19].

In general, PEBBED is capable of producing reasonable convergence to equilibrium inventories calculated
by VSOP for longer irradiation periods, with the largest differences appearing in the higher transuranic
species (e.g., 242Cm, 244Cm, etc.) and shorter-lived fission products (including those relevant to severe
accident source term analysis, such as 109Ag and 113Cd) [19]. Largely the differences appear to arise from
the user of the linearized burnup chains (i.e., from the use of the Laplace transform) compared to the use of
the matrix exponential solver.

1.4 OVERVIEW OF THE PBMR-400 BENCHMARK PROBLEM

The PBMR-400 design was originally considered for development by the South African utility ESKOM as
part of a larger industrial consortium, PBMR Ltd., which also included the South African Government and
British Nuclear Fuel [2]. While a reactor was never constructed, sufficient design details of the PBMR exist
such as to serve as a useful verification test case.

The PBMR-400 design is based upon a scaled-down version of prior high-temperature gas-cooled reactors,
designed to capture advantages of prior PBR designs such as the German Arbeitsgemeinshaft Versuchsreak-
tor (AVR) as well as safety features of HTGR designs such as the Fort Saint Vrain prismatic block HTGR
(United States) and the THTR-300 (300 MW thorium high temperature reactor, Germany) [2]. The goal of
the PBMR-400 design was to combine the excellent fission product retention capabilities demonstrated in
TRISO-based spherical pebble fuel with the high-temperature outlet and high-efficiency Brayton cycle em-
ployed in HTGR designs [2]. Designed for 400 megawatts thermal (MWt) power output, the core consists
of approximately 452,000 graphite-coated fuel pebbles, each containing approximately 15,000 UO2 TRISO
fuel particles [2], [3]. The core consists of an annular region between two cylindrical graphite blocks that
serve as neutron moderators (an “inner” and “outer” reflector with radii 100 cm and 185 cm, respectively)
with an active core height of approximately 10.117 m [2], [3]. Primary control through the reactor control
system (RCS) is provided by 24 boral carbide (B4C) rods oriented equidistantly around the core in the outer
reflector region at a pitch circle diameter (PCD) of 3.974 m. A summary of the major dimensional features
used for modeling is presented as Table 2.

Although the computational benchmark model [2] makes a number of simplifications to the PBMR core
geometry (e.g., homogenization of the fuel region, homogenization of the reflector graphite and graphite
riser channels, treatment of the radial control rods as “gray curtain“ region surrounding the core), many
geometric details of the reactor core are included within the SCALE models used for this analysis. They
include explicit treatment of the pebble geometry within the core and explicit modeling of the discrete
control rod elements, the gas riser void spaces (as specified in the benchmark) within the reflector regions,
and the outer core structural materials (e.g., the reactor pressure vessel (RPV)).

The PBMR-400 benchmark problem specification consists of a number of separate conditions, including
both neutronic and thermal-hydraulic calculations. A brief summary of the subset of cases used for verifica-
tion studies in this report is presented as Table 3.

Simplifications introduced into the SCALE model of the PBMR-400 benchmark include not explicitly mod-
eling of the pebble discharge funnel regions (rather, it simply treats the core effectively as a cylindrical
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Table 2. Key physical dimensions of the PBMR-400 reactor [2], [3].

Fuel pebble TRISO fuel kernel

Fuel region radius 2.5 cm UO2 density 10.4 g
cm3

Graphite outer layer thickness 5 mm Fuel kernel diameter 500 µm
Fuel pebble radius 3.0 cm Fuel coating layers C / PyC / SiC / PyC
UO2 per pebble 9 gHM Coating thicknesses (µm) 95 / 40 / 35 / 40
TRISO particles per pebble 15,000 Coating densities ( g

cm3 ) 1.05 / 1.90 / 3.18 / 1.90

Core & Reflector Control

Active core height (effective) 11.0 m RCS material B4C
Number of fuel pebbles ≈ 452, 000 RCS B4C density 2.2 g

cm3

Pebble packing fraction 61% Number of RCS rods 24
Central reflector outer radius 1.0 m PCD of control rod borings 3.974 m
Outer reflector inner radius 1.85 m RCS rod radius 5.0 cm
Outer reflector outer radius 2.75 m
Reflector graphite density 1.8 g

cm3

Reflector boron impurity 1 ppm

Table 3. Selected PBMR-400 neutronic benchmark problems, from [2].

Case Description Fuel Temp(s) (K) RCS

F-2(i) Fresh core, CZP 1/3 fresh fuel (9 gHM, 5.768 w/o 235U)
2/3 graphite “dummy” pebbles

300 No

F-2(ii) Fresh core, HZP 600, 900, 1200 No

E-2(i) Equilibrium core, CZP
Equilibrium compositions (ND-Set3)

300 2.285 m
E-2(ii) Equilibrium core, HZP 600, 900, 1200 2.285 m

annulus over the entire effective axial length of the core). It is anticipated that this approach will have negli-
gible effects upon evaluated characteristics of interest, such as the power profile and system characteristics
such as keff and energy of the average lethargy causing fission (EALF). The PBMR-400 benchmark problem
specifies a core loading of approximately 451,530 spheres loaded in the core. When the sphere packing
algorithm is used, the vertex tolerance factors were adjusted to yield a total of 451,616 spheres in the core,
a difference of 86 spheres (a 0.019% difference).
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2. PBMR-400 MODEL VERIFICATION

The following sections discuss the verification exercises conducted with the PBMR-400 benchmark, using a
pre-release version of SCALE 6.3, to verify the correctness of the PBMR-400 models used for this analysis,
noting any biases present. This approach consists of three separate benchmarks: a single, reflected pebble
(Section 2.1); a full core at fresh, starting conditions (Section 2.2.1); and finally a full core at equilibrium
power and compositions (Section 2.2.2). In addition to their validation function, these models serve as a
useful tool for evaluating changes to core characteristics (such as the power profile) moving from the initial
startup conditions to equilibrium. Further, the differences in model scope serve as a starting point to explore
the effects of model scale on calculated depletion results at the pebble level (informing the development of
ORIGEN libraries for pebble depletion).

2.1 SINGLE, REFLECTED PEBBLE MODEL

Figure 2 illustrates an infinitely-reflected, single-pebble SCALE model of the PBMR fuel pebble used for
intra-pebble flux and depletion studies. The single-pebble model effectively assumes an infinite lattice of
fresh pebbles (at an enrichment of 5.76 w/o 235U) with a 2.5 cm fuel region composed of 15,000 TRISO
fuel particles. The pebble is in a hexagonal prismatic unit cell, thus representing a CHPOP geometry that
preserves the core-average pebble pitch and packing fraction.

Figure 2. SCALE 6.3 single-pebble reflected model of a fresh PBMR-400 pebble, representing an
infinite array of pebbles.

2.2 FULL-CORE MODELS

To evaluate the changes in the neutron spectrum characteristics over the irradiation lifetime of a pebble, it
is essential to determine the spatial and energy distribution of neutrons throughout the core. The goal of the
following sections is therefore to illustrate the SCALE representation of the PBMR-400 core under both the
fresh core and equilibrium cycle conditions, as well as the assumptions made in model construction.

For the full-core models, a number of different pebble packing lattice configurations were investigated to at-
tempt to best reproduce the temperature-specific keff benchmarks for the PBMR-400 system. These included
a CHPOP stacked hexagonal lattice arrangement and a HCP arrangement using a dodecahedral array; the
latter case effectively produces a FCC layout (i.e., giving an equivalent packing density to HCP). Each
arrangement was investigated with two variants: one which allowed pebbles to be “clipped” at the core
boundary and one which only allowed complete pebbles.
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The CHPOP lattice was not able to reproduce the benchmark packing fraction with either variant. When
clipping is not allowed and only full pebbles are included, this arrangement produced a maximum pack-
ing fraction of only 57%. When clipping was allowed, the system mass was preserved but there was not
acceptable agreement with the benchmark keff values.

The dodecahedral array of pebbles results in an HCP configuration and thus is able to represent the maximum
theoretical packing density of fuel pebbles in the core. To preserve the system packing fraction and heavy
metal loading, the lattice pitch may be increased to yield correct number of pebbles and packing fraction,
in both the clipped pebble and complete pebble variants. However the clipped configuration produced
substantial negative reactivity differences with the benchmark on the order of -600 pcm for the fresh core at
CZP, likely due to the local reductions in the packing fraction at the core boundaries. The most consistent
results with the benchmark was found for a clipped pebble model in the close-packed dodecahedral lattice
with an effective lattice pitch of 6.4 cm (i.e., a unit cell radius of 3.2 cm), which gives an effective pebble
volume fraction of 61%.

2.2.1 FRESH CORE (CASES F-2(I) AND F-2(II))

The SCALE model used for analyzing the PBMR-400 fresh core (HCP pebble arrangement) is illustrated
as Figure 3. The starting core benchmark consisted of 1/3 fuel pebbles (green) at 5.76 w/o enrichment and 2/3

graphite “dummy” pebbles, evenly distributed through the core. The SCALE model used discrete pebbles
with fuel number densities Nhet as determined from Eq. 2[2].

Nhet = Nhom

(
Vpebble

Vkernel · nk · p f

)
(2)

In Eq. 2, Nhom is the homogenized number density of all of the pebble materials (as-specified in the bench-
mark), Vpebble is the fuel pebble volume, Vkernel is the fuel kernel volume, nk is the number of kernels per
fuel pebble (15,000), and p f is the pebble packing fraction in the core (0.61).

This model test was designed to reproduce Cases F-2(i) and F-2(ii) from the PBMR-400 benchmark [2],
corresponding to the the core multiplication factors keff at CZP (F-2(i), all materials at 300 K) and HZP
(F-2(ii), all materials at 600, 900, and 1200 K, respectively). This model series likewise provided a means
of evaluating the temperature coefficient of reactivity for the initial, fresh core. Two sets of results from the
international benchmark are reported using the nodal diffusion code VSOP—one conducted without a 1 ppm
boron impurity in the graphite (South Africa) and one accounting for this impurity (China). The comparison
of keff values is given as Table 4.

Table 4. Comparison of fresh core PBMR-400 benchmark model to reported keff values from Tables
4.27 and 4.28 of [2], corresponding to cases F-2(i) (CZP), and F-2(ii) (HZP).

Temp. (K)
SCALE 6.3 VSOP [2]

keff σk keff ∆ k (pcm)

300 1.16635 0.00011 1.16538 +97.1
600 1.11896 0.00013 1.12424 -528
900 1.09032 0.00014 1.08875 +157

1200 1.05734 0.00012 1.06301 -567

Noteworthy in the comparison of the system isotherm keff values between SCALE and VSOP (Table 4) is
the relative lack of a trend; i.e., the difference in keff between SCALE and VSOP oscillates between as high
as +157 pcm and as low as -567 pcm, with no apparent correlation to temperature.
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Figure 3. SCALE 6.3 model for the PBMR-400 fresh core, consisting of 1/3 fuel pebbles (green) and 2/3

graphite “dummy” pebbles, HCP (dodecahedral) arrangement; (left) axial cutaway view, (right) axial
cut plane views at z = −100 cm, where z = 0 represents the top of the active fuel region.

Nonetheless, given that the average keff difference amounts to just over -210 pcm, we can conclude that the
SCALE model appears to represent a reasonable implementation of the benchmark problem which can be
used for studying the neutronic features of the system.

2.2.2 EQUILIBRIUM-COMPOSITION CORE (CASES E-1(I) AND E-1(II))

The SCALE model used for analyzing the PBMR-400 equilibrium-composition core (HCP pebble arrange-
ment) is illustrated as Figure 4. The equilibrium-composition core consists of compositions specified from
the ND-Set3 of ref. [3], representing a best estimate of the isotopic distribution within the pebbles at an
equilibrium cycle of the core with a fresh pebble enrichment of 9.6 w/o 235U. ND-Set3 specifies 22 axial
regions of equal height and 5 radial regions of equal radius for a total of 110 material zones. Here again the
fuel material number densities were reconstructred as per Eq. 2 which preserved heavy metal mass in the
core. A second assumption made within this model has been roughly equal distribution of heavy metal mass
across radial zones, i.e., each region representing different fuel burnup states is presumed to consist of the
same number of pebbles. Thus, the radii used to define the boundaries of the concentric rings making up the
different radial fuel zones were calculated to produce rings of roughly equal area.

In contrast to the fresh core comparison (Table 5), the equilibrium-composition core generally showed much
larger deviations in keff between CZP and HZP operating conditions, swinging from +728 pcm in the former
case to -737 pcm in the latter. However, unlike in the fresh core benchmark, no additional data was made
available for the intermediate temperatures. Noteworthy for both cases, however, was the higher overall
temperature coefficient observed from the discrete pebble model compared with the homogenized system
modeled by VSOP. This finding is evaluated in greater detail in the following section.
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Figure 4. SCALE 6.3 model for the PBMR-400 equilibrium-composition core, dodecahedral lattice /

HCP arrangement; (left) axial cutaway view, (right) axial cut plane view at z = 100 cm.

Table 5. Comparison of E-1(i) and E-1(ii) equilibrium-composition core PBMR-400 benchmark model
with reported keff values from Tables 4.27 and 4.28 of [2].

Temp. (K)
SCALE 6.3 VSOP [2]

keff σk keff ∆keff (pcm)

300 1.01123 0.00010 1.00395 +728
600 0.99391 0.00010 — —
900 0.99188 0.00010 — —

1200 0.97870 0.00010 0.98606 -736.5
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3. CORE-LEVEL ANALYSIS

The models developed in Sections 2.2.1 and 2.2.2 afford an analysis of the system-level parameters important
for understanding features relevant to both depletion library development and overall core behavior. For
example, given the continuous gravity-driven circulation of fuel pebbles through the core, the axially varying
power profile was expected to drive the time-dependent pebble irradiation history.

3.1 SPATIAL DISTRIBUTION OF THE NEUTRON FLUX AND CORE POWER

The following sections present a comparison of the spatial distribution of the neutron flux and core power
for both the fresh and equilibrium-composition cores. This characterization includes an analysis of both the
total flux profile within the core and the flux energy profile as a function of axial and radial position.

3.1.1 TOTAL FLUX AND FISSION SOURCE GRADIENTS OVER THE CORE

Illustrated in Figure 5 are the total neutron flux profiles across the core axially and radially for the equilibrium-
composition core. (For a corresponding analysis of the fresh core, see Appendix B). Compared with the fresh
core scenario, the equilibrium-composition core shows a substantial flux tilt peaking near the top of the core,
as opposed to an axially symmetric flux profile. Much of this difference is explained by the inhomogeneity
of the equilibrium-composition core; in this case, fresh fuel is loaded at the top and progressively burned
as it transits axially downward, thus yielding a pronounced burnup and reactivity gradient. This in turn is
expected to influence estimates of the time-dependent power history of individual pebbles as they transit
axially through the core, an effect analyzed further in Section 4.2.

Figure 5. PBMR-400 flux distribution for the equilibrium-composition core; (left) total flux, (center)
fast flux (E > 1.86 eV), (right) thermal flux (E < 1.86 eV). Red indicates regions of highest total
neutron flux.
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Figure 6. Lethargy-weighted neutron energy spectrum by radial zone (numbered innermost to outer-
most) for equilibrium-composition core, evaluated at each of the 22 axial material zones. Solid lines
represent the average group flux within the radial zone (over all axial zones), with shaded region
indicating the standard deviation of the intra-zone flux distribution.

Figure 6 illustrates the radial dependence of the normalized, lethargy-weighted neutron spectrum over the
axial length of the core for each of the five radial material zones (numbered in increasing order from the
core interior to exterior). Within Figure 6, the multi-group flux is evaluated for each of the 22 axial material
regions for each of the 5 radial zones; the standard deviation of the distribution of groupwise fluxes is
illustrated as the shaded regions.

Two trends are evident in the flux profile: (1) the flux shape is relatively invariant axially within the core,
and (2) the variation in the flux shape primarily occurs near the periphery of the annular core region (i.e.,
the inner and outermost radial regions). Specifically, the regions closest to the graphite reflectors (region 1
being the closest to the central reflector and region 5 being closest to the outer reflector) exhibit a noticeably
higher thermal flux relative to the more central radial locations. Thus, one can plausibly identify two distinct
flux “zones“ radially within the core, which may alter the effective isotopic transition balance (i.e., higher
probability of resonance absorption). This effect will be explored further with respect to the development of
one-group ORIGEN cross-section libraries.

3.1.2 SPATIAL DIFFERENCES IN NEUTRON SPECTRUM CHARACTERISTICS

Collapsing the neutron spectra into two broad groups (thermal and fast), the core flux profile for the
equilibrium-composition core is presented as Figures 7 and 8 for the fast and thermal groups.

In general, the expected flux distribution is seen in the coarse radial zone groupings, wherein the fast flux
peaks within the central radial region of the core (corresponding to the power peak, likewise observed in
the fission power distribution in Figure 9), whereas the thermal flux is strongly peaked toward the central
reflector region but also exhibits considerable peaking around the outer reflector region adjacent to the core.
Notably, the fast flux is lowest at the outer radial edge of the core, mirroring similar power tilting observed in
prior studies [2]. Conversely, the thermal flux is relatively tightly grouped by radial region, with moderate
peaking observed in the innermost radial zone but in general not indicating large gradients over the core
region. The axial fission power profile shown in Figure 9 closely tracks with the shape of the thermal flux
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Figure 7. PBMR-400 fast flux (E > 1.86 eV) distribution for equilibrium-composition core at 1200 K
isotherm; (left) Radial fast flux by axial elevation (z = 0 cm corresponds to the top of the active fuel
zone); (right) axial fast flux profile by radial zone.

0 50 100 150 200 250
r (cm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fl
ux

 [A
U]

1e 5
Radial flux by elevation: E < 1.86 eV (thermal)

Elevation (cm)
-1050
-900
-750
-600
-450
-300
-160

1000 800 600 400 200 0
Elevation (cm)

1

2

3

4

5

6

7

8

Fl
ux

 [A
U]

1e 6
Axial flux by radial zone: E < 1.86 eV (thermal)

Zone
100 110 cm
110 127 cm
127 144 cm
144 161 cm
161 185 cm

Figure 8. PBMR-400 thermal flux (E < 1.86 eV) distribution for equilibrium-composition core at 1200
K isotherm; (left) Radial thermal flux by axial elevation (z = 0 cm corresponds to the top of the active
fuel zone); (right) axial thermal flux profile by radial zone.
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distribution within the core, consistent with intuitive expectations of the highly-moderated spectrum wherein
fissions are primarily driven by thermal neutrons.
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Figure 9. Fission power factor for the PBMR-400 equilibrium-composition core by axial location and
radial region. Note that z = 0 cm indicates the top of the active fuel zone.
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Figure 10. Spectral ratio (fast : thermal flux) for the equilibrium-composition core, along the (left)
axial dimension, (right) radial dimension; the thermal-fast boundary is defined at E = 1.86 eV. Note
that z = 0 cm indicates the top of the active fuel zone.

Supporting this observation is the ratio of the thermal (E < 1.86 eV) to fast (E > 1.86 eV) (referred to as the
“spectral index”) axially over each of the five radial zones, shown in Figure 10. Consistent with the trends
seen in Figure 6, the spectral index roughly tracks symmetrically across the radial span of the annular core,
wherein the outermost radial regions are significantly more thermalized than the interior zones, implying a
logical grouping of 2–3 radial zones for depletion analysis.

Meanwhile, the spectral index remains largely invariant as a function of elevation for any given radial lo-
cation; this is implied by the relatively flat shape of the spectral index as a function elevation for the five
axial zones observed and is confirmed by a subsequent radial analysis of the spectral index at varying axial

18



locations.

Taken together, these observations would suggest that treatment of radial zones is sufficient for depletion
library development, as it effectively captures the variations in the neutron spectrum throughout the pebble’s
irradiation history. Variations in the pebble power (i.e., the axial transit behavior) will necessarily influence
the discharge isotopic vector of the pebble, because the spectral shape is largely conserved, suggesting
minimal changes to the collapsed one-group cross-sections over the history within a given radial zone.

3.2 CORE PHYSICS PARAMETERS

This section focuses on the analysis of core physics parameters, such as the temperature coefficient of
reactivity and energy of the average lethargy causing fission (EALF); these parameters were evaluated for
the full PBMR core for both the fresh core and equilibrium-composition core conditions.

3.2.1 TEMPERATURE COEFFICIENT OF REACTIVITY

From the reactivity studies conducted for the full, fresh core (Table 4) and the equilibrium-composition core
(Table 5), the temperature coefficient of reactivity δk (T ) can be estimated using a linear, least-squares fit of
the core reactivity (ρ (T ), Eq. 3) to temperature (Figure 11) for the four system isotherms investigated (see
Table 6).

ρ (T ) =
keff (T ) − 1

keff (T )
(3)

Table 6. Estimated temperature coefficient of reactivity for PBMR-400 fresh and equilibrium-
composition cores

Core αT (pcm/K)

Fresh −9.622 ± 0.587
Equilibrium −3.342 ± 0.681

A substantially more negative temperature reactivity coefficient for the fresh core can be seen, compared
with the equilibrium-composition core. One of the primary drivers of this behavior is likely the distribution
of fuel in the core: whereas by the time of equilibrium, all of the graphite “dummy” pebbles have been
fully swapped out by fuel pebbles (with a higher initial enrichment of 9.6%, compared with the original
enrichment of 5.768% for the fresh fuel pebbles), only about a third of the pebbles in the fresh core are
fuel-bearing.

One caveat regarding the derived temperature coefficient is that the value presented here represents a total
temperature coefficient, which includes interlinked effects from fuel and moderator temperature feedback.
Because the moderator temperature is directly a function of operating power (as well as the helium gas
flow rate), the fuel and moderator coefficients were not explicitly decoupled, given that a thermal hydraulic
analysis was beyond the scope of this study.

3.2.2 ENERGY OF THE AVERAGE LETHARGY CAUSING FISSION

Table 7 summarizes the core-wide EALF for the fresh core and the equilibrium-composition core for the 300,
600, 900, and 1200 K isotherm models. As expected, the EALF tracks roughly proportional to the system
temperature (i.e., nearly all fission in the system is being driven by thermal neutrons). For convenience, the
modal neutron energy (kT ) for the thermal neutron flux is provided for comparison.

19



400 600 800 1000 1200
Temperature (K)

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

(T
)

PBMR-400 temperature coefficient

Equilibrium
Fresh

Figure 11. Fitted system reactivity as a function of temperature for isothermal PBMR-400 systems.
(Empty circles represent VSOP values from the benchmark problem used for comparison [1])

Table 7. Energy of the average lethargy causing fission (eV) as a function of core temperature.

Temperature kT Fresh core Equilibrium-composition core
(K) (eV) EALF (eV) σEALF EALF (eV) σEALF

300 0.02585 0.03739 < 10−6 0.054873 < 10−6

600 0.05170 0.06620 < 10−6 0.098725 < 10−6

900 0.07756 0.09530 < 10−6 0.14563 ∼ 10−6

1200 0.1034 0.12435 < 10−6 0.18849 ∼ 10−6

As can be seen in Table 7, the system is extremely thermalized, driven predominantly by thermal fission.
This observation is consistent with the neutron energy spectra profiles illustrated in Figure 6, where the
thermal neutron flux is dominant in the lethargy-weighted space and the fission spectrum peak is greatly
diminished. Comparatively, the fresh core shows a roughly 30% lower EALF, consistent with the additional
moderation present in the initial core from the graphite dummy pebbles (which is also observed in the
neutron energy profile).
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4. DEVELOPMENT OF ONE-GROUP ORIGEN CROSS-SECTION LIBRARIES

Having provided an overview of the full core behavior, we now turn our attention to the depletion behavior
of the individual fuel pebble. Here, the goal of this analysis is to identify the minimum set of data required
to create ORIGEN reactor data libraries capable of performing rapid depletion calculations with reasonable
fidelity compared to a detailed transport-depletion simulation. Factors to be considered include relative shifts
in the spectrum as a function of the pebble’s irradiation history (i.e., when circulating through different axial
and radial zones), effects of the time-dependent power history for depletion (again a function of core-wide
parameters such as the flux profile), and local features (e.g., proximity to the control rods).

4.1 CONSISTENCY OF MODEL SCOPE FOR MULTI-GROUP MONTE CARLO CALCULA-
TIONS FOR LIBRARY GENERATION

One of the goals in establishing a means of developing ORIGEN reactor data libraries for modular pebble-
bed reactor designs (such as the PBMR) is to determine the minimum viable scope required to faithfully
capture the physics of the system. Such a characterization is necessary to make the process of pebble-based
library development computationally tractable, given the considerable size of the full-core model. For this
study, the full-core model was compared with the infinitely reflected pebble (Figure 2) and a reflected axial
slice model (Figure 12). The latter consisted of an axially reflected slice of the system (including the core
and outer reflector regions) at the core axial mid-plane. (Note that while Figure 12 illustrates one-quarter
symmetry of the axial plane to illustrate detail, the full plane is explicitly modeled). The assumption being
tested by the reflected plane model was that radial effects would dominate the neutron spectral characteristics
of the core; whereas, given the relatively long neutron mean free path and continuous circulation of fuel
material, axial effects were expected to be of secondary importance.

Figure 12. SCALE 6.3 “reflected plane” model, representing an axially-reflected “slice” of the PBMR
system at the core axial mid-plane. Rendering is clipped to illustrate detail; the full radial plane is
explicitly modeled.

Beyond the most direct assessments of depletion performance (i.e., by looking at the calculated isotopic
inventories from a depletion problem using different libraries), a robust assessment of library differences due
to the model scope (e.g., reflected pebble, plane, and full core) can be performed by examining the multi-
group neutron energy spectrum used for the flux-weighted collapse to one-group reaction cross-sections.
Differences in the observed multi-group energy spectrum are thus useful for identifying causes of observed
differences in derived one-group reaction cross-sections, as well as for verifying agreement between different
models.
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4.1.1 BURNUP-DEPENDENT EFFECTS ON THE NEUTRON SPECTRUM

In order to evaluate the relative effects of burnup for the one-group cross-section library development, the
multigroup flux spectrum is evaluated as a function of burnup for the infinitely reflected pebble and the
reflected axial plane model. The aim of this analysis is to both quantify the relative effect of burnup on one-
group cross-sections (made manifest through shifts in the neutron energy spectrum) as well as to compare
the consistency of these effects across different levels of model scope.

Figure 13 illustrates the multi-group neutron flux spectrum for the infinitely-reflected pebble and reflected
plane models, both beginning with a fresh fuel configuration. The reflected pebble case shows relatively
low change in the neutron spectrum shape with respect to burnup. In marked contrast, the reflected plane
with the initial core configuration (i.e., 2⁄3 dummy pebbles) shows considerably higher shifts in the spectral
shape as a function of burnup. Moreover, the spectrum “softens” for the reflected plane case (i.e., the flux
distribution shifts to the lower-energy thermal peak monotonically with increasing burnup). The difference
is likely explained by the absence of the additional moderator in the reflected pebble case (in the form of the
radial reflectors and the graphite dummy pebbles).
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Figure 13. The 252-group collapsing spectrum as a function of burnup for the single, infinitely re-
flected pebble and a reflected axial plane (core mid-plane), starting from a fresh pebble / plane con-
figuration. The reflected axial plane model includes 2⁄3 graphite pebbles, significantly influencing the
spectral shape. Note that both models show a burnup-dependent spectral shift, but the effect is more
pronounced for the plane.

A useful point of comparison of the burnup effect for the PBMR core is the equilibrium-composition core.
Because it is assumed that pebbles continuously transit through the core and (after a number of passes) are
replaced, the stratified layers can be seen effectively as a static “snapshot” of burnup as a function of axial
height. In other words, because the core is at equilibrium, we can therefore assume that the isotopic evo-
lution over the axial length is invariant; thus, the axial height serves as a useful proxy for region-averaged
burnup. The equilibrium-composition core inventories provided within the benchmark in reality represent
an admixture of pebbles at various burnups (representing a variable number of passes through the core).
Because the core is assumed to be at equilibrium, this composition can thus be thought of as represent-
ing a relatively invariant regional-average composition surrounding a given pebble of interest; i.e., in any
given pass through the core, the neighboring pebble environment is expected to be relatively unchanging at
equilibrium within a given radial zone. Thus, depleting a single fresh pebble surrounded by non-depleting
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neighbors (at their respective equilibrium compositions) can be useful for understanding the local evolution
of the flux as a function of burnup. This is illustrated in Figure 14, which compares the 252-group collapsing
spectrum for each of the 5 radial regions for the equilibrium-composition core at the top and bottom axial
regions (thus representing the endpoints of the average burnup within the core).
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Figure 14. The 252-group collapsing spectrum as a function of radial location for the reflected plane
model (equilibrium fuel composition, 1200 K system temperature), at the top, middle, and bottom
axial regions (locations 1, 11 and 22, respectively).

Noteworthy in Figure 14 is the relative absence of a trend in burnup with respect to the collapsing flux (here
using axial zone as a proxy for burnup); in fact, it is only the outermost radial regions (regions 1 and 5,
those nearest to the reflectors) that manifest any discernible differences in the spectral shape as a function
of burnup. In Figure 8, the thermal flux is likewise more strongly peaked in these radial zones; likewise, in
Figure 10, the spectrum is notably more thermalized in these two radial regions throughout most of the axial
length of the core.

A notable feature of the models of the equilibrium-composition core (including the infinitely-reflected peb-
ble and reflected axial plane) was the relatively high degree of agreement between models in terms of the
multi-group collapsing spectrum, including between the pebble-level and plane-level models. An example
of this behavior can be observed in Figure 15, wherein the collapsing flux is virtually indistinguishable be-
tween the full-core and reflected plane models for each of the five radial zones at the targeted axial region of
interest (axial region 11, at the core mid-plane). Small but noticeable differences can be seen in the relative
thermal peaking factor for the outermost radial regions (i.e., regions 1 and 5, bordering the reflector regions).
Likewise notable is the close agreement between the infinitely reflected pebble (equilibrium composition)
and the inner radial regions (regions 2–4); i.e., based on the flux shape, the reflected pebble model serves
as a good proxy model for the larger system as a whole. This is a significant finding, as it would imply
that reasonably accurate pebble depletion libraries could be developed for pebbles within the reactor interior
based on relatively simple pebble models with low computational cost.

23



0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fl
ux

 p
er

 u
ni

t l
et

ha
rg

y
Model = Plane | Ax = 1 Model = Plane | Ax = 11 Model = Plane | Ax = 22

10 4 10 2 100 102 104 106

Energy (eV)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fl
ux

 p
er

 u
ni

t l
et

ha
rg

y

Model = Core | Ax = 1

10 4 10 2 100 102 104 106

Energy (eV)

Model = Core | Ax = 11

10 4 10 2 100 102 104 106

Energy (eV)

Model = Core | Ax = 22

Zone
100 110 cm
110 127 cm
127 144 cm
144 161 cm
161 185 cm
Pebble

Figure 15. The 252-group collapsing spectrum as a function of radial location for the reflected plane
model, full-core model, and the infinitely-reflected pebble, based on equilibrium fuel compositions
and a system isotherm of 1200 K.

A useful point of comparison with the equilibrium composition models for the core, plane, and pebble
is the relative flux shape profile for the fresh core; Figure 15 shows an overlay of the fuel region for a
reflected plane of the starting core. A nominally higher thermal peak relative to the epithermal and fast flux
can be seen, with the thermal peak centered at about the same energy as the equilibrium-composition core
composition models. This appears to be a consistent feature throughout the core depletion, as is evident
from Figure 13, wherein the overall spectrum shape and thermal peak location are unchanged as a function
of burnup, with the primary evolution occurring as the balance between the thermal and fast fluxes.

Extending the analysis while using the axial location as a function of burnup, the impact of spectral behavior
can be most concisely understood by looking at the collapsed one-group removal cross-sections (i.e., total
disappearance, including radiative capture and fission) for the major actinides. These are presented for each
of the five radial locations for the reflected plane and full core models (at the top, middle, and bottom of the
core for the reflected plane and for all axial regions for the full-core model), given as Figure 16. Noteworthy
here is the relative stability of cross-sections such as the 240Pu removal cross-section, which in traditional
LWR libraries varies significantly at low burnup that it is typically used to determine library interpolation
spacing [16]. Because of the continuous admixture of pebbles at varying burnups in this case, the same
“burn-in” gradient does not appear to be present as a function of burnup when the average spectrum within
a given fuel region is considered. Moreover, per Figure 16 the variation in one-group cross-sections for the
actinides is quite small over the axial domain (indicated by the errors bars, indicating the standard deviation
of the loss cross-section across the axial domain), especially when compared with the radial domain. This
would appear to indicate the relatively small effect of burnup on the effective one-group cross-sections
(assuming axial location as a proxy for average burnup).

The relatively high degree of consistency for the one-group removal cross-sections can be seen as a function
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Figure 16. Collapsed one-group removal cross-sections for major actinides for the PBMR-400
equilibrium-composition core for varying axial positions in the (left) reflected plane model, for three
separate axial regions (top, middle, bottom) and (right) full-core model (22 axial regions); all evalua-
tions conducted at 1200 K isotherm.

of radial position between the full-core model and the reflected plane model. The variation in the effective
removal cross-sections is relatively small with respect to axial position (on the order of tens of barns or
less), indicating that the reflected plane model in fact serves as a useful, reduced-order proxy for capturing
the spectrum of the full-core model for purposes of depletion library generation.

By contrast, one-group removal cross-sections in the single infinitely reflected pebble model (Figure 17)
exhibit substantial sensitivity to burnup (especially for 239Pu) as well as temperature. While this model was
similar to the larger-scale models (e.g., the reflected plane) in that the system isotherm temperature appeared
to be the dominant driver of differences in the one-group removal cross-section behavior, this specific scope
exhibited much higher sensitivity to burnup as well as a noticeable interaction term between burnup and
the system isotherm temperature (seen in Figure 17). This was very much unlike the larger-scale models,
which manifested neither of these features; for the infinitely-reflected pebble, the one-group cross-section
behavior more closely resembled that of a traditional LWR assembly. A likely explanation for this result
is the effective system represented by an infinitely reflected pebble, in that this model effectively treats the
entire system as depleting in concert; i.e., the assumption of a reflected pebble assumes thus that the state
of the neighboring pebbles continues to mirror the state of the pebble being depleted—a scenario physically
consistent with the LWR modeling approach. Such an approach thus does not (and cannot) account for
the “recharge” of fresh material from the continuous circulation of pebbles in the core, which in turn will
produce a bias in the observed neutron energy spectrum with burnup. Therefore, the reflected pebble model
is likely inadequate to fully capture the depletion behavior inherent to the continuously circulating pebble
system.

4.1.2 DIFFERENCES IN THE NEUTRON SPECTRA ARISING FROM RADIAL POSITION

The assumption of the burnup gradient being implicitly captured in the axial location is itself limiting is that
it captures only the average behavior within a fuel zone and thus overall represented a very limited range of
burnups; i.e., it effectively represented the average burnup of each fuel zone over the axial length of the core.
In effect, an entire “cohort” of pebbles was being depleted together, thus representing only a small effective
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Figure 17. Collapsed one-group removal cross-sections for major actinides for the the infinitely re-
flected pebble (equilibrium-composition core) as a function of temperature and burnup.

burnup range. This was an inevitable consequence of the nature of the equilibrium-composition core model,
in which a series of region-average compositions were specified (representing pebbles at various burnups)
without an obvious means of deconvolving their contributions back to discrete pebbles. Making a relatively
naive assumption of an equal number of fresh, once-burned, twice-burned, thrice-burned, and four-times
burned pebbles and average per-pass burnup of about 17.6 GWd

MTIHM gave a region-average burnup of 35–52
GWd

MTIHM as the fuel passed through the core. For LWR assemblies, the removal coefficients of major actinides
exhibit relatively little change over this burnup interval.

An alternative approach would be to evaluate the collapsing spectrum for a fresh pebble over the entire bur-
nup range while surrounding it with an invariant (non-depleting) neighbor material, thus effectively simulat-
ing the continuous “churn” of neighbor pebbles around an individual pebble and enabling a more accurate
examination of burnup behavior at the individual pebble level. Specifically, given the continuous feed and
removal of fuel pebbles, the core would approach an equilibrium admixture of pebbles of different burnups
(reflected as the equilibrium-composition core composition). Therefore, for any given batch of fresh pebbles
entering the core, the surrounding cohort of pebbles would be relatively invariant. (This approach is thus in
contrast to the depletion of the infinitely reflected pebble, wherein effectively the pebble is surrounded by
pebbles at identical burnup at all times.)

One means of estimating the most pronounced location effects for a fresh pebble within the equilibrium-
composition core would be to deplete one fresh pebble surrounded by a representative set of pebbles (at
the equilibrium composition) in which only the fresh pebble is depleted (i.e., the composition of the sur-
rounding pebbles is kept fixed). This approach would only approximate differences in the overall spectral
effects throughout the burnup history by assuming that the pebble would remain in a single radial position
throughout its depletion history; but it could nonetheless be useful for elucidating burnup-dependent differ-
ences in the spectrum as a function of the radial position. This approach is demonstrated in Figure 18 which
illustrates the neutron energy spectrum for the single fresh pebble depleted to a burnup of approximately
90 GWd

MTIHM at different radial locations within the reflected (static) plane. As can be seen, the separation in the
neutron spectra remains quite prominent over the pebble burnup toward the radial boundaries (zones 1 and
5), in which the spectrum is noticeably softer. In other words, the observed spatial differences in spectrum
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as a function of radial position appear to persist even at very high burnups, indicating that the radial position
effect is a first-order spectral effect that does not diminish with increasing burnup.
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Figure 18. 252-group collapsing spectrum as a function of radial location for a single (fresh) pebble
depleted within a static radial plane of pebbles at equilibrium composition (referred to as the “mari-
nade” model), with the depleted pebble at approximately 90 GWd

MTIHM burnup and a system temperature
of 1200 K.

Further illustrating this analysis is Figure 19, which shows the impact of radial position over burnup for the
one-group removal cross-sections of major actinides in the collapsed ORIGEN reactor library. Here, the
separation in the one-group removal cross-sections by radial zone is especially prominent, especially for the
fissile plutonium isotopes (239Pu and 241Pu). Conversely, the effect of burnup is relatively subdued, espe-
cially for traditionally more burnup-sensitive nuclides like 240Pu. This finding indicates that in this particular
scenario (wherein the pebble is surrounded by a constant neighbor population, in effect approximating the
“churn” of continuous circulation), burnup is a secondary driver of changes in the neutron spectrum com-
pared with the radial position. This behavior is largely consistent with the behavior of the multi-group axial
flux shape (Figure 14) and the one-group cross-sections (Figure 16). For each of these cases, taking the axial
position as a rough proxy for burnup, again the radial location is the predominant factor in determining the
effective removal cross-section.

For practical modeling applications, the pebble would most likely be distributed across different radial zones
throughout its burnup history, thus “homogenizing” spectral effects on the discharge isotopic vector. That
is, the variation in radial locations over the pebble’s history would likely lead to an averaging of differences
owing to different radial locations over the burnup history. Thus it would lead to lower variance in the
depleted isotopic compositions of pebbles compared with the case where they were exclusively burned in a
single radial location. Nonetheless, for applications involving short time intervals following irradiation (such
as for accident source term analysis), it is likely that the most recent irradiation spectrum would influence
the distribution of short-lived fission products (and thus key properties such as decay heat) and thus separate
treatment of the radial position for depletion library development appears to be warranted. This issue will
be further evaluated for its net impacts on the macroscopic properties (i.e., from decay heat) in evaluating
the performance of the one-group libraries for depletion in the following section.
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Figure 19. One-group removal cross-section for major actinides as a function of radial location and
burnup for a single (fresh) pebble depleted to approximately 90 GWd

MTIHM within a static radial plane of
pebbles at equilibrium composition with a system temperature of 1200 K.

4.1.3 COMPARISON TO HISTORIC 1-D APPROACHES

The approach outlined here bears some similarity to a long-prior attempts to produce an Origen reactor data
library for the PBMR-400. Specifically, Stoker et. al. considered the problem from the perspective that
the relatively high spacing between fuel micro-kernels would yield a scattering mean free path of 2.6 cm,
with an absorption mean free path of 31 m, indicating that the incident neutron spectrum for a given pebble
can be influenced by pebbles far from the pebble being considered [23]. One of the chief insights of this
work then is to posit that the flux spectrum within a given fuel sphere is determined primarily by the average
spectrum of the surrounding fuel pebbles [23].

To test this theory, Stoker et. al. created a 1-D spherical reactor model consisting of a single fuel sphere at
the center surrounded by a 1 m driver zone (composed of fuel at the core-average burnup of 45 GWd

MTIHM ) and a
1 m graphite “reflector”. Comparing the one-group cross-sections for the “fuel” sphere at a nominal burnup
of 0 and 80 GWd

MTIHM to a reference initial burnup of 45 GWd
MTIHM revealed only very small differences for most

major species (generally less than 2%). By contrast, varying the “driver” region composition to 0 and 80
GWd

MTIHM , respectively (with a nominal “fuel” region burnup of 45 GWd
MTIHM ) produced substantial differences in

calculated nuclide inventories, particularly for species such as 110mAg (-21%,+11%), 134Cs (+6.3%, -12%),
239Pu (+4.4%, -10%), and 241Pu (+6.9%, -13.1%)

4.2 EFFECTS OF POWER HISTORY ON ONE-GROUP CROSS-SECTIONS

For this analysis, the effects of the power history on the one-group cross-section library will be quantified
for a single-pebble model (infinitely reflected), assuming two scenarios: first, a uniform depletion at the
reactor average power, and second a non-uniform depletion history taking into account the axial flux profile,
with the working assumption that the specific pebble power at a given axial zone is directly proportional
to the thermal flux (shown as Figure 20). A detailed list of assumptions used for this analysis exercise is
outlined as Table 8. For this analysis, the primary time domain of interest will be from discharge to up to
10 days post-discharge, spanning the range of primary interest for severe accident source term analysis. It
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is likewise here that the fission products most sensitive to power history (i.e., those whose activities rapidly
reach saturation) are expected to show the greatest prominence.
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Figure 20. Comparative power histories used representing one transit of a pebble through the core

Table 8. Pebble dimensions and modeling assumptions used for characterization of non-uniform
power history on discharge isotopic composition.

Fuel region radius (cm) 2.5
Fuel-free graphite layer thickness (cm) 0.5
Total pebble radius (cm) 3.0
Lattice type Dodecahedral / FCC
Effective pebble-to-pebble pitch (cm) 6.4
Initial enrichment (% 235U) 5.768
Nominal average power (W/kg) 110.143
Irradiation time (d) 160

In general, the effect of the power history on the collapsed one-group cross-sections is negligible, especially
compared with larger effects such as the system temperature, as is seen in Figure 21.

4.3 TEMPERATURE EFFECTS ON ONE-GROUP CROSS-SECTION LIBRARIES

The effects of system temperature (particularly for the graphite reflectors) are well known to be of significant
consequence for graphite-moderated systems like the PBMR. In the case of the PBMR, this feature served
as an explicit design safety feature, in that temperature served as a strong negative reactivity feedback (as
discussed previously in Section 3.2.1). In terms of the neutron spectrum, an increasing system temperature
ultimately led to a shift in the thermal peak of the neutron spectrum, both effectively resulting in a "hard-
ening" of the spectrum as well as shifting the neutron flux much closer to important absorption resonances
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Figure 21. Effective one-group removal cross-sections for the single reflected (fresh) pebble, irradiated
at uniform and non-uniform power histories over one core transit (approximately 17.6 GWd

MTIHM ) for
(left) 300 K and (right) 1200 K system isotherm.

of 238U, 239Pu, and 240Pu. This is illustrated in Figure 22 (which shows the collapsing multi-group flux
for the reflected plane model of the fresh core as a function of system [isotherm] temperature) and in Fig-
ure 23 (which illustrates the same temperature-driven shift for the equilibrium-composition core). (Note
that the effects of Doppler broadening were also evaluated as part of this analysis, however the effects are
considerably less visible compared to the spectral shift and thus are omitted for clarity.)

As Figures 22 and 23 illustrate, the shape and location of the thermal peak are strong functions of the fuel
and reflector temperature; i.e., this proves to be a far more prominent feature affecting the spectral shape
(and thus effective one-group cross-sections) compared with burnup. Hence, consideration of the average
fuel temperature would appear to be a first-order consideration for library development of these types of
high-temperature systems, which show strong temperature-based feedback.

Examining this effect on the level of collapsed, one-group cross-sections (Figure 24) shows that the effect of
the system isotherm temperature both is quite prominent and shows a small positive covariant relationship
with the radial position. Specifically, for the fissile plutonium species ( 239Pu and 241Pu), the difference in
the effective one-group removal cross-section in the radial exterior and interior regions grows as a func-
tion of temperature. While the effective removal cross-section behavior is roughly linear as a function of
temperature for each region, a cursory inspection of Figure 24 indicates that the respective slopes of these
functions differ with radial position, indicating that, much like radial location, temperature likewise acts as
a first-order parameter for future library interpolation.
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Figure 22. The 252-group collapsing spectrum as a function of temperature (system isotherm) for
the fresh core, reflected plane model, with corresponding radiative capture cross-sections for major
actinidess overlaid for reference. Note the shift of the thermal neutron distribution onto the 239Pu
giant resonance with increasing temperature.
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Figure 23. The 252-group collapsing spectrum as a function of temperature (system isotherm) for
the equilibrium-composition core, reflected plane model, with corresponding radiative capture cross-
sections for major actinidess overlaid for reference. Variations in the flux shape by radial zones are
represented as shaded areas.
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Figure 24. One-group removal cross-section for major actinides as a function of temperature (K)
and radial location for the equilibrium-composition core (full core model). Note the divergence in the
removal cross-sections for fissile plutonium isotopes 239Pu and 241Pu between the outer radial zones
and the interior zones with increasing temperature.
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4.4 EFFECT OF MODEL SCOPE ON CALCULATED ONE-GROUP CROSS-SECTIONS

A comparison of effective one-group cross-sections across the full core (Figure 16), the reflected plane
(Figures 16, 19, and 24), and the infinitely reflected pebble models (Figure 17) shows the predominant
influence of accounting for the radial dimension with respect to capturing effective one-group removal cross-
sections. According to Figure 16, the reflected plane model yields nearly identical one-group cross-sections
for the equilibrium-composition core model for equivalent radial positions. While the relative axial position
chosen for modeling the reflected plane introduces a minor amount of variance, this overall effect is small
compared to that of the radial location on the one-group cross-sections.

Conversely, modeling the system as an infinitely reflected pebble (Figure 17) exhibits substantial inconsis-
tency with the full-core model; it underestimates the average one-group removal cross-sections for 239Pu
and 241Pu by 10% or more while likewise demonstrating burnup-dependent behavior not observed within
the reflected plane model (featuring depletion of a single pebble in a static reflected plane, representing the
continuous churn of neighboring material). The difference is clearly attributable to the assumed depletion
behavior of the neighboring pebbles; i.e., the reflected pebble model assumes simultaneous depletion of all
surrounding material, introducing the observed burnup-dependent behavior.

The net effect of the choice of model scope is likewise observed when the collapsed one-group library is
used to perform stand-alone depletion calculations. If the generic assumptions outlined within Table 8 are
used to perform a single-pass depletion of a representative pebble, the mass differences at discharge (relative
to the full-core model for the central radial region furthest away from the reflectors at core mid-plane) are
given in Table 9.

Table 9. Impact of library-generating model on discharge isotopic inventories for a single-transit
depletion cycle, expressed as the relative inventory difference compared with depletion using a one-
group library derived from the full-core model. Full core and reflected plane models assume the
pebble is at the radially centermost location (farthest from reflectors), core axial mid-plane.

Isotope
Relative mass difference to full-core (%)
Reflected plane Reflected pebble

235U −0.29 −0.72
239Pu −2.53 −3.77
240Pu −4.31 −10.3
241Pu −0.44 +2.65

Within Table 9, the mass difference for depletion calculations using an infinitely reflected pebble from
the full-core calculation (at the radial center and axial midplane) is roughly double that of the comparative
calculation using the reflected plane model in the same corresponding position for each of the major actinides
investigated. Notably, the magnitude of the mass difference is most significant for 240Pu, although this
nuclide exhibits a far smaller difference in the burnup-dependent one-group removal cross-section behavior
between the reflected plane model (Figure 19) and the infinite pebble model (Figure 17). This difference is
likely attributable instead to the substantial difference in the 239Pu removal cross-section behavior between
the two models. The reflected plane model exhibits both an overall flatter response to burnup (with very little
change over the entire burnup range) and a lower average removal cross-section (i.e., the reflected pebble
model gives a one-group removal cross-section ranging from 0 to 18% higher than that of the reflected plane
model, converging toward the latter with increasing burnup). The 240Pu removal cross-section remains
about 40 bn higher for the reflected pebble model (a difference of about 10%); these trends are illustrated in
Figure 25.
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Figure 25. (Left) Absolute and (right) relative difference in calculated one-group removal cross-
sections for major actinides for the reflected plane and infinite pebble models.

Taking these two observations together thus explains much of the observed difference in 239Pu and 240Pu
inventories between the models, as the average one-group removal cross-section for both nuclides was ap-
preciably higher for the earliest burnup period (up to 20 GWd

MTIHM ), encompassing the domain evaluated here.
Thus, the reflected pebble model will overestimate captures by both species to a greater degree than the
reflected plane model, with the overestimation of capture by 240Pu being greater and more persistent over
the life of the fuel for the pebble-based model.

Looking now to the relative impact of the radial location within the full core and reflected plane models, the
impact on the calculated isotopic inventories of major actinides as a function of the relative position within
the core (relative to the most central location, farthest from the graphite reflectors) is given for both models
in Table 10.

Table 10. Impact of radial library position on isotopic inventories after one pass through the core (a
burnup of approximately 17.6 GWd

MTIHM ), expressed as the relative mass difference (in percentage) com-
pared with depletion using the respective one-group library corresponding to the centermost radial
location (radial position #3).

Radial position
Relative mass difference to central radial position (%)

Full core Reflected plane
235U 239Pu 240Pu 241Pu 235U 239Pu 240Pu 241Pu

1 −2.85 −31.3 −18.7 −34.3 −3.14 −35.4 −21.0 −38.1
2 −0.76 −9.14 −4.84 −10.0 −0.66 −8.84 −3.24 −11.4
4 −0.74 −9.00 −4.89 −9.37 −0.41 −6.34 −2.68 −5.88
5 −2.77 −30.6 −18.6 −32.6 −2.53 −29.6 −17.1 −31.1

Here, the effect of moving outward from the central-most radial location is both relatively large and symmet-
rical in nature. The explanation for this effect is likewise relatively intuitive, deriving from the observable
difference in the neutron spectral index as one moves toward the reflector regions (resulting in a substantial
softening of the neutron spectrum, an effect observed in the zone-wise one-group cross-sections portrayed
in Figure 19).

Notably, the effect of the radial location of the one-group library dominated any effect arising from the use
of the full-core model versus a single reflected plane. In other words, the radial location of a given pebble
within the core (in terms of its proximity to the reflector regions) is far more prominent in influencing
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one-group cross-section behavior than features such as the relative axial position of the pebble within the
core. This in turn justified the treatment of depletion within the PBMR core from a “pebble” level (i.e.,
calculations of depletion based primarily on the orientation of the pebble within the core over its irradiation
cycles) compared with the “core” level (in which the composition of neighboring pebbles is expected to
significantly influence the collapsing spectrum used for the depletion of any given pebble).

When the inventories of major actinides following one irradiation cycle were compared for comparable
radial positions, in general, the differences between calculated inventories for the full-core and reflected
plane model were small (on the order of 1–4%). The differences between the two models scopes appeared
to be the largest for the outermost radial zones (especially toward the inner reflector) and for the fissile
plutonium isotopes 239Pu and 241Pu. Each of these two nuclides shared a giant resonance at around 0.3 eV,
which closely corresponded to the thermal peak of the neutron energy distribution within the core. Thus,
the relatively higher thermal neutron flux within this area served to magnify small differences in the neutron
energy spectrum in terms of the resulting weighted, one-group collapsed cross-section. Nonetheless, the
relatively high degree of consistency between the two models appeared to justify using a reflected plane
model as a reasonable simplification for purposes of tractability.

4.5 COMPARISON OF HTGR AND LWR LIBRARY CHARACTERISTICS

A useful reference point of comparison for the physics characteristics of the PBMR core is those of typical
LWR assemblies. PWR and BWR assemblies admit substantial degrees of freedom in terms of design
characteristics that influence the average neutron spectra (including but not limited to lattice design, initial
enrichment, void fraction, soluble boron concentrations, and presence of control rods). The PBMR core
nonetheless exhibited characteristics distinct from those of typical LWR assemblies, given the overall much
higher level of moderation. The following sections provide a brief basis for comparison by illustrating
the range of energies of the average lethargies of fission values calculated under broad sampling of the
design space for BWR and PWR assemblies. Similar values were calculated for the fresh and equilibrium-
composition cores of the PBMR-400 and are presented in Table 7. All of the LWR data used for this
comparison study are derived from calculations performed in [24].

4.5.1 BWR ASSEMBLIES

Figure 26 illustrates the distribution of EALF values for various BWR assembly designs, as calculated in
[24]; for purposes of comparison, the range of EALF values for the PBMR system isotherms for the fresh
and equilibrium-composition cores is also given. Notably, with the exception of cases evaluated at CZP
conditions (i.e., 293 K fuel and moderator temperature and 0% void), the range of EALF values for each of
the BWR lattices evaluated lies well above the range of values in each of the PBMR cases evaluated, with
an average difference of over +2.3 eV for all cases evaluated and a median difference of about +0.72 eV.
Consistent with intuitive expectations, the average BWR EALF increases monotonically with void fraction
(i.e., indicating a shift to a harder neutron spectrum driving fission), with an average difference of +7.2 eV
from the maximum EALF of the PBMR cases at 90% void (and a median difference of +4.0 eV), compared
with an average difference of of +0.31 eV (median difference: +0.21 eV) for the 0% void cases.

The GE14 assembly models evaluated in [24] specifically evaluate the effects of axial lattice zones (e.g., the
dominant lattice zone (DOM), plenum region (PLE), vanished lattice zone (VAN) accounting for partial-
length rods, and natural uranium axial blanket region (NAT)); this evaluation is broken out by lattice type
in Figure 27. In general, the vanished lattice zone (VAN) zone and the power-shaping zone (PSZ) are
strongly correlated with the hardest neutron spectra (and thus the larger differences in spectral behavior);
but even regions associated with the dominant lattice show substantially higher EALF values than the range

35



10 1

100

101

EA
LF

 (e
V

)

CR = Out | Type = GE7 CR = Out | Type = GE13 CR = Out | Type = GE14 CR = Out | Type = ATRIUM10

0.00 0.25 0.50 0.75
Void fraction (%)

10 1

100

101

EA
LF

 (e
V

)

CR = In | Type = GE7

0.00 0.25 0.50 0.75
Void fraction (%)

CR = In | Type = GE13

0.00 0.25 0.50 0.75
Void fraction (%)

CR = In | Type = GE14

0.00 0.25 0.50 0.75
Void fraction (%)

CR = In | Type = ATRIUM10

Fuel temp. (K)
293
500
560
950
1500

Fuel temp. (K)
293
500
560
950
1500

PBMR EALF
Fresh core
Eq. core

Figure 26. Energy of the average lethargy causing fission for various BWR assembly types under a
range of moderator void fractions, fuel and moderator temperatures, and presence of control rods,
with data from [24]. The calculated (overlapping) ranges of EALF values for the PBMR fresh and
equilibrium-composition cores (calculated solely as a function of system isotherm temperature) are
presented for comparison.
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Figure 27. Energy of the average lethargy causing fission for a GE14 BWR assembly, broken out by
lattice zone configurations per conventions defined in [25] (e.g., dominant lattice zone (DOM), power-
shaping zone (PSZ)), using data from [24]. The calculated (overlapping) ranges of EALF values for
the PBMR fresh and equilibrium-composition cores (calculated solely as a function of system isotherm
temperature) are presented for comparison.
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encompassed by the PBMR models. Thus the figure clearly illustrates the divergence in observed one-
group cross-section behavior for PBMRs (and thereby necessitates the development of new libraries and
corresponding interpolation dimensions).

Figure 28 illustrates the collapsing spectra for the two most extreme cases of the GE14 BWR assembly in
terms of the evaluated EALF values, with the CZP case representing the fuel and moderator at 293 K (0%
void) and the hot full power (HFP) case representing the fuel at 500 K and the moderator at 560 K (90%
void). Both cases are presented for the dominant lattice.
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Figure 28. Comparative lethargy-weighted multi-group energy spectra for the GE14 fresh assembly
under CZP (0% void) and HFP (90% void) (representing relative lethargy extrema for the BWR cases
considered), alongside the PBMR equilibrium-composition cores at 300 and 1200 K. Shaded regions
represent variations over different (non-Gd) fuel regions within the assembly.

In Figure 28 the more thermalized nature of the PBMR core (combined with the relatively high temperature
sensitivity) is evident. Notably, it can be seen that despite the rather large shift in the thermal peak at the
highest temperature isotherm for the PBMR, the overall flux balance is far more weighted toward the thermal
peak relative to the fast (fission) peak, thereby indicating a much softer spectrum than the range of typical
BWR assemblies.
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4.5.2 PWR ASSEMBLIES

Similar to the BWR assemblies studied, Figure 29 presents collected EALF data for PWR assemblies over
dimensions of lattice design, initial enrichment, moderator and fuel temperature, presence of control rods,
and soluble boron concentration. Differences in the system EALF are typically smaller than those in the
more extreme regions of the BWR cases (i.e., high-void regions); however the differences in spectral hard-
ness are still significant, with an average difference in EALF of +0.75 eV (and a median difference of +0.4
eV).
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Figure 29. Energy of the average lethargy causing fission for various PWR assembly types under
a range of initial fuel enrichments, fuel and moderator temperatures, soluble boron concentrations,
and presence of control rods, with data from [24]. The calculated ranges of EALF values for the
PBMR fresh and equilibrium-composition cores (calculated solely as a function of system isotherm
temperature) are presented for comparison.

Within the PWR data, there was a substantially lower degree of variance in EALF values in the evaluated
permutations, chiefly owing to the general lack of substantial changes in the average moderator density (with
a standard deviation of 0.83 eV in the EALF of all samples considered). While the average difference from
the PBMR cores was smaller, it was nonetheless large enough to mark a shift of the thermal neutron flux
well into the region of the 240Pu giant resonance (thereby producing the strong burnup-dependent effect on
the corresponding one-group removal cross-section not observed in the PBMR data). This finding is most
evident in referring back to Figures 22 and 23.
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5. CONCLUSIONS

In this report, we present an analysis of HTGR modeling capabilities in SCALE, using the PBMR-400
benchmark as a test case. The scope of this analysis includes a review of existing SCALE capabilities for
handling doubly-heterogeneous fuel (such as the TRISO fuel pebbles used in the PBMR-400), a brief review
of prior HTGR systems analysis work performed using SCALE, and an in-depth analysis of the neutronic
characteristics of the PBMR-400 core at startup and equilibrium conditions so as to evaluate the necessary
prerequisite information for producing ORIGEN reactor data libraries for rapid depletion analyses.

In terms of the neutronic characteristics of the PBMR-400 core, the annular core geometry with graphite
moderators produces a relatively flat radial flux profile, so that the overall difference in flux across a given
radial zone within the pebble-loaded core region is relatively flat for a given axial location. However, the
circulating nature of the fuel (i.e., fuel is loaded from the top of the core and transits axially downward and
is cycled through the core multiple times), produces a sharp axial flux and power gradient at equilibrium
conditions. The power strongly tilts toward the top of the core (where the reactivity is highest). However,
the overall spectral characteristics, such as the ratio of the thermal to fast neutron flux, remain relatively
constant through the axial length of the core. Moderate differences in this ratio (the “spectral index”) were
observed in the radial regions closest to the graphite reflectors, potentially warranting the consideration of
radial position for depletion library development. However, given the relatively invariant flux shape axially
within a given radial zone, this result would imply that specific axial treatment of the pebbles is not required
for properly capturing depletion behavior.

With respect to the general form of the neutron energy spectrum, the lethargy-weighted spectrum shape
in both the fresh and equilibrium-composition cores showed a strongly bifurcated shape, with a prominent
thermal-region peak and a proportionally smaller fast (fission neutron) peak with a small, upward-trending
gradient in the lethargy-weighted flux between the thermal and fast peaks. Given the considerably softer
spectrum (i.e., thermally weighted) compared with traditional LWR spectra, this shape resulted in noticeably
higher response sensitivity to parameters such as the system temperature. The system temperature had a
first-order impact on both depletion characteristics and in terms of reactor reactivity coefficients and EALF.
Notably, in the PBMR-400 system, system temperature (treated as a system isotherm) had the effect of
shifting the thermal peak higher in energy, producing a narrower peak with the median energy shifted much
closer to the range of 0.1-0.5 eV. This results in a shift of both the peak and centroid of the thermal neutron
distribution closer to the 239Pu absorption giant resonance located around 0.3 eV. The expected result of
this shift was twofold: parasitic capture by 239Pu resulted in a strong negative reactivity feedback (observed
as the temperature reactivity coefficient) and in significantly enhanced production of transuranic species
(influencing depletion inventories). As a result, system temperature effects must be considered for depletion
calculations for HTGR systems like the PBMR-400.

The implications of the observed physical behavior of the PBMR-400 system for ORIGEN library develop-
ment are discussed in the following section.

From a system modeling perspective, although SCALE’s present capabilities for physics treatment of doubly-
heterogeneous fuel are mature and well-developed, the analysis of the PBMR-400 core indicated specific
feature gaps necessary to perform full-fidelity analysis of the system physics behavior. These features in-
clude treatment of the continuously circulated pebbles as well as the distribution of pebbles throughout
the core. These feature gaps, along with the associated remediating assumptions, will be discussed in the
following sections.
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5.1 DEPLETION MODELING FROM A “PEBBLE-LEVEL” APPROACH

One of the overarching assumptions employed and demonstrated through the course of this analysis has
been the treatment of depletion from effectively the level of an individual pebble—that is, considering the
problem of evaluating depletion behavior by considering the spectral characteristics of the core as seen from
the level of the individual fuel pebble as it makes multiple transits through the core. In this framework, the
depletion behavior of the pebble thus primarily depended on factors such as its radial location relative to the
reflector regions and reactor-level characteristics such as the graphite reflector temperature. This approach
is in contrast to treating the depletion behavior of a given pebble as being contingent upon the state of its
surrounding neighbor pebbles.

In effect this approach assumed a relatively loose coupling among individual pebbles within the core. That
approach was borne out by evaluating the neutronic characteristics (i.e., spectrum shape) for reduced-order
models such as the “reflected plane” pebble model compared with those of the full core. In effect, for a given
pebble as it transits through the core, for the equilibrium cycle condition, the variation in the neighboring
pebbles between any given cycle is expected to be small and largely contingent upon the pebble’s radial
location within the core. Because pebbles are continuously circulated through the system (with pebbles
being recirculated until they reach their terminal burnup and fresh pebbles are continuously added), the
adjacent fuel throughout the core at any given time is effectively static with respect to axial position (e.g., as
a layer of fuel transits downward through the core, new fuel is added back to the top)

Thus, the treatment of the individual pebble as the unit of depletion (and the focus of one-group library
development) is not unlike the approach presently employed for LWR assemblies, wherein the granular
level of interest is that of the assembly (i.e., ORIGEN data libraries are developed assuming an infinitely
reflected assembly). In the case of generating LWR reactor libraries, it is generally assumed that the assem-
bly’s location within the core is of negligible consequence, save for characteristics such as control blades /

control rods, and so on; i.e., prior experience in radiochemical validation studies performed using ORIGEN
generally confirm that this approach is sufficient to give accurate results.

For the PBMR system, the neutron moderation is strongly impacted by the annular graphite reflector re-
gions. Meanwhile, the factors that influenced the relative neutron flux shape—namely, absorption by other
pebbles—were likewise governed by the relative radial position with respect to the reflectors. Hence, in
treating the system across one dimension (i.e., radial position), this situation accounted for endogenous
effects like competing thermal neutron absorption by neighboring fuel pebbles.

With this perspective in mind, it is reasonable to approach depletion calculations for systems like this one by
examining the reactor environment from the “pebble” perspective, i.e. primarily in terms of pebble’s relative
radial location during its history and its initial design characteristics (e.g., initial enrichment, TRISO particle
packing). This method has the effect of greatly simplifying the approach to calculating isotopic inventories
for the core under equilibrium conditions.

With this in mind, this “pebble supercell” approach would require further investigation regarding its validity
under the conditions leading up to the equilibrium-composition core, particularly as graphite dummy pebbles
are continuously replaced for new fuel pebbles (thereby slowly drawing down the graphite pebble inventory
and increasing the fuel pebble inventory). In this scenario, the axial variation of material within the core is no
longer effectively static but rather is continuously evolving as burned fuel is returned to the top of the annular
region alongside fresh pebbles. While it is likely that the spectral variations would continue to be dominated
by the proximity to the radial reflector regions, such an assumption would need to be further vetted before
being fully applied to studying the depletion behavior of a nonequilibrium starting core condition.
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5.2 RECOMMENDATIONS FOR ORIGEN LIBRARY DEVELOPMENT

One of the chief aims of this study was to characterize the parameters needed to develop ORIGEN reactor
data libraries that provide sufficient coverage of the problem domain to be useful for rapid depletion calcu-
lations (i.e., by interpolating pre-generated libraries to problem-dependent conditions). From the analysis
of the PBMR-400 benchmark problem, three general dimensions stand out as most significant for library
development: the pebble initial enrichment, burnup, and graphite temperature. Notably, separate design
parameters such as the TRISO geometry and particle packing fraction were not investigated in the scope of
this study. They would be expected to likewise require differential library development.

The observed evolution of one-group cross-sections with initial enrichment and burnup was not unexpected
and is in fact consistent with previous experience with LWR fuel modeling. However, the graphite re-
flector/moderator temperature also exhibited a profound impact upon the neutron spectrum and thus the
calculated one-group cross-sections. Specifically, changes in the graphite temperature drive changes in neu-
tron scattering rates, thereby resulting in a narrowing and shifting of the thermal neutron peak into regions
that are closer to prominent actinide capture resonances. As a result, system temperature was identified as
a new dimension for library interpolation and development that has heretofore not been considered in the
development of ORIGEN libraries for LWRs and similar systems.

5.3 RECOMMENDED DEVELOPMENT PRIORITIES FOR ORIGAMI

The most significant new capabilities required for ORIGAMI to model HTGR systems like the PBMR-
400 fall roughly into two categories: library processing and specification of time-dependent power history
information.

5.3.1 ENHANCEMENTS TO LIBRARY INTERPOLATION

With respect to library processing, ORIGAMI currently relies on internal calls to the legacy module ARP
(Automatic Rapid Processing), which performs interpolation of select uranium oxide (UOX)-based fuel
cross-sections based on predefined assembly-level characteristics (including initial enrichment, moderator
void fraction, and mid-cycle burnup). While ARP is also capable of interpolating mixed oxide (MOX)-
based libraries based on initial characteristics such as the plutonium vector and fraction of total plutonium,
as of SCALE 6.2 ORIGAMI only supports UOX-based fuel types. Although adapting the ARP module to
handle characteristics of TRISO-based fuel is possible, a more maintainable long-term approach would be
to leverage previously developed capabilities for linear interpolation across an arbitrary number of dimen-
sions using on-library descriptor information [26]. This capability was developed in support of anticipated
future needs for more generalized ORIGEN library interpolation capabilities for scenarios such as this one;
however it has yet to be deployed as a user-facing feature, partly owing to the need to update upstream code
infrastructure (i.e., the TRITON sequence) to provide information required for interpolation directly on the
library file itself. As ORIGAMI begins to support libraries beyond typical UOX-based LWR assemblies, the
need for this infrastructure development becomes more apparent.

Within the context of adapting ORIGAMI for PBMR depletion applications, the logical set of interpolation
dimensions for ORIGEN libraries would thus span a 4D space, consisting of radial location within the core,
initial pebble enrichment, system temperature (more precisely, graphite reflector temperature), and pebble
burnup. While the effect of burnup is relatively subdued for cases such as the equilibrium-composition core,
the effect is substantially more pronounced for the fresh core. Interpolation along the burnup dimension is
handled automatically by ORIGAMI; likewise, at present, ORIGAMI automatically infers initial uranium
enrichment using the material composition. A more general approach may involve providing more specific
input to the user for overlaying characteristic dimensions of interest to the problem, similar to the behavior of
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the axial and radial power map features (used to infer mid-cycle burnups by modifying the nominal specific
power specified in the irradiation history block).

For example, an alternative means of capturing arbitrary interpolation dimensions would be to have the
user specify a series of “maps” covering the depletion zones within the problem; each map would specify a
characteristic dimension capable of being interpolated along a real-value axis (e.g., initial fuel enrichment,
radial location relative to the reflectors, fuel and/or reflector temperature). Each “interpolation map” would
functionally exist parallel to others, with the problem-specific features of each depletion “zone” determined
through the permutation of the layered map entries. For example, consider the three sets of parallel maps in
Figure 30 overlaid upon one another to form a set of nine unique tuples, specifying the initial enrichment,
radial location, and start-of-cycle burnup. This would then result in a set of nine unique permutations, shown
as Table 11.

BU1 BU4 BU2

BU3BU1BU3

BU2 BU4 BU2

r1 r2 r3

r3r2r1

r1 r2 r3

E1 E2 E1

E1E3E1

E3 E2 E1

Figure 30. Proposed series of “map overlays” for interpolation of libraries with arbitrary dimen-
sions in ORIGAMI; the combination of the maps produces a unique tuple for each depletion location
(“pebble”), resulting in the permutations shown in Table 11.

Table 11. Pebble “permutations” of initial enrichment, radial location, and starting burnup, as given
by the overlaid tables shown in Figure 30.

(E1, r1, BU1) (E2, r2, BU4) (E1, r3, BU2)
(E1, r1, BU3) (E3, r2, BU1) (E1, r3, BU3)
(E3, r1, BU2) (E2, r2, BU4) (E1, r3, BU2)
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5.3.2 SPECIFYING FLOWING-PEBBLE DEPLETION HISTORIES

Accommodating depletion history information for flowing pebbles requires some re-conceptualization of
the depletion model used in ORIGAMI to obtain fuel inventories. In its original formulation, ORIGAMI
presumes a static assembly consisting of discrete axial and radial “zones” subject to a common nominal
power history overlaid with axial and radial power gradient information. Here, the fuel in each depletion
zone is always subject to one gradient-based “modifier” to the power history information. (This is in addition
to other local features which may modify the spectrum, such as the axial void profile).

By contrast, the flowing pebble scenario involves transit through an axial gradient over its residency in the
core; hence, what was once a static modifier of a nominal power history now becomes the time-dependent
power factor acting on a global core power. Moreover, in the context of MEDUL cycles, each separate pass
through the core involves movement of the pebble into a separate spectral zone.

Further complicating matters is the inherently stochastic and branching nature of pebble depletion histories.
In the absence of a prescribed core reloading pattern, pebbles are effectively assumed to be distributed
randomly between radial zones as they are reloaded at the top of the core. Because a given pebble can transit
through one of multiple radial (spectral) zones with each pass, the possible irradiation histories leading up to
a given pebble history necessarily branches with each pass, with the accumulation of the isotopic inventory
(particularly for the transuranic species which are dependent upon multiple neutron captures) dependent
upon not only the present trajectory but the passes before it.

As such, the inventory of a pebble at a particular location and pass number through the core is no longer a
single, deterministic value but rather represents a distribution of values encompassing each possible series
of paths through the core. Accounting for this can be performed in one of two ways:

1. At the end of an irradiation pass through the core, determine the discharge inventory for the pebble
given the history within each radial / spectral zone. Following this, produce a “normalized” end-of-
cycle inventory via a probability-weighted sum of each of the discharge inventories, i.e.:

N′(t) =

Nzones∑
i=1

N′i (t)Pi (4)

where Pi is the probability of a pebble being loaded into zone i. The homogenized inventory is then
used as the starting inventory for the parallel depletion history calculations for the next cycle. Thus,
the depletion inventory of a single pebble after k passes through the core consisting of j zones is
simply (k − 1) · j + 1 (i.e., given that the location of pebble in the “last” pass for which inventories are
being calculated is known).

2. At the end of each irradiation pass through the core, the discharge compositions for each zone are
used to seed a new branching calculation for each zone in the next depletion cycle. i.e., rather than re-
homogenizing the concentrations to produce a “weighted” prior-batch concentration, the end-of-cycle
inventory for each cycle is then used as the starting point for calculations over j zones. Hence, the
inventory of the pebble at cycle k is the superposition of all possible states for k − 1 cycles, and hence
the number of calculations required is:

Ncalculations = jk−1 + 1 (5)

i.e., for each cycle k, the pebble can be in one of j states. The end result of this calculation is thus
a histogram distribution of inventories for each isotope, the variance of which will depend on its
respective sensitivity to the incident neutron spectrum.
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For comparison, assuming a core composed of five radial zones, calculating the pebble inventory at its sixth
and final pass would lead to (6 − 1) · 5 + 1 = 26 separate calculations for the “homogenized” case and
55 + 1 = 3126 calculations for the “branching” treatment. While both are reasonably tractable given the
easily parallelized structure of the problem, they illustrate the complexity of determining inventories for the
discharge inventory for even a single pebble in the core.

While an initial assumption would be that differences from prior cycles would effectively “wash out” (thus
favoring the homogenized approach to pebble depletion), prior work by Gougar et al. indicate that the
variance in plutonium inventories (i.e., 239Pu and 240Pu) can be non-trivial [22]. Simulating the trajectories
of pebbles across 4 radial zones over 10 passes (yielding 410 = 1048576 separate depletion histories),
they found significant variation in discharge inventories of 239Pu (as high as ±23% over a relative uniform
distribution), indicating a high sensitivity to the irradiation history [22]. This occurred despite the fact that
the pebble discharge burnup was normally distributed around 81 GWd

MTIHM with an observed range of 76.6–87.8
GWd

MTIHM [22]. Masses for other notable species such as 240Pu as well as fission products of interest such as
134Cs and 109Ag generally exhibited distributions closer to a Gaussian distribution (with 240Pu showing a
moderate skew-right behavior indicative of the influence of the preceding 239Pu distribution) [22].

From a user interface perspective, regardless of the implementation choice taken for tracking inventories
between cycles (i.e., homogenization or branching), a conceptual approach would be to allow the user to
define factors such as the bins of an axial power shape, pebble residency time within axial locations, and
the probability distribution of pebbles between radial zones, wherein ORIGAMI would account for pebble
shuffling throughout the history. An example implementation is illustrated as Figure 31.� �
=origami

pr = [ pZone1 pZone2 . . . pZoneN ] % r a d i a l zone r e l a t i v e power shape
pz = [ p1 p2 . . . pNZ ] % a x i a l zone r e l a t i v e power shape
zt ime = [ r t 1 r t 2 . . . r tNZ ] % r e s i d e n c e t i m e i n each a x i a l zone

h i s t [
pass { power=180 burn=64 down=7 rzone=ANY } % f i r s t pas s
pass { power=160 burn=62 down=6 rzone=ANY } % second pass
pass { power=140 burn=64 down=7 rzone=3 }

]
. . .

end� �
Figure 31. Sample implementation of an ORIGAMI interface for flowing-pebble HTGR systems.

In the conceptual example within Figure 31, pebbles are assumed to exist in any radial zone for the first
and second passes and are in the third radial zone for the third pass. Meanwhile, the nominal core power
varies for each pass, modified by the radial power shape (pr keyword) and axial power profile (pz profile
modifier). Other options would include relative residence time within axial zones (ztime) and user-defined
probability distributions between radial zones.

5.4 ADDITIONAL ANALYTICAL CAPABILITIES TO BE DEVELOPED

The continuous circulation of fuel pebbles within the PBMR system introduces unique challenges for neu-
tron transport, including capturing the effects of the evolving neighboring fuel pebbles on the depletion
spectrum for a given pebble of interest. Because the shape of the neutron spectrum appears to be relatively
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constant axially, explicit tracking does not appear to be required to accurately capture depletion behavior
over a single pass through the core. However, because pebbles are continuously placed back into the core,
the distribution of previously burned pebbles radially is expected to produce impacts on overall depletion
behavior (in terms of both the individual pebble tracked and the influence of neighboring pebbles). This
work has not sought to analyze this specific effect at this time; however plans are to evaluate this specific
effect in future follow-on work.

The assumption of the core at equilibrium alleviates some of this challenge in that it is assumed that the
core composition generally reaches steady-state with respect to the axial dimension; thus, pebble transit
within a cycle can effectively be captured by examining different axial locations. However, this approach
assumes prior information about the equilibrium-composition core composition and does not easily lead to
methods for determining an equilibrium composition from a given starting core configuration. Thus, while
the analysis of the equilibrium-composition core within this study can generally be regarded as valid (insofar
as the benchmark results themselves represent a valid representation of the equilibrium system), a means
of tracking time-dependent pebble positions during multiple transit cycles is necessary for establishing the
intermediate, transient core compositions and for calculating equilibrium conditions based upon alternative
initial conditions (e.g., core length, burnup per cycle, initial enrichment). Note that similar systems (such
as the Berkeley Mk. 1 FHR) present an identical modeling challenge, and thus the issue of continuously
shuffled fuel goes beyond the HTGR class of systems alone.

Additionally, one challenge noted in the development of the PBMR-400 model is the pebble packing and
placement itself. Although the use of a dodecahedral lattice afforded placement of pebbles at the correct
packing density (61%), this approach had notable issues, namely with respect to local packing voids located
at the annular boundary when partial pebbles (“clipped” pebbles) were not allowed. This issue produced
substantial deviation in the system keff compared with the problem benchmark. Although modeling the
system with clipped pebbles at the core boundary produced better agreement with the benchmark, this
approach is suboptimal both because it does not convey a physically realistic portrayal of the system and
because it still produces higher than anticipated divergence from the benchmark.

A preferable solution would be to implement a RCP array geometry capability, preferably with a user-
configurable packing fraction. Experience with other transport codes (such as SERPENT) has indicated
that modeling the system using an RCP geometry produces better agreement overall with the reference
benchmark without relying on non-physical compromises such as pebble truncation at the reactor boundary
[27]. Presently, although SCALE has introduced random particle placement capabilities for TRISO fuel
particles, that approach does not represent a tractable method for full-core modeling. Rather, it is suitable
for evaluating the effects of TRISO particle distribution within an individual pebble. Notably however, the
implementation of particle tracking using random-unit geometries is a non-trivial exercise; SERPENT han-
dles this via Woodcock delta tracking; other codes such as RMC have implemented using random universe
geometry methods [28].
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APPENDIX A. DEVELOPMENT OF A COMPACT SPHERICAL PACKING ALGORITHM

A key constraint to developing a realistic PBR geometry is the compact placement of pebbles within the
cylindrical or annular space. For hard spheres, HCP represents the highest theoretical packing efficiency
(around 67%); this, however, is a higher packing efficiency than the problem benchmark (which specifies a
packing fraction of about 61%). Meanwhile, correctly maintaining the fuel-to-moderator ratio demands a
minimum of pebble geometry clipping at the core edges (reinforcing the hard spheres assumption).

To address these issues while allowing for efficient generation of very large pebble arrays, we developed
a sphere packing algorithm to calculate pebble-filled units of a triangular-pitched hexagonal lattice, de-
rived from [29]. This section will describe the algorithm used to obtain efficient sphere packing within the
hexagonal lattice while attempting to minimize clipping of sphere boundaries to maximally preserve the
fuel-to-graphite ratio within the core.

The problem of determining hexagonal unit cells that lie “inside” the outer annular boundary but “outside”
the inner boundary can be solved by determining the locations of each unit cell’s vertices. For the outer
boundary, if the radial displacement of the vertex from the center of the annular region exceeds the outer
radius, the vertex is thus “outside” (meaning that any unit sphere would be clipped); thus the cell is left
empty. Similarly, if any vertex displacement vector is smaller than the inner radius, the hexagonal unit can
likewise be declared “outside” (and thus remain empty).

The calculation of vertex locations then simply requires the formulation of a displacement vector to describe
the location of each cell’s vertices relative to a reference cell (in this case, the central cell). This formulation
can be represented as two vector components representing two dimensions of travel (vertical and horizontal
displacement), referred to as u0 and u1. This displacement vector ~u = (u0, u1), defined as Eq. (A.1) [29].

u0 =2d ·
(
î + 0.5

[
î mod 2

])
u1 =2 ·

√
3

2
d · ĵ

=
√

3d · ĵ

(A.1)

Here, î and ĵ represent an integer number of units displaced from the central unit, and d corresponds to
the peak-to-flat dimension of the hexagonal unit cell. (It is assumed that the sphere radius r is equal to d,
resulting in close-packing on the plane.) Therefore, the apothem (distance from the center of the hexagon
to any vertex) is simply a =

√
3

2 . Likewise, one should note the modulo term for u0, which accounts for the
fact that the lattice centers shift to the right by a half-unit for every other row (as a result of the close-packed
arrangement).

Thus if D is defined as the outer circle diameter of a circle that bounds the vertices of a hexagon (i.e., each
vertex lies on the circle), it is apparent that D = 2a =

√
3 · d, where d is the center-to-flat dimension. Thus,

the location of vertex k for a hexagon displaced as ~u = (u0, u1) is given as Eq. (A.2) [29].

vk =

(
D · cos

(
(2k + 1) π

6

)
,D · sin

(
(2k + 1) π

6

))
where k ∈ [0..5] (A.2)

Finally, we can establish the boundary conditions for a vertex to be considered “inside” the annular region as
Eq. (A.3) [29]. This condition reduces to the norm of the vertex coordinate (vk) and the displacement vector
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(
~u
)
, which can then be compared directly against the inner and outer annular radii (Ri and Ro, respectively).

Note that this boundary condition is effectively a combination of two cylindrical boundary conditions (i.e.,
“outside” the inner circle forming the annular boundary and “inside” the outer circle).

Ri ≤
∥∥∥vk + ~u

∥∥∥ ≤ Ro (A.3)

To ensure the correct heavy metal mass in the core, a small tolerance factor ε is introduced in order to relax
the boundary condition, thereby allowing cells to be filled that would result in trivial clipping of the fuel
pebble graphite layer.
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Figure 32. PBMR-400 flux distribution for the fresh (initial) core; (left) fast neutron group (E > 1.86
eV), (right) thermal group (E ≤ 1.86 eV)

Figure 33 illustrates the spectral index for the fresh core. Compared to the equilibrium-composition core
(Figure 10), the overall flux profile of the fresh core is substantially more thermalized, with overall less
distinction between radial zones. Thus, while the outer radial zones still show greater thermalization than
the interior zones, this effect is substantially diminished compared to the equilibrium-composition core.
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