
Choose an item. 

 

 

PNNL-33647  

 
 

Subsurface Radiological 
Survey Design and 
Geospatial Analysis Tool 
Recommendations 
Task 1b TO 31310021F0022 
November 2022 

Jen Huckett  
Deb Fagan 
Zachary Weller 
Moses Obiri 
Lisa Newburn 
Fred Day-Lewis 
David Peeler 
 
 

 
 

 

Prepared for the U.S. Nuclear Regulatory Commission 
Office of Nuclear Regulatory Research 
Under Contract DE-AC05-76RL01830 
Interagency Agreement: 31310019N0001 
Task Order Number: 31310021F0022 

 



Choose an item. 

 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility 
for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by 
the United States Government or any agency thereof, or Battelle Memorial 
Institute. The views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency thereof. 

 

PACIFIC NORTHWEST NATIONAL LABORATORY 
operated by 
BATTELLE 

for the 
UNITED STATES DEPARTMENT OF ENERGY 

under Contract DE-AC05-76RL01830 

 

Printed in the United States of America 

Available to DOE and DOE contractors from the 
Office of Scientific and Technical Information, 

P.O. Box 62, Oak Ridge, TN 37831-0062; 
ph: (865) 576-8401 
fax: (865) 576-5728 

email: reports@adonis.osti.gov   

Available to the public from the National Technical Information Service 
5301 Shawnee Rd., Alexandria, VA 22312 

ph: (800) 553-NTIS (6847) 
email: orders@ntis.gov <https://www.ntis.gov/about> 

Online ordering: http://www.ntis.gov 

 

 

 

 
 

mailto:reports@adonis.osti.gov
https://www.ntis.gov/about
http://www.ntis.gov/


PNNL-33647 

 

 
 
 
 
 
 
 
 
 
 

Subsurface Radiological Survey Design and 
Geospatial Analysis Tool Recommendations 
Task 1b TO 31310021F0022 
 
 
 
 
November 2022 
 
 
 
Jen Huckett  
Deb Fagan 
Zachary Weller 
Moses Obiri 
Lisa Newburn 
Fred Day-Lewis 
David Peeler 
 
 
 
Prepared for the U.S. Nuclear Regulatory Commission 
Office of Nuclear Regulatory Research 
Under Contract DE-AC05-76RL01830 
Interagency Agreement: 31310019N0001  
Task Order Number: 31310021F0022 
 
Pacific Northwest National Laboratory 
Richland, Washington 99354 
 



PNNL-33647 

Acronyms and Abbreviations iii 
 

Acronyms and Abbreviations 
2-D two-dimensional 
3-D three-dimensional 
AI artificial intelligence 
AIM Aquifer Injection Modeling 
ArcGIS Mapping and analysis software 
CCM contamination concern map 
CORE Common Operating and Response Environment 
CSM conceptual site model 
DCGL derived concentration guideline level 
DOE U.S. Department of Energy 
DOE-EM DOE Office of Environmental Management 
DQA data quality assessment 
EPA US Environmental Protection Agency 
EPRI Electric Power Research Institute 
ERT electrical resistivity tomography 
FRK fixed rank kriging 
GEM Geospatial Extension to MARSSIM 
GLS generalized least square 
GIS geographic information system 
GPR ground penetrating radar 
GSLIB Geostatistical Software Library 
HH Cluster of locations with low values (HH) 
HL Single high value location surrounded by low value locations (HL) 
HSA historical site assessment 
LISA local indicator of spatial association  
LH Single low value location surrounded by high value locations (LH) 
LL Cluster of locations with low values (LL) 
MARSSIM Multi-Agency Radiation Survey and Site Investigation Manual 
MGK multi-Gaussian kriging 
ML machine learning 
MrDM Multi-scale Remedial Design Model 
MrsDM  Multi-scale Remedial Sample Design Model 
NRC U.S. Nuclear Regulatory Commission 
NUREG U.S. Nuclear Regulatory Commission Regulation 
OLS ordinary least square 
PHOENIX PNNL-Hanford Online ENvironmental Information eXchange 
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PNNL Pacific Northwest National Laboratory 
RSSI radiological survey and site investigation 
RT3D Reactive Transport in Three-Dimensions 
SADA Spatial Analysis and Decision Assistance software 
SIP spectral induced polarization 
SOCRATES Suite of Comprehensive Rapid Analysis Tools for Environmental Sites 
STOMP Subsurface Transport Over Multiple Phases 
SVEET2 Soil Vapor Extraction End-state Tool, version 2 
TRAC Tracking Restoration and Closure 
VSP Visual Sample Plan 
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1.0 Introduction 
The U.S. Nuclear Regulatory Commission (NRC) is planning to provide guidance for the 
decontamination and decommissioning of subsurface soils. NRC publication NUREG-1575 
(NRC 2000), Multi-Agency Site Survey Investigation Manual (MARSSIM), provides information 
about planning, conducting, evaluating, and documenting the final status of building surface and 
surface soil radiological surveys conducted to demonstrate compliance with dose or risk-based 
regulations or standards. It details a data quality objectives (DQOs) process to produce 
characterization survey results of sufficient quality and quantity (EPA 2006). Included are survey 
design processes and guidance on selecting appropriate measurement methods (e.g., scan 
surveys, direct measurements, fixed laboratory samples) and measurement systems (e.g., 
detectors, instruments, analytical methods). Data quality assessment (DQA) is another 
important process described therein for assessing data collected through surveys and 
subsequent analysis to determine whether the data quality satisfies survey objectives so that 
survey results can be interpreted correctly, as they apply to the decision being made (EPA 
2000).  

Visual Sample Plan (VSP) software is currently used when designing compliance phase 
surveys, but it does not include modules that explicitly consider the subsurface. Subsurface 
conditions lead to increased complexity relative to surface-only applications. The added third 
dimension, as well as multilayered geophysical phenomena, may affect potential radiological 
contaminant fate and transport, accessibility, and survey methods. Additionally, dose modeling 
that incorporates exposure pathways from possible subsurface contamination increases the 
complexity for establishing compliance. Subsurface survey samples are much more expensive 
to collect than surface samples because of the associated physical challenges, equipment, and 
detection capabilities required for accessing the subsurface. Such conditions demand new 
survey design and data analysis methods that incorporate efficiency gains to potentially reduce 
the total number of samples required while still providing adequate confidence in survey results 
and subsequent decisions. Potential gains in efficiency can be obtained by capitalizing on 
nonanalytical data collected during previous phases of the radiological survey and site 
investigation (RSSI) process, including expert judgment, prior knowledge, geographic 
information system data, and geostatistical tools (Stewart and Powers 2009). 

This report provides a review of analytical methods applicable to subsurface soil 
decontamination and decommissioning. It identifies recommended updates to VSP software in 
support of subsurface compliance phase survey design and geostatistical analysis. This review 
considers subsurface complexities and practical constraints on survey sampling that will require 
DQA, data visualization, geostatistical modeling, and methods to determine the required number 
of samples and the location at which they are taken. It prioritizes VSP updates based on current 
capabilities, the ease of expanding them from two dimensions to three dimensions, 
requirements for new algorithm development, and the applicability of each method to 
compliance phase activities.  

Making decisions about free/unrestricted release or restricted release, determining the Lower 
Bound of the Grey Region, and selecting which hypotheses need to be tested are not within the 
scope of this report. This report assumes such decisions have been made prior to the 
compliance survey and focuses instead on enabling VSP users to develop surveys that will 
implement those hypothesis tests and draw conclusions with confidence based on the collected 
data. Additionally, developing a methodology for dose modeling (including both surface and 
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subsurface elements for all dose pathways) is not within the scope of this report. Both the 
remedial action support survey and compliance survey require these activities to have been 
completed during previous outside efforts. Guidance on dose modeling to support development 
of derived concentration guideline levels (DCGL) is provided in NUREG-1757, Volume 2, Rev. 2 
(NRC 2022). This report assumes that such work has been completed based on outside 
analyses and that appropriate decision limits and authorized limits have been determined. This 
report instead focuses on identifying necessary VSP improvements to enable VSP users to 
provide input, based on the previously completed analyses, to the compliance survey design. 

Many concepts covered in this report were presented at the second NRC subsurface soils 
workshop on May 11, 2022 (Huckett and Fagan 2022), and additional details about methods 
presented at the workshop are included in this report.  

The report is organized into the following sections: 

• Section 2 discusses the scope of this report as it pertains to subsurface survey and 
geostatistical methods for the compliance phase of the RSSI process. 

• Section 3 discusses types of subsurface data that could be available for the compliance 
phase and final status survey; the importance of DQA; current VSP capabilities for data 
import, manipulation, and DQA; and other existing subsurface tools and capabilities at 
Pacific Northwest National Laboratory (PNNL). 

• Section 4 discusses geostatistical methods for evaluating subsurface data in support of 
compliance phase decision-making; describes approaches to such analyses, including a 
layered approach and a complex volume approach; and outlines required VSP 
advancements to support each approach. Some functionality required to implement the 
methods is available through libraries already in use by existing VSP algorithms (such as 
the Geostatistical Software Library), and the VSP code simply needs to be updated to 
activate the vertical dimension. Other functions will require new methods and code to be 
developed and programmed in VSP. 

• Section 5 discusses methods for compliance survey design to determine the number and 
location of samples, as well as required VSP updates to apply these in the subsurface. 

• Section 6 contains a summary of VSP updates. Throughout this report, recommendations 
are provided for methods and capabilities that should be added to VSP software to improve 
the ability of users to navigate subsurface investigations and decision-making. In many 
cases, existing resources such as those available in R statistical software (R Core Team 
2021), Spatial Analysis and Decision Assistance software (SADA) (Stewart et al. 2006), and 
Geostatistical Software Library (GSLIB) (Deutsch and Journel 1998) could be leveraged to 
make these improvements in VSP. While the details are available, proposed updates are 
summarized in Section 6.  

• Section 7 provides references. 
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2.0 Compliance Survey 
The subsurface flow diagram in Figure 1 is intended to guide the RSSI process for the three-
dimensional (3-D) subsurface. A detailed process, such as that outlined in the MARSSIM 
Roadmap, is needed for demonstrating subsurface compliance within the compliance phase. 

 
Figure 1. Subsurface Flow Diagram (Figure 3.3 from Stewart and Powers [2009]). 

For reference, MARSSIM provides information about planning, conducting, evaluating, and 
documenting radiological building surface and surface soil final status surveys to demonstrate 
compliance with dose- or risk-based regulations or standards (NRC 2000). All RSSIs complete 
at least the historical site assessment (HSA) and characterization survey, although the phases 
between these may not all be completed. The MARSSIM Roadmap (NRC 2000) is intended to 
guide the characterization survey process for two-dimensional (2D) surfaces, but it can be used 
for previous phases, if applicable. The MARSSIM Roadmap has multiple phases, as shown in 
Figure 2 (NRC 2000). A similar detailed roadmap corresponding to the subsurface compliance 
phase should be developed. 
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Figure 2. MARSSIM Roadmap (NRC 2000). 
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3.0 Subsurface Data 
The increased complexity of subsurface conditions results in more costly collection of 
subsurface survey samples, demanding new survey design and data analysis methods that can 
potentially reduce the total number of samples required and still provide adequate confidence in 
survey results and subsequent decisions. Such efficiency gains can be provided using data 
collected during previous RSSI phases, and based on expert judgment, prior knowledge, 
geographic information system data, and geostatistical tools (Stewart and Powers 2009). This 
section describes the types of data (and sources, such as other existing subsurface tools) that 
may be available for compliance survey planning and execution and DQA activities required to 
process and evaluate the suitability of such data. It discusses current VSP capabilities and 
additional capabilities recommended for future VSP development to provide better tools to VSP 
users. 

3.1 Data Types 

The purpose of this section is to outline types of data expected from RSSI phases prior to the 
compliance survey that are available for subsurface compliance survey planning and analysis. 
The compliance survey dataset can be combined with geophysical data (e.g., groundwater, soil 
types) for survey development purposes. Table 1 provides details about the types of 
geophysical data that can be used and potential uses for them. Note that this is a list of possible 
data types that the NRC might receive from the licensee, but not all document types will be 
available or required for every site and such availability will be determined site-by-site. 

Table 1. Data Sources Available Prior to Compliance Survey 

Data Source Dataset Description(s) 
Prior to RSSI  Engineering drawings (facilities, structures, etc.), operations logs, 

geographic information system (GIS) maps, background geophysical data 
(surface/subsurface), water resource characterization and climate data for 
conceptual site model development. 

HSA Risk assessment, hazard assessment, RCRA/CERCLA documentation 
(including soil/rock core sample data as appropriate), NEPA documentation 
(as appropriate), source term quantification modeling/estimates for relevant 
sites, contaminant fate and transport modeling. 

Scoping Remedial investigation/feasibility study reports, updated conceptual site 
models, specification of sampling types/design/media/location, proposed 
statistical methods, identification, and characterization of potential 
contaminant plumes. 

Characterization Geologic maps, soil maps, drillers logs, maps of site infrastructure, 
collection of groundwater levels, hydraulic tests, soil or rock cores, and 
development of GIS, visualizations, and maps for the site, surveillance 
monitoring data from previous remediation activities (if applicable), 
geophysical and hydrogeological modeling results.  

Remediation Characterization of plume structure and composition, conceptual site 
model, possibly computer models of flow and transport for the site, 
feasibility studies or prior relevant work demonstrating the feasibility of 
amendments, ongoing monitoring data to assess performance of the 
remedy, including routine sampling of contaminant concentration and 
signatures of the remedy and its effects. 
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Data Source Dataset Description(s) 
Geophysical Data Borehole, cross-hole, surface, or remote sensing collection of data through 

electrical techniques (e.g., electrical resistivity tomography, induced 
polarization), electromagnetic methods (e.g., frequency and time domain 
electromagnetic induction, magnetotellurics, ground penetrating radar), 
seismic methods (e.g., reflection seismology, seismic refraction, seismic 
tomography), gravity techniques (e.g., gravimetry and gravity gradiometry), 
magnetic techniques (e.g., magnetometers), thermal methods (e.g., 
infrared, fiber-optic distributed temperature sensing) or multispectral/ 
hyperspectral methods. 

Groundwater model Deterministic or stochastic subsurface numerical models of flow and 
transport in the vadose zone, saturated zone, or a combination, including 
input files, model calibration results, and predictive results. Geo-framework 
model describing the hydrogeology and forming the basis for a conceptual 
site model. 

Authorized limit 
data 

Authorized limit(s) based on DOE Order 458.1 (DOE 2011, 2017) or 
data required to translate regulatory limits to authorized limit(s), 
including hydrologic parameters (e.g., soil density, precipitation, 
irrigation) human health based on pre-described risk approach, and 
other default parameters in the RESRAD computer code. 

DOE = U.S. Department of Energy; HSA = historical site assessment; NEPA = National Environmental 
Policy Act of 1969; RCRA/CERCLA = Resource Conservation and Recovery Act/Comprehensive 
Environmental Response, Compensation, and Liability Act; RESRAD = Suite of RESidual RADioactivity 
software codes; RSSI = radiological survey and site investigation. 

The exercise of combining 3-D data from disparate sources and with varying formats, quality, 
and resolutions is expected to be a major undertaking and formidable challenge for any user. 
However, much of this process would have been performed as part of the HSA and other RSSI 
phases prior to the compliance survey (see Figure 2). Additional DQA activities will be required 
that determine the suitability of data from prior phases for the compliance survey. These are 
discussed in the next section. 

3.2 Data Quality Assessment 

The DQA process is typically applied after planning and implementation have concluded to 
determine whether the quality of collected data is satisfactory for subsequent analysis and 
decision-making purposes (EPA 2000). Given the potentially heavy reliance on previously 
collected data, DQA should be applied to such data during the compliance survey planning 
stage. The current guidance is shown in Figure 3, in which additional recommendations for the 
subsurface compliance phase are shown in green. 

Information about previous survey and modeling efforts should be reviewed to determine its 
suitability for the compliance survey sampling plan, and to answer this overarching question: 
Should previously collected data be used to inform compliance survey planning, sampling 
design, and subsequent analysis? 

Answering the following questions will help address this question. Details should be included in 
the compliance survey data quality objective plan. 

• For what purposes were data collected in previous RSSI phases (e.g., geophysical 
modeling, statistical modeling/kriging, hypothesis testing)?  
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• Did the key assumptions required for such purposes hold (if an assumption of independent 
errors was required for a hypothesis test, was such independence demonstrated)? 

• What findings were made based on previously collected data? What decisions were made 
based on these findings? 

• Was a sampling design used to collect the previously collected data? If so, what was the 
design?  

• Were the previously collected data representative of the state of the site at that time? Are 
they representative of the state of the site for compliance survey purposes? 

• What is the quality of the previously collected data (e.g., are there explainable/unexplainable 
outliers, influential points, missing data)? 

 
Figure 3. Quality Assurance Assessment (figure from EPA [2000] with additional 

recommendations for subsurface compliance survey planning in green) 

VSP data quality capabilities for quality assurance include outlier detection and tests of 
distributional assumptions, as well as retrospective power curves for the Sign and Wilcoxon 
Rank Sum tests. The following tools would be useful for DQA of subsurface data collected 
during previous RSSI phases in VSP: 

• 3-D subsurface data 
– Activating the ‘z’ coordinate for borehole and groundwater wells to datasets, data 

management user interface, and visualization (maps, diagrams), activated as of July 1, 
2022. 

– Adding the capability to track subsurface data within a single borehole/well using (x, y, z, 
t) coordinates, that is tracking observations at distinct depths (z-locations) and 
timestamps (t) within one borehole/well located at a single (x, y) coordinate. 



PNNL-33647 

Subsurface Data 8 
 

– Improving the capability to generate, filter, and track borehole/well labels. 
– Having the ability to identify or import additional vertical dimension data, including soil 

and rock strata boundaries (e.g., hydrostratigraphic layers, lithologic layers), aquifer 
locations and dimensions, and layers associated with dose models for subsurface 
volumes. 

• Data processing prior to analysis generally occurs outside of VSP via multiple tools such as 
spreadsheet software and databases that are flexible, available, and widely used. VSP 
users would benefit from additional limited data processing capabilities including:  
– Unit conversion  
– Ability to combine data and read metadata from disparate sources (including data files 

and separate metadata files) and sensor platforms and to provide details (e.g., 
instrument label, field of view, sample matrix) into a single dataset 

– Ability to generate metadata for files it creates or edits including, for example, name of 
original dataset, coordinate system information, raster file resolution, etc. 

– Ability to export 3-D data in a format that can be used by other software  
– Ability to capture uncertainty and/or DQA corresponding to datasets or individual data 

points from disparate sources. 

• Data visualization capabilities that will make it easier for practitioners to identify potential 
outliers, understand how data from various sources align (or not), and get a comprehensive 
picture of various sources of uncertainty, including:  
– Plots that make potential elevated volumes or 3-D hot spots easier to identify on maps 
– Capability to identify different instruments, fields of view, etc., using different symbols or 

color scales on site maps  
– Capability to identify different analytes and/or sample matrices (e.g., groundwater, 

surface water, and soil types) using different symbols or color scales on site maps 
– Capability to denote uncertainty and/or DQA metrics for each dataset or data point using 

different symbols or color scales on site maps 
– Capability to automatically determine optimal symbol/color combinations given the 

various characteristics in a combined dataset. 

These tools will also enhance the practitioner’s capability to perform DQA after compliance 
survey data collection and support subsequent subsurface analysis and decision-making 
processes, as well as visualization of compliance survey findings. 

3.3 VSP Capabilities and Advancements 

VSP currently has the capability to support visualization of 3-D site volumes and data points 
within them. Existing capabilities and areas where further development would be necessary to 
fully support subsurface analysis are described in this section.  
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VSP has a wide range of capabilities for visualizing 3-D interior spaces of buildings and 
structures. It allows users to import schematics or floorplans, which are then converted to 
3-D rotatable images. Users can map irregularly shaped rooms and room contents using object 
libraries or create their own. Often surface samples are collected from interior structures using 
swipes that cover some area (e.g., 10 cm by 10 cm square recommended for structures in 
MARSSIM). Sample locations and areas represented can be visualized on interior maps. 

Much of this mapping capability could be extended to the subsurface for cases when such 
information is available. User-defined 3-D coordinates could be used to define a subsurface 
volume. Layer boundaries, location and depth of groundwater wells, and subsurface sample 
locations could be visualized in rotatable subsurface volumes. Subsurface structures, such as 
building footprints, piping systems, and tanks, could be mapped along with data. The ability to 
subset data interactively for geospatial analysis would also be useful, for example, by selecting 
data only at specific depths or within particular time periods. Enhanced subsurface mapping 
capabilities would enable different analysis methods described in this section. 

3.3.1 3-D Sample Surfaces and Volumes 

Basic 3-D sample areas or sample volumes are currently represented in VSP using 2-D polygon 
contours and associated depths, where 2-D sample areas can be extended downward into the 
subsurface and specified depth(s) add a third dimension. Figure 4 shows an example of this 
with two volumes from above (left panel) and from the side (right panel). 

 
Figure 4. Basic 3-D Volumes in VSP. A polygon and a circle are shown from above in the plane 

view (left) and from the side in the 3-D volume view (right). 

After 3-D volumes are created in VSP, sample points can be randomly generated according to 
different techniques within the volumes, as shown in Figure 5: placing points randomly on 
different planes within the 3-D volume (left) or randomly throughout the volume (right). Historical 
data or coordinates of previously sampled locations can also be imported into VSP.  
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Figure 5. Current 3-D Sample Placement Methods in VSP 

More complex 3-D volumes can be created using elevation contours, allowing users to create 
surfaces and volumes with irregular sides or complex shapes. Currently, elevation contours can 
be drawn in VSP or imported from a map file. Figure 6 provides an example where a subsurface 
volume was created using two 2-D rectangular contours at depths 5 m and 10 m. The volume is 
shown from above (left) and in 3-D (right). Similar to VSP’s room sampling capabilities, VSP can 
place samples on accessible surfaces within the 3-D volume (e.g., when surfaces of an 
excavated pit can be accessed) or within the 3-D volume (providing points to sample within the 
subsurface, despite the lack of accessible surface[s]).  

 
Figure 6. Example Volume Created with Rectangular Contours and Associated Depths. 

Contours are shown from above (left) and within the 3-D volume after applying the 
depths of each (right). 

Another method of creating irregular 3-D objects in VSP is to import digital elevation model 
(DEM) file(s) containing subsurface depths (Dong et al. 2015). Samples can currently be placed 
or visualized along the irregular surface(s) of imported 3-D objects, although cannot be placed 
at random throughout the volume. Figure 7 shows a VSP sample area created using this 
method.  
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Figure 7. Example 3-D Volume Surface Created by Importing a Digital Elevation Model File 

Updating VSP to allow for placing sample points throughout the volume will provide value for 
subsurface decommissioning and the compliance phase of the process. Additionally, multiple 
DEM files which could represent multiple survey areas/volumes can currently be imported and 
visualized in VSP, either simultaneously or individually by clicking each on/off in VSP’s layer 
control window. This might be important to allow visualization of DEM surfaces of surveyed 
areas during soil excavation including identification of any areas of overlap between surveys as 
remediation proceeds. 

3.3.2 Data Visualization 

After data have been collected at sampled locations, contamination metric values can be plotted 
in VSP. Currently, the color-by-value capability allows a user to color data points based on 
contamination metric values (or other user-defined parameters). The depth of each point in the 
subsurface is represented on the map by a vertical line extending from the data location up to 
the surface. Figure 8 shows an example of this visualization. 

In addition to visualizing individual data points, subsurface analysis could leverage geostatistical 
analysis (e.g., kriging, generalized linear models) to produce volumes containing interpolated 
data between locations where data were collected. VSP currently supports only 2-D kriging and 
visualizing the resulting 2-D surfaces, visualized via 2-D rasters, as shown in Figure 9. 
However, we expect 3-D kriging to be a priority enhancement for subsurface surveys in the 
future. Thus, the current visualization capability should be extended to support 3-D visualization 
of interpolated data within separate layers or the whole 3-D volume. Further details about the 
interpolation methods and a layered versus volume approach are presented in Sections 4.2 and 
4.3.  

Only minor modifications to VSP would be required to allow visualization of multiple individual 
2-D layers within a 3-D volume. Current capabilities would support zooming in and out, as well 
as rotation of individual layers. Enabling similar 3-D visualization of the whole volume would 
require more substantial modifications of VSP once the volume visualization has been 
implemented, although currently VSP does support zooming in and out as well as rotation. 
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Figure 8. Subsurface Soil Point Data Visualization in VSP. Locations with an iodine-129 value 

between 0 and 4.5 are color-coded according to the legend, while locations without a 
valid data value (i.e., less than 0) are displayed as dark blue plus symbols. Black 
lines are drawn from the depth of the points to the surface to illustrate depth. 
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Figure 9. Currently Only 2-D Visualization of Interpolated Surface is Supported in VSP 

Additional visualization and interactivity features should be added to VSP to enhance user 
capabilities to create and manipulate data either by manipulating existing survey area/volume 
data or by drawing new survey areas/volumes on the 3-D site map. Subsurface visualization 
should include the following; 

• Ability to drape 2-D layers on a 3-D surface  

• Ability to display 3-D vector layers in 3-D space (e.g., show well screen interval color-coded 
by value of parameter in 3-D space) 
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• Ability to apply vertical exaggeration to emphasize vertical features that are too small to see 
relative to the horizontal scale using a factor to specify how much greater the vertical scale 
is to appear than the horizontal scale (e.g., 5×, 10×, 20×) 

• Ability to slice 3-D volumes vertically and horizontally, either by drawing a slice or providing 
2-D coordinate inputs) and visualize data on the sliced plane including display of iso-
contours 

• Ability to show iso-volumes according to selected parameter values (e.g., volume greater 
than 5 pCi/g)  

• Ability to add subsurface infrastructure and boundaries (e.g., underground building 
infrastructure or geologic characteristics) 

• Ability to set different transparency levels for each subsurface layer or volume to aid in 
seeing other features in the model 

• Updating VSP to enable placement of scan lanes along a DEM surface to facilitate scan 
survey for subsurface surfaces during remediation 

3.3.3 Analysis of Multiple Contaminants/Analytes 

Current VSP analysis datasets include the coordinates (in local or commonly used coordinate 
systems), values, and units of one or more variables of interest (e.g., pCi/g or counts per minute 
[cpm]). Multiple analytes are accepted, but the statistical tests and the number of sample 
calculations are done univariately (i.e., one analyte at a time). Adding co-kriging and multivariate 
analysis functionality in VSP would allow multiple analytes to be analyzed simultaneously, such 
that the analyses could capitalize on correlations between analytes. This would be useful for 
subsurface analysis, particularly in cases where data for one analyte are more readily available 
than another (due to time, cost, or detectability), but their behavior, presence, and/or 
concentrations in the subsurface are correlated. Co-kriging and multivariate analysis could 
make predictions/inference for the harder-to-measure analyte. 

3.3.4 Statistical Diagnostics 

Spatial heterogeneity generally refers to the uneven distribution of a characteristic in space, 
such as contaminant distribution or the uniformity of a rock layer in a subsurface volume. Many 
geospatial and geostatistical methods require diagnostics to determine spatial heterogeneity, if 
correlations between metrics exist, and whether spatial variability is isotropic or anisotropic. 
Isotropy is the condition that, for a single location in space, the correlation between it and 
neighboring locations is dependent only on the distance between the two. Anisotropy is the 
more complex condition where the correlation between points is a function of both the distance 
and direction between them. 

An additional component of spatial heterogeneity is nonstationarity, of which there are two 
types. First-order nonstationarity occurs when the mean concentration is non-constant 
throughout the subsurface volume. As an example of first-order nonstationarity, consider a 
soluble contaminant deposited via a subsurface leak into an aquifer that results in a different 
mean contamination inside the aquifer compared to outside the aquifer. Second-order 
nonstationarity occurs when the covariance structure changes within the volume, as in the case 
of anisotropy. Continuing the previous example, second-order nonstationarity could occur when 
the aquifer crosses two distinct subsurface layers that govern contaminant fate and transport at 
two distinct rates or orientations in one layer compared to the other. 
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The variogram (or semivariogram) is a statistic that estimates the change in correlation between 
observations as a function of distance. In the case of isotropy, the variogram has the same 
shape for locations in every direction (angle). In the case of anisotropy, the variogram shape 
differs as a function of the angle within the volume.  

Numerous capabilities described by the Electric Power Research Institute (EPRI) (EPRI 2016) 
to examine spatial heterogeneity would be valuable to incorporate in VSP for the purpose of 
performing such statistical diagnostics. These capabilities are summarized as follows:  

• Subsurface heterogeneity assessment 
– Subsurface heterogeneity introduces challenges to structural analysis and variogram 

estimation, as does the measurement uncertainty of subsurface data collection 
technologies. Subsurface heterogeneity may be induced by the presence of 
discontinuities (e.g., geological stratification, aquifers, engineered barriers [interfaces 
between natural sediment and backfill around structures during construction, building 
footings and zone of compression beneath structures], and fracture planes), which lead 
to the spatial structure changing across a site (EPRI 2016).  

– Measurement techniques with different fidelities and extents of representativeness will 
affect compliance surveys to the extent that each is included in the planning and 
analysis process. Measurement methods used during early phases of decommissioning 
may differ from those used during the compliance survey (EPRI 2016).  

– Including capabilities described in Section 3.2 for DQA will help practitioners spot 
disparities in variability and uncertainty between layers and measurement techniques. 

• Structural (variogram) analysis along planes in several different directions will help assess 
whether anisotropy is present in the subsurface and should be considered. Currently, the 
VSP kriging module includes a variogram plotting capability. It is limited to assessing 
variograms in any direction but only including one variogram in a single direction in the 
analysis (which can also be included in the automatically generated report). The importance 
and implications of numerous distinct variograms are discussed in EPRI (2016), 
MacCormack et al. (2017), and other work cited in Section 4.0. Recommendations for 
including multidirectional variograms in statistical (kriging) models to address anisotropic 
conditions are also included in Section 4.0. 
– Updates should be considered to view variograms in multiple directions simultaneously 

and display all those selected for the final kriging model.  
– Variogram surfaces (Figure 10) also can be used to help determine if anisotropy is 

present in 2-D and extended to visualize several variogram surfaces on a series of 
planes within the subsurface volume (EPRI 2016). Adding these capabilities to VSP 
would help users determine whether anisotropy is present in a subsurface volume and in 
which (and how many) directions. 

– Capabilities to view variograms in multiple directions and view variogram surfaces are 
available in other statistical software (e.g., gstat and ggplot2 packages in R). While 
linking the variogram fits directly to the kriging models in VSP may provide a 
convenience, consideration should be given to how and if the costs of adding such 
capabilities to VSP outweigh the benefits. 

– If such capabilities are added to VSP, a corresponding capability should be added to the 
automatically generated report to capture the diagnostics that led to subsequent 
sampling designs and geostatistical model selection. 
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Figure 10. Variogram Surfaces Indicating Isotropic Variation (left) and Anisotropic Variation 

(right) 

• In addition to the methods described above, scatterplots between multiple variables and/or 
bivariate statistics (e.g., correlations) can help determine whether methods such as 
cokriging or multivariate analysis should be considered. For example, examining the 
relationship between gamma and alpha radiation within a subsurface volume and/or 
correlations between these measurements and geophysical properties can lead to selecting 
a co-kriging model or developing a sampling plan that capitalizes on the ease of collecting 
gamma measurements (EPRI 2016). Scatterplot matrices can provide powerful visual 
representations of such relationships by displaying scatterplots of multiply bivariate 
relationships in one figure. However, these capabilities are available in other statistical 
software (e.g., ggpairs function of the GGally package in R), thus may not need to be added 
to VSP (i.e., would be a lower priority item). 

• H-scattergrams are an additional tool helpful in assessing spatial scale. H-scattergrams are 
scatterplots with the value of a variable at one location plotted against the value of the same 
variable at a different location, where each pair of observations is separated by distance h. 
Multiple scattergrams at different h-distances can be visualized in a matrix to help determine 
the spatial scale of the data, where the magnitude of the correlations indicates the 
magnitude of the spatial scale. Figure 11 shows three h-scattergrams at different h-
distances for the same metric for h-distances 1 m, 4 m, and 30 m. The larger correlations 
when h-distances are 1 m and 4 m and the smaller correlation when h-distance is 30 m 
indicate the spatial scale is larger than 1 to 4 m but smaller than 30 m (EPRI 2016). 
However, these capabilities are available in other statistical software (e.g., the hscat function 
in the gstat package in R) and thus may not need to be added to VSP (i.e., would be a lower 
priority item). 
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Figure 11. Example of Three H-Scattergrams at Three H-Distances (EPRI 2016). 

3.3.5 VSP in the Cloud 

PNNL was sponsored by the U.S. Department of Homeland Security’s Federal Emergency 
Management Agency’s Nuclear Incident Response Team to investigate optimal use of VSP 
sample prioritization and geostatistical capabilities, deployed to the DOE secure Microsoft Azure 
cloud environment to improve access and potential future automation of some VSP functionality, 
as well as the interaction of VSP with other tools in that environment. PNNL identified several 
priorities to guide that effort. The following are relevant to subsurface compliance survey 
planning and geostatistical analysis:  

• Provide links between VSP and other web applications 

• Provide access to relevant databases also hosted in the cloud environment (e.g., those 
detailed below in Section 3.4), including import capabilities to load data into VSP from other 
web applications 

• Export sample design maps into the cloud environment for use in other web applications 

• Minimize/remove the requirement to install the VSP desktop application 

• Provide a simplified subsurface VSP web application that requires limited user training 

• Enhance computing capabilities for some functions with heavy computation costs using 
batch or parallel processing capabilities available in the cloud. 
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Developing a web application based on the existing VSP desktop application would require 
substantial web architecture development. Rather than recommending such development for 
VSP in its entirety, PNNL recommends a phased approach during which it is developed for 
select modules, identified based on their relevance to subsurface modules. PNNL recommends 
implementing selected modules in the desktop application using modern code and then 
“docking” them to the web application, so they remain accessible to users on both platforms.  

3.4 Additional Existing Subsurface Tools and Capabilities at PNNL 
PNNL presented additional existing tools and capabilities at a meeting with the NRC on June 
14, 2022. Subsequently, the NRC requested additional details be included in this report for 
consideration in future subsurface activities. Not all tools and capabilities will be directly relevant 
to compliance surveys but could be used in previous phases and therefore provide context to 
the compliance phase. This section provides such details and notes where each could be 
applicable in the compliance phase to show no contamination is left behind and/or where each 
tool or capability has the potential to integrate with VSP to provide enhanced data acquisition, 
geospatial analytics, or data visualization required to show compliance. 

3.4.1 Data Visualization and Analysis 

Access to up-to-date data, data visualization tools, and applications of data analysis methods 
will be critical to support planning, monitoring, remediation decisions, and communication during 
the RSSI compliance phase. This section provides an overview of such capabilities and notes 
where future efforts could link these tools and capabilities with VSP to enhance subsurface 
sample placement and statistical analysis. 

Data from the existing tools described in this section could be incorporated into geospatial 
modeling and survey sample decisions—either explicitly through independent model variables 
or implicitly by informing the conceptual site model (CSM) with subsurface layer delineation 
and/or anisotropy or covariance structure development. Interconnection could allow data from 
these tools to be imported into VSP, or vice versa and incorporating collected data or sample 
locations into the visualization interface. This could be accomplished by enabling VSP and 
these tools each with import/export mechanisms to align expected data formats and/or by 
creating connections between the software platforms. 

3.4.1.1 SOCRATES 

The Suite of Comprehensive Rapid Analysis Tools for Environmental Sites (SOCRATES)1 is a 
web application (see Figure 12) that provides access to environmental data, data visualization, 
and rapid data-driven analytics to make sense of site environmental cleanup data and support 
cleanup remedy decisions, optimization, and exit strategies. SOCRATES includes modules for 
analyzing site geo-framework/conceptual site models, groundwater levels and flow direction, 
contaminant concentrations, water quality parameters, plume dynamics, remediation systems, 
waste site risk, and remote-sensing data interpretation. SOCRATES offers an improved 
approach to working with disparate data types from multiple authoritative sources, with 
advantages including wide availability via a web browser, access to current data, availability of 
standard analysis methods for consistent application regardless of the analyst doing the work, 
and built-in functionality and logic to make analyses quick and easy. It also facilitates 
communication with technical staff, site managers, regulators, and stakeholders.  

 
1 https://www.pnnl.gov/projects/socrates 

https://www.pnnl.gov/projects/socrates
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Figure 12. SOCRATES Component Applications 

SOCRATES currently includes data for the DOE Hanford Site and is being used to understand 
cleanup risks and priorities, operation and optimization of remediation systems, monitoring and 
sampling data and data gaps, cleanup endpoints, alerts for subsidence issues, and groundwater 
surface water interactions. Access is managed, allowing certain information to be publicly 
available and other information to be available only to site staff for use in preparing documents 
for review and release. SOCRATES could be expanded to provide tools to any site for 
decommissioning purposes in the future by establishing connections with project-specific 
databases. In the future, it also may be advantageous to enable interconnections between VSP 
and SOCRATES. For example, rather than recreating data visualization capabilities in VSP that 
already exist in SOCRATES, interconnection could allow VSP data to be visualized using 
SOCRATES modules. Further, VSP sample plan development functionality dovetails nicely with 
the information and desired use of SOCRATES to manage sampling. 

The SOCRATES component applications provide the following capabilities:  

• HYPATIA (HYdraulic Pump-And-Treat Information Analytics) provides access to and 
tools for analyzing pump-and-treat data, including extraction well and treatment plant 
chemistry and control system sensors that are often stored in separate databases. 
HYPATIA also provides methods for statistical analysis of time-series data and includes 
calculated metrics, such as mass flow rate and injectivity for assessing pump-and-treat 
system performance. 
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• ARIUS (Advanced Remote-sensing Image USer interface) performs full end-to-end 
automated acquisition of remote-sensing datasets using a matrix of cloud-based 
technologies. It streamlines complex workflows and processes satellite data pertaining to 
variation in both ground surface elevation and temperatures. Light detection and ranging 
and SENTINEL-1 data are used to monitor surface displacement, whereas Landsat 8 
and 9 satellites are used to monitor surface temperatures as an indirect measure of 
groundwater and surface water interactions. 

• ARISTOTLE (Adaptive Risk-Informed System to Obtain The Likely End-state) provides 
geospatial visualization of waste site inventory data from multiple data sources to help 
assess risk and prioritize remedy actions across spatial scales. This includes estimates 
of chemical and radiological inventories from historical discharges important for 
identifying risks of residual inventories of contaminants still present in the subsurface 
and qualitatively and quantitatively assessing site cleanup priorities. 

• ORIGEN (Online Retrieval Interface for GEologic INformation) provides access to site 
geology and features that can be used to create cross sections and access information 
about stratigraphic thicknesses, water table elevation, and well construction information. 

• CRATES (Charting, Reporting And TEmporal visualizationS) is a plotting tool primarily 
used for visualizing groundwater concentration data and enabling users to identify well 
locations for plotting user-specified contaminants of concern. It includes graphics and 
tabulated data export features. 

• GALEN (Groundwater AnaLytics for the ENvironment) provides access to multiple 
sources of water-level data through a single access portal and includes tools for 
visualization and analysis of groundwater level and flow direction over time to support 
site characterization and enhance remediation system design and performance 
monitoring. 

• PLATO (PLume Analysis TOol) analyzes groundwater data to assess contaminant 
plume behavior, implementing data-driven, quantitative analyses based on standard 
statistical methods and published guidance from the U.S. Environmental Protection 
Agency (EPA) and the U.S. Geological Survey.  

3.4.1.2 PHOENIX 

PNNL-Hanford Online ENvironmental Information eXchange (PHOENIX)2 is a family of spatially 
enabled web applications that provide quick access to decades of valuable scientific Hanford 
Site data and insight through intuitive query, visualization, and analysis tools. PHOENIX 
provides a single access point to multiple datasets (see Figure 13) via standard web browsers, 
data visualization tools, and explanations of key datasets to aid understanding. By integrating 
previously isolated datasets and developing relevant visualization and analysis tools, PHOENIX 
applications enable DOE to discover new correlations hidden in legacy data to address complex 
issues at Hanford more effectively. 

 
2 https://phoenix.pnnl.gov/ 

https://phoenix.pnnl.gov/
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Figure 13. PHOENIX Overview 

PHOENIX could supplement VSP as a source of geospatially identified analytical chemistry data 
that would combine with the VSP sampling calculator to estimate the number and location of 
samples needed to satisfy a DQO or reduce decision uncertainty. Advanced interactions would 
involve augmented reality/virtual reality devices for immersive visualization/interaction with site 
geology (e.g., from SOCRATES), sampling locations, and analytical chemistry results. 

3.4.1.3 TRAC 

Tracking Restoration and Closure (TRAC)3 is a web-based application for communicating the 
status of and progress on groundwater cleanup at sites within the DOE Office of Environmental 
Management (DOE-EM) complex through a story map and associated site information and 
metrics. TRAC (screenshot shown in Figure 14) is intended to provide a concise narrative about 
groundwater cleanup information, remaining groundwater contaminant plumes, remediation 
technologies implemented, and waste site regulatory status. TRAC presents summary-level 
data across DOE-EM sites, while providing more detailed, consistent information for individual 
sites, down to the operable unit level. This information facilitates meaningful context for each 
individual site story and the collective story associated with the DOE-EM groundwater cleanup 
mission, thereby serving as a resource to respond to data requests and give DOE-EM leaders a 
comprehensive view of groundwater cleanup status across the complex. TRAC is slated for 
release at the end of fiscal year 2022. 

 
3 https://trac.pnnl.gov/ 

https://trac.pnnl.gov/
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Figure 14. TRAC Web-Interface Screenshot 

A version of TRAC could be implemented to provide summary-level information relevant to the 
NRC across multiple sites and linked to from VSP. This would provide a higher-level story map 
view for communicating the status of decommissioning and restoration issues. 

3.4.1.4 Few-Shot Machine Learning 

Traditional, point-source based, destructive characterization methodologies for subsurface 
systems are expensive, present the potential risk for human exposure, and have long been 
challenged to collect sufficient data to accurately describe the complexities of the system. Data 
collected via borehole samples represents the state of the system at the specific place and time 
of data collection but may or may not be representative of the system over time or in total when 
sampled boreholes are not representative of the whole system. It also affords large uncertainty 
in forecasting the evolution of the systems. These limitations present significant uncertainties in 
assessing (for example) radiation dose from subsurface transport pathways.  

To improve characterization while minimizing costs and exposure risk, few-shot machine 
learning (see Figure 15) is being advanced in conjunction with remote subsurface sensing 
techniques and high-performance forward prediction. This approach is being developed to 
reliably estimate the subsurface property distributions, including (but not limited to) permeability, 
porosity, and hydraulic conductivity, that control fate and transport of radioactive material, 
thereby addressing the scarcity of characterization data and complexities of heterogeneous 
subsurface systems. Further, applying machine learning approaches to a combination of 
discrete well or borehole datasets with modeled or surrogate data (i.e., output from flow and 
transport models, indirect measurements collected through electrical resistivity tomography 
[ERT], spectral induced polarization [SIP], etc.), may lead to predictive models and predictions 
that capture relationships between multimodal measurements and variables of interest that can 
be used for the purpose of compliance survey design.  
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Figure 15. Few-Shot Learning Schematic 

By applying deep learning to integrated multimodal sensing data, the performance of machine 
learning approaches is being defined, through training with large and small datasets, to estimate 
governing system-scale subsurface parameters and their spatiotemporal evolution. These 
advancements will reduce the uncertainty of system-scale characterization and radiation dose 
assessments, minimize costs, and increase worker safety and protection of human health and 
the environment. 

3.4.2 Data Management 

Environmental information and data are inherently complex because the data come in different 
forms and formats, and multiple entities may control the collection and management of data, 
resulting in variations in data quality and access. Yet access to data is vital to supporting 
environmental restoration decision-making. Strong expertise in data management underpins 
CORE (Common Operating and Response Environment) and the development of the Hanford 
Environmental Information and Data Index (HEIDI) for the DOE Richland Operations Office as 
part of their Hanford Environmental Data Management program (HEDM), which is a formal 
program for managing environmental data and the associated records, materials, and systems 
at the Hanford Site. Based on an initial evaluation of approaches (Ham and Crockett 2021), 
HEIDI is being developed as a catalog of data sources that will enable long-term access and 
retrievability for the multiple independent sources of data that might otherwise be difficult to 
discover. 

3.4.2.1 CORE 

CORE4 software is a highly configurable system composed of broadly applicable modules for 
rapid setup and customization to meet a wide range of data management needs. The CORE 
design is derived from extensive experience in information integration, data access applications, 
field data collections, and operational analysis to support decision-making. The CORE data 
collection system uses a web-based platform to provide globally accessible data forms, fuse 
diverse data streams, enable context-based situation awareness, and provide programmatic 
and technical oversight. Using role-based access, the CORE data collection system allows 
diverse sets of information to be collected and controlled. The system also provides an 
interactive interface that streamlines communication. 

 
4 https://www.pnnl.gov/available-technologies/common-operating-response-environment-core 

https://www.pnnl.gov/available-technologies/common-operating-response-environment-core
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While CORE is particularly useful for test and evaluation applications, it has the flexibility for 
collection and management of data in a range of applications. CORE could tie into VSP work 
across the spectrum of planning analysis, data collection, and data management/reporting 
shown in Figure 16. 

 
Figure 16. CORE Data Management Workflow 

3.4.3 Flow and Transport Modeling 

PNNL has been developing and applying predictive models for groundwater flow and 
contaminant transport in hydrologic systems since the 1960s. Developments include analytic 
models, standard finite difference and finite element codes for fluid flow and solute transport, 
particle transport codes, and high-performance flow and reactive transport codes designed to 
run on parallelized machines. These tools are used to optimize groundwater characterization 
activities, predict groundwater flow velocity and direction, predict groundwater contaminant 
concentration and transport rates, and predict the long-term impacts and estimate risk to the 
public. Critical leadership has been delivered in defining the necessary level of complexity in 
subsurface modeling to support environmental analyses with consideration of cost-benefit 
tradeoffs (Freedman et al. 2017), thereby providing guidance and case studies exemplifying 
three primary elements: 1) modeling approach; 2) description of process; and 3) description of 
heterogeneity. 

Although the groundwater contribution to dose assumes a single average concentration in 
compliance demonstrations, particularly for reactor decommissioning, data from the existing 
tools described in this section could be incorporated into geospatial modeling and survey 
sample decisions—either explicitly through independent model variables (e.g., generalized least 
square [GLS] regression models described in Section 4.2.1) or implicitly by informing the CSM 
with subsurface layer delineation and/or anisotropy or covariance structure development. 
Interconnection could allow data from these tools to be imported into VSP, or vice versa and 
incorporating collected data or sample locations into the visualization interface. This could be 
accomplished by enabling VSP and these tools each with import/export mechanisms to align 
expected data formats and/or by creating connections between the software platforms. 
Currently, users could export such data from a separate software application and merge it with 
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the site data that includes contamination measurements. Users could use diagnostics like those 
described in Section 3.3.4 to determine if flow and transport data are correlated with the 
variable(s) of interest and, if so, include them in regression or kriging models (as such 
capabilities become available in VSP). In the future, VSP in the cloud could be developed to 
enable data connections more directly between VSP and other software applications. 

3.4.3.1 AIM Toolbox 

The AIM (Aquifer Injection Modeling) Toolbox5 software, developed by PNNL for the EPA, 
provides a collection of analytical solutions suitable for evaluating the potential extent of an area 
affected by subsurface injection operations (see screenshot in Figure 17). These operations are 
regulated under EPA’s Underground Injection Control program and are typically related to 
oil/gas development, waste disposal, or subsurface mining or storage. Each of the analytical 
algorithms provided in the AIM Toolbox has different approaches, assumptions, and/or focuses 
with respect to the nature and processes in the subsurface and the nature of the injection 
operations. Collectively, the set of analysis algorithms provides a broader evaluation of the area 
that can potentially be affected by an injection operation.  

 
Figure 17. AIM Toolbox Interface Screenshot 

By providing estimates of the injectate plume extent, the software supports technical aspects of 
planning, evaluation, and overseeing injection activities. That is, the results help assess when 
further regulatory controls (e.g., monitoring, reporting) may be required and, in the case of 
proposed disposal activities into an underground source of drinking water, the extent of the 
affected area that would require exemption from protection under the Safe Drinking Water Act 
(Safe Drinking Water Act of 1974). The AIM Toolbox software is available as a single-page web 
application, providing an interface for necessary inputs and visualization of results in both chart 
and map panes. 

 
5 https://www.pnnl.gov/projects/aim-toolbox 

https://www.pnnl.gov/projects/aim-toolbox
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3.4.3.2 RT3D 

Reactive Transport in Three Dimensions (RT3D)6 is a software package for simulating the 3-D, 
multispecies, reactive transport of chemical compounds (solutes) in groundwater (see Figure 
18). The tool provides an easy-to-use and flexible framework that is applicable to natural 
attenuation, accelerated bioremediation, or other reactive transport modeling scenarios. 
Predefined modules are available for common bioremediation scenarios, but users also have 
the flexibility to add any reaction kinetics desired/suitable to represent multiple chemical species 
in aqueous and adsorbed phases. RT3D focuses on reactive transport in groundwater 
(saturated systems) and uses the groundwater flow solution obtained from the U.S. Geological 
Survey MODFLOW code. 

 
Figure 18. Visualization of Simulation Results Using RT3D 

3.4.3.3 SVEET 

PNNL partnered with the Department of Defense and DOE-EM to develop the Soil Vapor 
Extraction End-state Tool, version 2 (SVEET2)7 shown schematically in Figure 19. SVEET2 is a 
spreadsheet tool that allows users to easily enter site-specific information to obtain groundwater 
and soil gas concentration estimates resulting from a vadose zone contaminant source(s). 
SVEET2 is used to quantify the impacts of a vadose zone source as part of a structured process 
to evaluate whether a soil vapor extraction system should continue operating, be optimized, 
transition to another remedy, or be terminated for site closure. SVEET2 is the result of a recent 
update to expand the range of permissible input parameter values, thereby enhancing the 
applicability of the tool for Department of Defense, DOE, and other sites. SVEET2 is not itself a 
numerical simulator, but rather it uses pre-modeled simulations for a generalized conceptual 
framework to estimate results for site-specific conditions. SVEET2 is based on 5,760 
Subsurface Transport Over Multiple Phases Simulator (STOMP) simulations for combinations of 
parameters with a nonlinear impact on the results and scaling for parameters with a linear 
impact on results. 

 
6 https://www.pnnl.gov/projects/multi-species-reactive-transport-simulation-software-groundwater-systems 
7 https://www.pnnl.gov/projects/remediation-performance-assessment/soil-vapor-extraction 

https://www.pnnl.gov/projects/multi-species-reactive-transport-simulation-software-groundwater-systems
https://www.pnnl.gov/projects/remediation-performance-assessment/soil-vapor-extraction
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Figure 19. SVEET2 Conceptual Model Schematic 

3.4.3.4 STOMP and eSTOMP 

PNNL’s STOMP8 is a suite of numerical simulators for solving problems involving coupled flow 
and transport processes in the subsurface. As shown in Figure 20, STOMP is based on 
mathematical equations that describe our understanding of hydrologic, thermal, thermodynamic, 
geochemical, and geomechanical processes.  

 
Figure 20. Visualizations of Simulation Results for Aqueous Phase (left) and Nonaqueous 

Phase (right) Transport Using the STOMP Suite of Codes 

 

 
8 https://www.pnnl.gov/projects/stomp 

https://www.pnnl.gov/projects/stomp
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STOMP has been applied to domains including environmental remediation and stewardship, 
geothermal resources, production of natural gas hydrates, subsurface permanent storage of 
carbon dioxide, and oil and gas recovery using conventional and unconventional technologies. 
Some of the unique applications and features of the simulator for environmental work are its 
ability to model vegetated surface barriers and model flow and transport in deep vadose zones 
under thermally altered states. Exascale STOMP (eSTOMP)9 is a highly scalable (parallel) 
version of STOMP. 

3.4.3.5 PFLOTRAN  

PFLOTRAN10 leverages massively parallel, high-performance computing to simulate large-scale 
nonisothermal multiphase flow, multicomponent reactive transport, and ERT problems in the 
subsurface environment (see Figure 21). The code is designed to predict the future state of 
environmental systems and better inform stakeholders in the regulatory decision-making 
process. Major contributions to PFLOTRAN development continue to be funded by DOE. The 
code is the primary physics simulator within the DOE Office of Nuclear Energy Spent Fuel and 
Waste Science Program’s Geological Disposal Safety Assessment Framework. 

 
Figure 21. Visualization of PFLOTRAN Simulation Results for Uranium Transport at the 

Hanford Site, Adjacent to the Columbia River in Eastern Washington 

3.4.4 Computational and Applied Geophysical and Geomechanics 

High-resolution, real-time computational and engineering geophysics underpin the development 
and implementation of state-of-the-art geophysical tools and methods to improve the 
characterization of subsurface properties and processes.11 Geophysical data can be collected 
from many different platforms (such as at the ground surface, between wellbores, and within 
wellbores) to interrogate subsurface variability over a variety of spatial scales and resolutions. 

 
9 https://www.pnnl.gov/estomp 
10 https://www.pflotran.org/ 
11 https://www.pnnl.gov/computational-and-applied-geophysical-and-geomechanics-laboratory 

https://www.pnnl.gov/estomp
https://www.pflotran.org/
https://www.pnnl.gov/computational-and-applied-geophysical-and-geomechanics-laboratory
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The use of geophysical methods combined with conventional measurements12,13—for example, 
seismic source zone characterization via computational methods like moment tensor inversion 
and magnitude estimation—provides spatially extensive information about the subsurface in a 
minimally invasive manner at a comparatively high resolution. These capabilities include high-
resolution geologic field mapping to develop improved local and regional fault maps that better 
inform geologic site characteristics. Such applied geophysical and geomechanics science 
capabilities can support subsurface characterization and monitoring for siting and 
decommissioning. 

Data from existing tools described in this section could be incorporated into geospatial modeling 
and survey sample decisions—either explicitly through independent model variables (e.g., GLS 
regression models described in Section 4.2.1) or implicitly by informing the CSM with 
subsurface layer delineation and/or anisotropy or covariance structure development. 
Interconnection could allow data from these tools to be imported into VSP, or vice versa and 
incorporating collected data or sample locations into the visualization interface. This could be 
accomplished by enabling VSP and these tools each with import/export mechanisms to align 
expected data formats and/or by creating connections between the software platforms. 
Currently, users could export such data from a separate software application and merge it with 
the site data that includes contamination measurements. Users could use diagnostics like those 
described in Section 3.3.4 to determine if flow and transport data are correlated with the 
variable(s) of interest and, if so, include them in regression or kriging models (as such 
capabilities become available in VSP). In the future, VSP in the cloud could be developed to 
enable data connections more directly between VSP and other software applications. 

3.4.4.1 ERT 

ERT provides 2-D, 3-D, and 3-D + time images of subsurface electrical structure, representative 
of geologic and fluid properties. Applications of ERT have demonstrated its ability to resolve 
subsurface geologic frameworks and detect time-lapse changes associated with natural and 
engineered processes including solute transport and water movement (Johnson et al., in press, 
2021, 2012). ERT has been used for high-resolution site characterization, plume monitoring, 
and detection of leaks from subsurface infrastructure including tanks and pipes, as illustrated in 
Figure 22, where ERT revealed leakage associated with an unanticipated vacuum pipe overflow 
in the subsurface. It could also be used to discover and map subsurface infrastructure. 
Advanced capabilities for near-real-time delivery of ERT results to operators in the field provide 
actionable information to site operators (Johnson et al. 2015).  

• Collected ERT data could be used to inform sampling plans and statistical models by 
confirming previously identified leak areas, pointing to potential leak areas, and highlighting 
where underground infrastructure should be considered when sampling (e.g., structures or 
piping prohibit bore hole sampling). These data could be used to put constraints on the 
extent of contamination predicted by incorporating the coordinates into a statistical model 
with an indicator variable (e.g., forcing predicted concentration levels to be zero where 
underground structures are detected). If relationships between the measured phenomena 
and contamination are understood prior to statistical model fitting, the VSP user could 
specify contamination likelihoods as part of the Bayesian Elipgrid procedure (if included in 
future VSP capabilities). ERT data could be included in statistical models to improve the 

 
12 https://www.pnnl.gov/applied-subsurface-science-and-characterization-laboratory 
13 https://www.youtube.com/watch?v=7Zr94UkpAUI 
 

https://www.pnnl.gov/applied-subsurface-science-and-characterization-laboratory
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7Zr94UkpAUI&data=05%7C01%7Cfrederick.day-lewis%40pnnl.gov%7Cc2688ab766e54829a67e08da47f8f418%7Cd6faa5f90ae240338c0130048a38deeb%7C0%7C0%7C637901431821964860%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=FPuVE3G11hS9ZmqTmUg936vPFsEmECm7lK3%2BoZarqME%3D&reserved=0
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accuracy of model predictions (kriging) and uncertainty estimates. Since sampling plans will 
consider expected contamination levels and uncertainty, potentially aiming to reduce 
uncertainty through additional data collection, such information could prove valuable if it 
reduces uncertainty associated with some areas of the subsurface volume.  

• ERT data could be entered directly (through future VSP capability) to delineate subsurface 
infrastructure and boundaries (e.g., underground building infrastructure or geologic 
characteristics)—either through drawing/specifying the coordinates or through direct data 
import/entry and coding as impermeable or solid for the purposes of informing sampling 
plans (e.g., label an underground pipe as impermeable such that any plan to drill a borehole 
in/near it would need to consider and negotiate its presence). See Section 3.3.2 for 
discussion of VSP capability recommendations.  

 
Figure 22. Visualization of Time-Lapse ERT Images Revealing Changes in Electrical 

Conductivity Associated with Unanticipated Leaks During Overflow Events in 
Subsurface Infrastructure 

3.4.4.2 E4D 

E4D14 is a scalable 3-D geophysical modeling and inversion software code designed for 
subsurface imaging and monitoring. E4D uses geophysical measurements to generate images 
that serve as indicators of subsurface hydrostratigraphic boundaries, contaminant distributions, 
injection delivery extent, and dynamic biogeochemical processes. The E4D software15 provides 
customization for a wide range of field and laboratory applications, using static and time-lapse 
ERT, SIP, or seismic or radar travel-time tomography. E4D can be coupled with flow and 
transport models (e.g., PFLOTRAN, eSTOMP) for cost-effective, pre-field planning and 

 
14 https://www.pnnl.gov/projects/e4d  
15 https://www.youtube.com/watch?v=vrcb2N_TZ8Q 
 

https://www.pnnl.gov/projects/e4d
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dvrcb2N_TZ8Q&data=05%7C01%7Cfrederick.day-lewis%40pnnl.gov%7Cc2688ab766e54829a67e08da47f8f418%7Cd6faa5f90ae240338c0130048a38deeb%7C0%7C0%7C637901431821964860%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=9fc1kd0Gqzj9R%2Fpi%2Fj6JFrN962s2Cs305IAacIak8Us%3D&reserved=0
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physically based field-scale feasibility assessments. E4D leverages distributed-memory high-
performance computing, providing solutions for analyzing large geophysical datasets that 
involve high computational demands. E4D is highly scalable and can be used on systems 
ranging from laptop computers to state-of-the-art supercomputing facilities. Web services can 
be integrated with E4D for real-time processing of electrical geophysical data to deliver near-
real-time results in the form of interactive, online visualizations. The example in Figure 23 shows 
a visualization where E4D was used to monitor amendment release and its subsequent 
infiltration. 

 
Figure 23. Visualization of E4D Inversion Results Showing Time-Lapse Changes in 

Subsurface Electrical Conductivity Associated with Amendment Release at the 
Land Surface 

• Collected E4D data could be used to inform sampling plans and statistical models though 
quantified subsurface contaminant distributions and/or hydrostratigraphic boundaries. Such 
measures should be considered in survey planning to reduce uncertainty associated with 
contaminant locations in the case of the former and to put constraints on where 
contamination is predicted in the latter (e.g., forcing predicted concentration levels to be 
zero at points past hydrostratigraphic boundaries). Contaminant distributions from E4D 
could be used to inform VSP user specifications of contamination likelihoods in a Bayesian 
Elipgrid procedure (possible future VSP capability). Such E4D data could also be included in 
statistical models as an independent variable to predict directly measured contaminant and 
quantify the uncertainty in those predictions. Reduced uncertainty could result in fewer new 
sampling locations being required to reach acceptable levels of uncertainty. E4D data could 
be used as input to future VSP capability to delineate subsurface contours of likely 
contamination or boundary coordinates—either through drawing/specifying the coordinates 
or through direct data import/entry and coding.  

3.4.4.3 SIP 

Like ERT, SIP is an electrical method, but whereas ERT represents a single (zero) frequency 
SIP represents subsurface electrical properties across a spectrum of frequencies. Compared to 
ERT, which is primarily sensitive to pore fluids, SIP provides additional information about soil 
and rock materials and important phenomena that occur at the mineral/fluid interface. SIP has 
been used to monitor subsurface biological activity and its effects on soils (as shown in Figure 
24), mineralization and precipitation processes, and sequestration of contaminants (Johnson et 
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al. 2022; Johnson et al. 2015). SIP has also been used to estimate permeability and reactive 
surface area (Robinson et al. 2018; Revil et al. 2015). Advanced capabilities for SIP 
measurement, simulation, and data analysis have been developed and are being used to 
quantitatively monitor groundwater remediation and understand the role of immobile porosity in 
prolonging cleanup times.  

• Similar to the data types above, SIP quantification of contaminant sequestration, 
permeability, and reactive surface areas may be correlated with subsurface contaminant 
distributions and therefore has the potential to improve statistical prediction (kriging) models 
(e.g., through independent variables in a regression model). To the extent correlations 
between these metrics and subsurface contamination are understood prior to statistical 
model fitting, they could be used by VSP users to specify contamination likelihoods through 
the Bayesian Elipgrid procedure (if included in future VSP capabilities). Such data could also 
be incorporated as input to future VSP capability to delineate subsurface contours of likely 
contamination or boundary coordinates—either through drawing/specifying the coordinates 
or through direct data import/entry and coding, as recommended in Section 3.3.2.  

 
Figure 24. Visualizations of SIP Imaging Mesh (left), Imaging Results (middle), and 

Experimental Apparatus (right) to Understand Electrical Signatures of Biological 
Activity 

3.4.4.4 Seismic Subsurface Technologies 

Seismic methods are used to characterize subsurface geologic structure (as shown in Figure 
25, which shows seismic images of the Hanford Site). Seismic methods are valuable in 
developing stratigraphic models and hydrogeologic framework models, and they are extensively 
used in estimation of geotechnical properties that are important for assessment of earthquake 
risk and the design of buildings in areas prone to seismic hazards. Ongoing development of 
advanced capabilities in distributed acoustic sensing and automated seismic sources are 
expected to enable high-resolution seismic monitoring of subsurface processes including water 
table fluctuations and saturation changes in moisture conditions (Fokker et al. 2021; Linneman 
et al. 2021). Compared to other geophysical methods such as electromagnetic and ERT, 
seismic methods are well suited to investigations over a broad range of scales, including deeper 
subsurface investigations (10–100 m depth).  
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Figure 25. Seismic Images from the Gable Gap Area of the Hanford Site. Images include a 

compressional-wave velocity tomogram overlaid on migrated reflection data and 
images of shear-wave velocity derived from multichannel analysis of surface waves 
(St. Clair et al., In Review). 

Similar to the previous data types, seismic and acoustic data that quantify stratigraphical and 
hydrogeological characteristics in the subsurface volume may be correlated with subsurface 
contaminant distributions. Including such metrics in a statistical prediction (kriging) model (i.e., 
as independent variables) would improve the accuracy and uncertainty of predictions to the 
extent they are indeed correlated. If such correlations are understood prior to statistical model 
fitting, VSP users could use that information to specify contamination likelihoods in a Bayesian 
Elipgrid procedure (if included in future VSP capabilities). Such data could be imported or 
entered to delineate subsurface contours of likely contamination or boundary coordinates, 
either through drawing/specifying the coordinates or through direct data import/entry and 
coding. 

3.4.4.5 Electromagnetic Subsurface Techniques 

Electromagnetic techniques are similar to ERT in that they image subsurface electrical 
structure, but where ERT relies on conduction (Ohm’s Law), electromagnetic techniques rely on 
induction (Faraday’s Law); consequently, electromagnetic techniques do not require direct 
coupling of instrumentation to the ground surface and are therefore amenable to more rapid 
data collection from vehicles, boats, drones, and helicopters/planes. Mobile data collection 
allows for cost-effective coverage of long transects or large areas. Airborne electromagnetic 
techniques have been used to image subsurface structure at the Hanford Site (Figure 26; 
Jaysaval et al. 2021) and as have ground and waterborne electromagnetic techniques for 
diverse characterization problems (CHPRC, 2010; Mangel et al. 2022). These techniques are 
also used for location of underground targets including pipes and tanks. PNNL has expertise 
and has developed advanced capabilities for electromagnetic modeling and inversion (Jaysaval 
et al. 2022, 2021, 2016, 2015, 2014). Measurements are problematic in the presence of power 
lines or unknown buried metal infrastructure.  



PNNL-33647 

Subsurface Data 34 
 

• Similar to ERT, electromagnetic data that quantifies subsurface electrical structures could be 
used in statistical prediction (kriging) models and Bayesian Elipgrid procedures to inform 
sampling and compliance survey designs and planning.  

 
Figure 26. Electromagnetic Inversion Results and Interpreted Hydrogeologic Framework from 

Airborne Surveys Collected Over the Hanford Site (Jaysaval et al. 2021) 

3.4.4.6 Ground Penetrating Radar 

Ground penetrating radar (GPR) is a high-frequency electromagnetic method capable of 
submeter resolution of soil structure. GPR is used extensively for nondestructive geotechnical, 
concrete, and pavement assessments and to locate buried targets and infrastructure. In most 
earth materials, GPR signals penetrate only a few meters to a few tens of meters; hence GPR is 
used for shallow characterization and shallow targets. Time-lapse GPR has been used to 
monitor infiltration, solute transport, and saturation changes, and to detect leaks from 
subsurface infrastructure. PNNL has used ground-based and cross-well GPR for diverse 
problems including soil desiccation monitoring, as in the cross-well example shown in Figure 27 
(Truex et al. 2018).  

• Similar to the technologies above, GPR data that quantifies subsurface infrastructure and 
leak detection could be used in statistical prediction (kriging) models and Bayesian Elipgrid 
procedures to inform sampling and compliance survey designs and planning.  

 
Figure 27. Inversion Results for Cross-Hole GPR Data Collected Before (left) and After (right) 

the Start of a Soil Desiccation Experiment at the Hanford Site (Truex et al. 2018). 
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3.4.4.7 Hydrogeophysics Toolbox 

The concept of a Hydrogeophysics Toolbox was first advanced in near-surface geophysics over 
20 years ago and is well established (e.g., Day-Lewis et al. [2017]). The Toolbox comprises 
borehole, cross-hole, and airborne geophysical methods (Figure 28). It was built on the premise 
that geophysical method selection should be based on the following: 
1. Project objectives: For a given method to support project objectives, it must provide 

information relevant to the problem. 
2. Site conditions: For a method to work at a given site, conditions there cannot preclude data 

acquisition or mask targets (e.g., presence of underground infrastructure, lithology, or soil 
type). 

3. Resolution, spatial coverage, and depth of investigation requirements: What is achievable 
with a given method must also align with those required by the project objectives. 

4. Potential synergies between complementary methods: Some project objectives will call for 
use of multiple methods in concert, capitalizing on the synergy between methods.  

 
Figure 28. Methodology Suggestions as Scale of Investigation and Resolution Increase 

Although these concepts are widely accepted, their implementation is limited by disconnects 
between practitioners and those deciding to contract, fund, or require geophysical 
investigations. The following articles about method selection tools have been published to 
address these disconnects, improve method-selection practices, and maximize return on 
geophysical investments;  

• The Fractured Rock Geophysical Toolbox Method Selection Tool (Day-Lewis et al. 2016) 
and the Groundwater/Surface-Water Method Selection Tool (Hammett et al. 2022) guide 
users to enter information about project goals and site characteristics and then provide 
guidance on methods likely to address stated goals under site-specific conditions.  
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• The Scenario Evaluator for Electrical Resistivity tool (Terry et al. 2017a, b) is a simplified 
image-appraisal tool that allows users to assess the ability of ERT to resolve hypothetical 
targets in the subsurface, given user-specified characteristics of the targets (shape, depth, 
contrast) and survey design.  

Additional method selection and image-appraisal tools could be designed to address the needs 
of the NRC related to topics including siting, leak detection, remediation monitoring, and closure 
or decommissioning. 
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4.0 Statistical Methods for Subsurface Data Analysis 
The Task 1a report describing statistical methods for continuous data collection (Fagan et al. 
2022) discusses the need to account for spatial autocorrelation when making statistical 
decisions using geospatial data. If spatial autocorrelation is not accounted for when present, 
statistical hypothesis tests and statistical interval calculations may not meet acceptable decision 
error tolerances. Additionally, subsequent identification and delineation of potentially elevated 
areas of residual contamination may not reflect the true state of a site. These considerations 
apply to subsurface volumes as well and have additional complexity with a third dimension. 
Section 4.1 provides an overview of geostatistical methods, applicable in three dimensions for 
subsurface applications.  

As the complexity of the subsurface structure(s), geophysical characteristics, fate and transport 
mechanisms, and contamination increases, the complexity of geostatistical methods required to 
assess compliance will increase as well. We attempt to cover the range from simple to complex 
methods in this section. 

4.1 Geostatistics Overview 

EPRI (2016) provides a helpful guide to understanding geostatistics (also referred to as 
geostatistical analysis) and its role in RSSIs at nuclear sites. Key concepts presented by EPRI 
are summarized here to provide context for more specific methodological approaches 
considered in the subsequent sections. This report assumes, however, that the reader has a 
basic understanding of geostatistics, including knowledge of concepts such as variogram 
models and their parameters (i.e., range, sill, nugget), kriging models (i.e., models used to 
predict or interpolate observations between locations where data were collected), and 
simulation (i.e., using parametric or nonparametric distributions or models to generate plausible 
observations, with variability). Further information on these topics can be found in numerous 
resources, including Cressie (1993), Deutsch and Journel (1998), Goovaerts (1997), Griffith 
(2017), and other references used throughout this report. 

Geostatistics can be considered a class of methods that enable inference and simulation of 
spatially (and perhaps temporally) referenced variables based on observed measurements from 
a set of sampled locations. It is different from traditional statistical methods in that it explicitly 
models spatial correlation. EPRI (2016) considers three major elements of geostatistics: 
structural analysis, kriging, and conditional simulation. 

4.1.1 Structural Analysis 

Structural analysis includes estimation and inference of spatial structure from available data, 
usually using a (semi)variogram function to describe dependence and relative correlation 
between two observations as a function of the distance between them. A sample variogram is a 
function of the distances separating sampled locations, which are calculated based on x-y 
location pairs in 2-D or x-y-z location triplets in 3-D. We expect the reader to be familiar with the 
sill, nugget, and range components of the variogram (details can be found in EPRI [2016] and 
other references cited in this section of the report). Figure 29 depicts some of the six commonly 
used variogram models.  
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Figure 29. Commonly Used Variograms in GLS Estimation 

Variogram distances can also incorporate directional information between locations. Spatial 
structure is called isotropic when the variogram is equivalent regardless of the orientation 
(direction) between points, but anisotropic when it differs depending on its orientation. An 
example of anisotropy on the surface is when directional contaminant deposition results due to 
wind, where concentrations are more correlated in the same direction as the wind than they are 
in the direction perpendicular to the wind. Anisotropy also may be present in the subsurface—
within an individual layer or across layers—when conditions result in directional contaminant 
deposition. Anisotropy may occur multi-directionally, for example, when contamination fate and 
transport properties differ between distinct soil layers. This phenomenon can be incorporated 
into geospatial models using multiple variograms (of the form and function shown in Figure 29). 

It is critical to assess whether anisotropy is present and account for it in modeling and survey 
designs, if so. Anisotropy can increase or decrease the number of sample locations, depending 
on the number of distinct variograms. It is also important to account for in statistical modeling 
and analysis because it will affect uncertainty estimates, statistical hypothesis test conclusions, 
and subsequent decisions. In structural analyses, anisotropy can be diagnosed by examining 
multiple directional variograms and/or employing statistical hypothesis tests (Weller and Hoeting 
2016). Anisotropy can be modeled by allowing variogram ranges to vary in different directions or 
by estimating coordinate transformations for which isotropy holds (Schabenberger and Gotway 
2017). Horizontal dependence within a layer is likely to be stronger than vertical dependence 
across layers (EPRI 2016). 

4.1.2 Kriging 

Kriging is a tool used to predict (interpolate) quantities of the variable of interest over an entire 
site (area in 2-D or volume in 3-D) based on a set of sample observations at locations within the 
site. While some kriging methods ignore measurement uncertainty, others are based on spatial 
models with small- and/or large-scale spatial variability terms. Kriging uncertainty, or prediction 
variance for predicted values at each location, is governed by the number of observations, 
distances between sample locations, variability in observed values, and variogram differences 
(unidirectional or multidirectional). However, kriging uncertainty only represents observed and 
estimable geophysical properties of a site, where the variogram provides the estimation 
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mechanism. Estimating the kriging uncertainty provides estimates of the probability of 
exceeding a threshold, which can in turn be used to optimally place new sample points and 
calculate the number of sample locations required for decision-making (EPRI 2016). 

Different kriging methods are used to address different challenges. Universal kriging can be 
used when there is nonstationarity in the mean (e.g., when mean concentration is a function of 
location). Indicator kriging is suggested in the literature to address non-normality by 
transforming a continuous variable of interest into a categorical variable (e.g., above or below a 
threshold) and corresponding nonparametric estimation (EPRI 2016). However, PNNL does not 
recommend transforming continuous measurements into discrete categories for this purpose 
alone, because several alternative methods can handle the continuous but non-normal data. 
Indicator kriging should be used when presence/absence data or categorical data are available.  

Cokriging can be used to study multiple interrelated variables and may be useful when 
measurements of one variable are easier/cheaper to obtain than others (e.g., when gamma 
radiation measurements are easier to collect than alpha radiation measurements or modeled 
data are more feasible to collect than field measurements), but the two are correlated so that 
inference about the more challenging data can be made based on the more accessible data. 
Spatial regression models, also referred to as “kriging with external drift,” can be used for kriging 
when explanatory variables (covariates) are available at locations for which the response 
variable is not (EPRI 2016). 

4.1.3 Conditional Simulation 

Conditional simulation is used to generate individual realizations of the variable of interest, 
where each realization includes the same statistical and geostatistical properties determined 
during structural analysis. The statistical properties are those represented by the variogram 
structure of the observed data, and the geostatistical properties are those represented by the 
physical characteristics of the site. Simulations model the impact of statistical and geophysical 
properties at each location by conditioning on observed data at nearby locations. Conditional 
simulation makes use of the variogram structure and accounts for prediction error (variability) 
associated with the interpolated (kriged) estimates, providing a set of equally probable predicted 
observations at each location. Conditional simulation may be useful (or required) in the following 
applications (EPRI 2016): 

• Nonlinear mapping functions: When the variable of interest is modeled through a nonlinear 
relationship with the interpolated (kriged) values (e.g., via an inverse transformation to 
achieve normality), analytical uncertainty estimates may not be practical or possible to 
calculate. 

• Spatial continuity: While interpolated (kriged) estimates provide the best estimates of the 
variable of interest in many cases, it does not do so when local variability is present but 
unobserved. Conditional simulation may provide insight into unobserved local variability. 
However, some prior knowledge (from data or subject matter expertise) should be 
incorporated to ensure it is represented accurately. 

• Probabilistic assessment of global quantities: Conditional simulation may be used to develop 
probability distributions for interpolated (kriged) values based on derived values (e.g., total 
source term over an area or volume). 

• Complex dynamical simulation: When site survey results will be used to inform fate and 
transport models, conditional simulation may be useful for generating probabilistic estimates 
of model inputs using Monte Carlo framework.  
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Conditional simulation generates realizations of the spatial process while honoring the 
observations (Schabenberger and Gotway 2017). It is designed to preserve the characteristics 
of the data (e.g., mean, distribution, spatial correlation) in the realizations. Sequential (Gaussian 
or indicator) simulation, conditioning by kriging, simulated annealing, and simulation from 
convolutions are all methods that can be used to produce realizations of a random field that can 
then be used to assess uncertainty. Gaussian and multi-Gaussian simulation use the simple 
kriging mean and variance to define a point-by-point cumulative distribution function of the 
spatial process. Rather than kriging values at pixels where no data were observed, values from 
the cumulative distribution function are simulated via a Monte Carlo sampling algorithm. Multiple 
simulations then result in a pixelwise empirical distribution of the spatial process. Pixelwise 
empirical distributions estimated from conditional simulations lead to data combinations that can 
be used to estimate statistical quantities (e.g., mean, upper percentile) and uncertainties.  

Historically, geostatistical simulation approaches are used to simulate geophysical phenomena, 
such as properties of flow and transport, rather than to predict concentrations of contaminants. 
Combining the output of simulation models with observed concentrations is usually done by way 
of cokriging, multi-Gaussian kriging, or stratification (Goovaerts 1997, Goovaerts 2000; Stewart 
et al. 2006). Recent research includes exploring numerical variograms (Pannecoucke et al. 
2020) estimated from simulation data and alternative methods for estimating kriging variance, 
including simulation uncertainty (Silva 2021). 

Many conditional simulation algorithms exist, including sequential (multi)Gaussian simulation, 
sequential direct simulation, simulated annealing, and filter simulation, and the area continues to 
be an area of active research (Ortiz 2020; Metahni et al. 2019). A number of these algorithms 
are implemented in existing software products. For example, several R packages, including 
geoR (Ribiero and Diggle 2001), varycoef (Dambon et al. 2021), and RandomFields (Schlather 
et al. 2015), perform multi-Gaussian simulation. Additionally, the Geostatistical Software Library 
(GSLIB) contains code for sequential Gaussian simulation (see Section V.2.3 in Deutsch and 
Journel 1998). Several VSP geostatistical methods are based on GSLIB implementation. 

4.2 Geostatistical Methods for the Subsurface  

In this section, we review numerous geostatistical methods for analysis of collected subsurface 
data and subsequent decision making in the context of the compliance phase of nuclear site 
decommissioning. Modeling and remediation of subsurface contamination can vary widely in 
their complexity. Factors such as the depth of contamination, composition of the subsurface 
(e.g., how many layers, what are layers made of), contaminant transport for both current and 
future scenarios, and exposure pathways all contribute to the complexity of subsurface 
applications. Keeping this complexity in mind is important when considering appropriate 
methods for both modeling and decision-making. Low-complexity sites may require only small 
extensions of the methods used for surface decommissioning while highly complex sites may 
require extensive modeling, the use of new modeling techniques, and/or complex decision 
frameworks. 

4.2.1 Generalized Least Squares Regression 

GLS is a method used to estimate the unknown parameters in a linear regression model in the 
presence of spatial or temporal autocorrelation. GLS includes the commonly used ordinary least 
square (OLS) as a special case, as its name suggests. It is employed in circumstances where 
the OLS estimator is not the best linear unbiased estimator due to heteroskedasticity and 
dependence (in contrast to fundamental assumptions of homoskedasticity and independence, or 
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absence of correlation). An advantage of GLS is that it does not make distributional 
assumptions about the data, but only requires assumptions about the first and second moments 
(Schabenberger and Gotway 2017), although this can introduce challenges to developing 
confidence intervals representing the uncertainty of predicted values at unobserved locations. 

GLS accounts for spatial structure in data by incorporating it into the estimation of the 
covariance matrix based on a fitted variogram model of the data, and it has the flexibility to 
capture different spatial structures across layers or a grouping variable, making it a suitable 
method for subsurface investigation. In practice, the variance–covariance matrix is computed by 
first fitting the appropriate variogram model to the empirical variogram obtained from the data. 
The spatial form is converted to covariances using the corresponding covariance function after 
selecting the variogram model based on available data or prior information. If the spatial 
structure is exponential, for example, an exponential variogram can be fit and the spatial 
structure captured using an exponential covariance function. 

Contaminant fate and transport and expected impacts of geophysical characteristics on 
contamination in the subsurface could be incorporated into GLS methods through explanatory 
variables in the regression model. 

VSP would require algorithm development and coding to add GLS capabilities for model fitting, 
estimation, prediction, and hypothesis testing. 

4.2.1.1 Hypothesis Testing 

As described in the Task 1a report (Fagan et al. 2022), GLS regression can be used within the 
MARSSIM framework to accurately estimate average activity over a site or to compare the 
average activity to a threshold value using a statistical hypothesis test in surface applications. 
Similarly, GLS can be used for hypothesis testing in subsurface applications. GLS is 
recommended in favor of OLS, which cannot incorporate the non-Gaussian spatial structure of 
the data. For example, consider the data in Figure 30 showing U-235 concentrations observed 
in four wells near the 241-BX Tank Farm at Hanford. 

Assume we want to compare mean U-235 concentration at the site (estimated using well 
observation average 𝑥𝑥) to a historical average of 5 pCi/g and apply the following statistical 
hypothesis testing framework16: 

• 𝐻𝐻𝑜𝑜:𝜇𝜇 ≤ 5 (mean concentration of U-235 does not exceed historical average)  

• 𝐻𝐻𝑎𝑎:𝜇𝜇 > 5 (mean concentration of U-235 is greater than historical average). 

 

 
16 The null hypothesis that the mean concentration of U-235 does not exceed the historical average is 
consistent with alternative Scenario B in NUREG-1575 (i.e., that the survey unit meets the release 
criteria). The default scenario in MARSSIM, is Scenario A, which assumes the survey unit does not meet 
the release criteria. 
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Figure 30. Concentration of U-235 at Four Selected Wells at the Hanford Site 

In Table 2, both OLS and GLS models are used to estimate the means, standard errors, 
t-values, and p-values corresponding to this test. The OLS model overestimates average U-235 
concentration and results in a p-value less than 0.05, leading to rejection of the null hypothesis 
and a conclusion that the site U-235 levels exceed the historical average. This represents a 
Type I error that erroneously leads to the conclusion that the site is dirty when the site is actually 
clean. The GLS model, on the other hand, leads to a smaller mean and larger p-value, and fails 
to reject the null hypothesis, and thus leads to the conclusion that the site mean does not 
exceed the historical average. 

Table 2. Example OLS and GLS Model Output 

Model 𝑥𝑥 Standard Error t-value p-value 
OLS 8.777 0.325 11.625 <0.0001 
GLS 6.423 1.840 0.773 0.2198 

These are results for one realization of this example (based on n = 150 observations). When 
multiple simulations are used, expected Type I error rates can be calculated. Figure 31 presents 
average Type I error rates for the same example but varying numbers of observations. When 
using the OLS model, the Type I error rates are always higher than the GLS model and increase 
as the number of observations increases. The reason for this is that pseudo replicates 
(observations that are not statistically independent but treated as if they are) produce additional 
observations that lead to "more significant" results, but these results are incorrect due to the fact 
that the spatial dependence was not taken into consideration. It is counterintuitive and highlights 
where practitioners can go wrong when spatial dependence is present but not accounted for. 
Error rates for the GLS model, on the other hand, remain roughly constant and near the nominal 
level (α = 0.05) regardless of the number of samples. This shows that the likelihood of making 
an erroneous conclusion is greater using an OLS model and increases as sample sizes 
increase, where using the GLS model, which addresses spatial dependence and 
heteroskedasticity results in the expected nominal error rates. 
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Figure 31. Comparing OLS and GLS Type 1 Error Rates 

4.2.1.2 Mean Estimation 

In the subsurface, the following four scenarios were considered for mean estimation:  
1. Mean and spatial structure are the same in all layers (but spatial parameters vary). 
2. Mean is the same but spatial structure varies (and spatial parameters vary). 
3. Mean varies but and spatial structure is the same in all layers (spatial parameters vary). 
4. Mean and spatial structure vary (and spatial parameters vary). 

Figure 32 shows the observed data (simulations) for seven wells in a three-layer subsurface. 
Observations are stacked vertically within each well, with white space representing boundaries 
between each layer occurring at depths around 95 and 120 units. Figure 32a depicts the first 
two scenarios with observations when the mean is the same in all layers (50 units). Figure 32b 
depicts the second two scenarios with observations when the mean differs between layers (from 
30 to 60 to 100 units as depth increases).  
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Figure 32. Example Well Monitoring Data (simulated) in Seven Wells that Span Three 

Subsurface Layers. (a) Constant mean concentration. (b) Varying mean 
concentration. Spatial variation is not shown. 

GLS regression was applied to the simulated data from each scenario to examine its capabilities 
for estimating mean concentrations and standard errors. It was applied to each layer separately 
and to the combined volume. Table 3 shows the results. Regardless of whether layers are 
modeled separately or as a combined volume the mean values are estimated accurately. 
However, when the mean varies across layers the model of the complex volume is not precise, 
as reflected by its high standard error in those scenarios. 

Table 3. Summary of GLS Models Used to Estimate Subsurface Means with Three Layers 

Layer 
Spatial 

Structure 

Mean is Equal across Layers Mean Varies between layers 
True 

(simulated) 
Mean 

Estimated Mean 
(standard error) 

True 
(simulated) 

Mean 
Estimated Mean 
(standard error) 

1 

Same in 
all layers 50.0 

47.1 (1.33) 100.0 97.1 (1.33) 
2 48.1 (1.40) 60.0 58.4 (1.40) 
3 51.4 (0.77) 30.0 31.2 (0.77) 

Complex 
volume 49.8 (0.72) 63.3.0 64.3 (18.51) 

1 
Varies 

between 
layers 

50.0 

48.1 (1.33) 100.0 97.1 (1.33) 
2 48.4 (1.70) 60.0 58.1 (1.70) 
3 51.2 (0.75) 30.0 31.5 (0.74) 

Complex 
volume 48.9 (0.82) 63.3 64.5 (18.64) 

In practice, mean values, spatial structure, and spatial parameter values are likely to be 
unknown prior to data collection. As a result, histograms of contamination metrics and 
variogram plots should be used to help determine which strategy is optimal (i.e., modeling the 
layers independently or as a complex volume), given observed subsurface complexity. If prior 
information is available from previous RSSI phases, then models can be used to estimate 
uncertainty and inform survey sample design for the compliance phase. Additional 
considerations to determine the dimensionality of the approach are discussed in Section 4.3. 
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4.2.2 Local Indicator of Spatial Association 

A local indicator of spatial association (LISA), also known as the Local Moran’s I statistic, is a 
method presented by Anselin (1995) to identify local clusters and local spatial outliers. The 
method can be applied in 2-D surface and 3-D subsurface applications to discover hot spot 
areas or volumes, respectively. In the subsurface, it can be used to detect statistically significant 
volumes of high contamination within otherwise low contamination volumes and, conversely, it 
can detect cool spots, or volumes of significantly low contamination compared to surrounding 
high contamination volumes.  

A LISA value is calculated for each observed location. Positive LISA values indicate neighboring 
locations have similarly high or low contamination. Negative LISA values indicate neighboring 
locations are higher/lower concentration. Each LISA value has a corresponding p-value, where 
lower p-values indicate statistically significant clusters of locations. There are four types of 
statistically significant clusters: 
1. Several locations with high values (HH) 
2. Several locations with low values (LL) 
3. Single high value location surrounded by low value locations (HL) 
4. Single low value location surrounded by high value locations (LH). 

Clusters of high values (HH and HL) indicate prospective areas of relatively heightened 
contamination (i.e., hot spots), while low values (LL and LH) indicate potential areas of 
comparatively low activity (i.e., cool spots). 

To illustrate the application of LISA to subsurface compliance survey analysis, it was applied to 
a simulated dataset shown in Figure 33 (data were simulated based on concentrations observed 
in eight wells near Hanford's 241-BX Tank Farm). The data are shown in Figure 33a with high 
values represented by red points. Locations with no statistically significant spatial grouping, cold 
spot clusters, and spatial low spot outliers are illustrated by blue points. The hot spot analysis is 
shown in Figure 33b, in which significant hot spot clusters are indicated in red and cold spot 
clusters in blue. Based on this analysis, conclusions could be made for each well. 

 
Figure 33. Example LISA Application to Well Monitoring Data. a) Data and b) hotspot analysis. 
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In this example, LISA was applied to the observations at sampled locations. However, additional 
research is recommended to determine how the LISA method could be expanded to apply to 
kriged or modeled volumes so that it can be used to identify hot spot volume boundaries that 
include locations between wells. Additional research would be required to determine if and how 
contaminant fate and transport or the impacts of geophysical characteristics on contamination in 
the subsurface could be incorporated into LISA. 

VSP would require algorithm development and coding to add LISA capabilities for hot spot 
detection. Additional research would be required to determine if and how data from previous 
parts of the RSSI process and/or outside data (e.g., contaminant fate and transport datasets, 
modeled geophysical subsurface characteristics) could be incorporated into LISA.  If they could, 
then it seems promising for developing an initial sampling design based on such data. 

4.2.3 Kriging Methods 

Kriging methods are a valuable tool for geostatistical modeling (Gelfand and Schliep 2016), with 
standard methods including simple, ordinary, block, and indicator kriging. These assume an 
underlying spatial Gaussian process for which the conditional expectation of a new observation 
is assumed to be linear with respect to the observed data. Kriging or prediction models must 
address change-of-support challenges when the size, dimension, shape, and/or orientation of 
observations or measurements on different variables differ from the support required for the 
kriged (predicted) surface or volume. For example, when observed values are collected at 
different resolutions or with different fields of view. EPRI (2016) recommends block kriging 
and/or downscaling to address direct field measurement support typically being smaller than 
scanning technology support, and the support associated with a survey unit being much larger 
than either of those (EPRI 2016).  

Gaussian models provide convenient frameworks for creating confidence and prediction 
intervals for values at unobserved locations (e.g., testing for hot spots by estimating 
exceedance at a location), estimation and testing of the site mean, and Gaussian simulation. 
One of the criticisms of kriging is that it results in over-smoothed local variability, or predictions 
that are less variable than is realistic (or observed) in the environment (Diggle and Ribeiro 
2010). Research has shown, however, that more complex methods are not always the best 
option—even for complex sites—and that careful consideration should be given to selecting the 
right method depending on the desired statistics (Metahni et al. 2019). 

Additional research will be required to determine if and how contaminant fate and transport and 
geophysical characteristics in the subsurface could be incorporated into each kriging method. 
VSP currently has 2-D kriging capability for simple, ordinary, and indicator kriging (Fagan et al 
2022; Matze et al. 2014). Fixed rank kriging (FRK) were included in a recent VSP release 
(September 2022). Existing 2-D kriging methods in VSP will be applicable for sites that model 
the subsurface as a collection of 2-D layers, although a set of assumptions must hold in those 
cases. 

• Subsurface volume is modeled as a collection of 2-D layers with isotropic contamination 
where previously collected contamination data include one data point per x-y location in the 
z-direction (i.e., data were only collected at one ‘depth’ and that depth is the same for every 
x-y location). 
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• Subsurface volume is modeled as a collection of 2-D layers with isotropic contamination. 
Previously collected contamination data are observed at multiple z-locations per x-y location 
(e.g., multiple data points along the z-axis within a borehole or well at each x-y location) but 
observations are isotropic and stationary and can be averaged at each x-y location. 

The existing 2-D FRK capability will be applicable in the following cases: 

• Subsurface volume is modeled as a collection of 2-D layers with anisotropic contamination 
in the x-y direction where previously collected contamination data include one data point per 
x-y location in the z-direction (i.e., data were only collected at one ‘depth’ and that depth is 
the same for every x-y location). 

• Subsurface volume is modeled as a collection of 2-D layers with anisotropic contamination 
in the x-y direction. Previously collected contamination data are observed at multiple z-
locations per x-y location (e.g., multiple data points along the z-axis within a borehole or well 
at each x-y location) but observations are isotropic and stationary in the z-direction and can 
be averaged at each x-y location. 

Existing 2-D kriging methods will need to be updated with the capability to model anisotropy or 
account for it by including independent variables (FRK intrinsically models the anisotropy but 
cannot currently incorporate independent variables) in the model in the following cases: 

• Subsurface volume is modeled as a collection of 2-D layers with anisotropic contamination 
in the x-y direction. Data were collected at one or multiple z-locations per x-y location and 
can be averaged within each x-y location. Supplementary data are available within each 
layer (e.g., data from models or measurements such as those described in Section 3.4) and 
will be used as independent variables in the kriging (prediction) model to account for the 
anisotropy.  

All VSP kriging methods (including FRK) will need to be updated to accommodate 3-D data 
when the subsurface volume is modeled as a complex 3-D volume or as a collection of 3-D 
layers with anisotropy in the z-direction. For example, one layer may represent the vadose zone 
and another an aquifer; layers may represent geologic formations or soil horizons; or distinct 
layers informed by different dose models may each be modeled as a separate 3-D layer. Each 
physical layer could potentially be further discretized into multiple layers for statistical sampling 
and analysis based on mean concentrations, variograms, and/or other statistical properties. 

4.2.3.1 Multi-Gaussian Kriging 

VSP implements multi-Gaussian kriging (MGK) as described by Deutsch and Journel (1998). 
MGK uses the Gaussian conditional cumulative distribution function at each location (pixel) 
where predictions are desired using the simple kriging mean and variance structure. Data are 
converted to z-scores, kriged, and then back-transformed, resulting in predictions that are 
influenced by local data values rather than simply the distance between data. MGK is an 
intrinsic model, meaning predictions tend toward a local rather than global mean. This improves 
predictions from a geoscience point of view (Goovaerts 1997). Although there is no assumption 
of mean stationarity, VSP recommends removing large-scale trends prior to kriging using MGK. 
The MGK module in VSP contains several options for maps of concentration and uncertainty. 
Concentration maps can be produced for mean, median, or user-specified percentiles and 
uncertainty maps for conditional variance, interquartile range, and reference uncertainty index. 
Additionally, VSP provides an option for generating maps showing the probability that a 
potential contaminant will exceed a given threshold.  
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VSP would require updates to the current 2-D MGK module so that it could accommodate 3-D 
data. 

4.2.3.2 Kriging Non-Gaussian Data 

In many applications a Gaussian assumption may not be appropriate; for example, when 
concentration measurements are zero or positive, have a skewed distribution, or take the form 
of presence/absence measurements. A common way to address such situations is to transform 
the data so that the Gaussian assumption is met with the transformed data, and then perform 
estimation and kriging on the transformed data. Cressie (1993) suggests using trans-Gaussian 
kriging, a general approach to developing optimal kriging predictors in these scenarios. A 
common example is lognormal kriging in which a logarithmic transformation is applied to the 
data and the Gaussian assumption holds in the transformed data. Trans-Gaussian kriging 
explores different ways to appropriately back-transform kriged estimates and uncertainty to the 
original unit of measure. Multi-Gaussian kriging is a related approach that considers the change-
of-support problem, where non-Gaussian point measurements are used to estimate block 
values. If the data represent concentration measurements, these methods can be used to 
estimate site average concentrations and identify hot spots. 

Spatially explicit generalized linear models and indicator kriging are other ways to model non-
Gaussian data. These models are commonly used for spatially referenced binary (0/1) 
outcomes or count data. They assume a data-generating model (e.g., Bernoulli, Poisson) and 
use a link function to model the mean of the data-generating process. They also typically 
include spatial random effects to account for unobserved covariates or spatial structure. 
Indicator kriging can be used to krige with binary (0/1) outcomes and is a nonparametric 
approach that can be used to estimate the probability of exceedance at a location. If the data 
represent concentration measurements, these methods can be used to estimate site averages 
and identify hot spots. However, if the data only consist of 0/1 outcomes, it may not be possible 
to estimate site means using these methods. 

VSP would require updates to the current 2-D non-Gaussian module so that it could 
accommodate 3-D data. 

4.2.3.3 FRK 

FRK is one solution when large amounts of data make standard kriging calculations slow or 
intractable, although other solutions are available for the large data problem (Heaton et al. 
2019). FRK also allows data with different fields of view (i.e., datasets with different supports) to 
be combined into a single model. While the volume of subsurface data may not warrant use of 
FRK in the context of computational speed (since we expect small datasets), it might be useful 
to predict values at locations with subsurface data collected with different fields of view, such as 
geophysical and fixed laboratory data (Cressie and Johannesson 2008; Zammit-Mangion and 
Cressie 2021). An additional benefit of FRK is that it employs a flexible covariance structure that 
does not assume stationarity or isotropy, which could be very useful for modeling complex and 
changing spatial structure and anisotropy in subsurface applications.  

Application of this method to the subsurface should be explored, especially with respect to its 
flexible covariance assumptions. VSP would require updates to the current 2-D FRK module so 
that it can accommodate 3-D data. 
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4.2.4 Geospatial Extension to MARSSIM, Multi-scale Remedial Design Model 
(MrDM), and Multi-scale Remedial Sample Design Model (MrsDM) 

Stewart (2011) developed a decision framework called the Geospatial Extension to MARSSIM 
(GEM) using geostatistical simulation to model the uncertainty (probability) about exceeding a 
DCGL anywhere within the study area that can integrate different types of data, including field 
methods, laboratory methods, etc. The method was also summarized by Gogolak (2022). The 
GEM is not limited to any particular geostatistical simulation methodology. The GEM case study 
uses sequential indicator simulation (Goovaerts 1997), citing its ability to encode values as 0 or 
1 as a strength for combining metrics from different sources with varying accuracy and 
precision. Stewart (2011) notes however that other methods are viable to integrate field 
measurement data, such as sequential Gaussian simulation. GEM simply requires a model that 
can model the uncertainty around exceeding DCGLs and can integrate various types of data. 

Although multiple sources and types of information can be used to formulate distinct CSMs, the 
variation between them and the uncertainty associated with each is not routinely accounted for. 
GEM addressed this limitation by using a stochastic conceptual site model to delineate the 
probability of complying with the regulatory limit(s). GEM uses a model-based decision rule(s) 
called the regulatory limit rule that requires this probability to be less than a specified limit and 
geostatistical simulations site to calculate the probability of exceedance. When the test fails and 
the site is determined to be out of compliance, GEM provides a method of delineating the spatial 
extent of the subsurface volume(s) to be remediated using the Multi-scale Remedial Design 
Model (MrDM) approach. When the identified subsurface volumes prove too costly for 
remediation in its entirety, the Multi-scale Remedial Sample Design Model (MrsDM) approach is 
proposed for determining additional sample locations that could decrease modeled uncertainty 
and therefore decrease MrDM remedial volumes. MrDM and MrsDM can be implemented in an 
iterative fashion to determine if and how much additional subsurface volume requires 
remediation (Stewart 2011). Check and cover sample designs are also described in SC&A 
(2022), Stewart (2011) and NUREG/CR-7021 (Stewart and Powers 2009). This method is 
discussed further in Section 5.0 in this report. 

Because GEM’s MrDM and MrsDM are optimized under the paradigm that a site has failed 
compliance (using observed and inferred concentrations) and are used to seek remediation 
volumes, it may be better geared toward remediation phase planning and decision making than 
toward the compliance phase. Additional research would be required in the following areas:  

• To determine if and how contaminant fate and transport or of geophysical characteristic 
impacts on contamination in the subsurface could be incorporated into GEM, MrDM, and 
MrsDM.  

• To incorporate quantify uncertainty of the estimates from each step and set of results and 
incorporate that into subsequent decision making. 

• In cases where remediation is pursued and excavation occurs, resulting in exposed surface. 
Research will be required to determine if and how GEM can be used to determine vertical 
and lateral boundaries (i.e., how deep should the survey/remediation go, cutoff depth 
conditions, and/or when to continue to keep excavating to measure contamination) 

VSP (Matzke et al. 2014) includes a module that identifies sampling redundancy using global 
kriging weights to identify the relative importance of samples in mapping contaminant plumes 
and to identify sample locations or wells that could be removed from the sampling schedule. 
VSP would require new code development to implement GEM, MrDM, and MrsDM for the 
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purposes of characterization an/or remediation surveys. In cases where these methods were 
used for the characterization survey and collected data indicate the site is ready for compliance 
phase, the findings (including estimated contamination and uncertainty) could be used to design 
the compliance survey. In cases where characterization survey results indicate remediation will 
be required, MARSSIM provides guidance on next steps.   

If resources have been developed but unreleased in previous SADA versions, they could be 
useful for future VSP development purposes. 

4.2.5 Bayesian Methods 

The use of Bayesian geostatistical methods has rapidly increased over the last two decades 
due to increases in computational power and availability. An advantage of using Bayesian 
geostatistical methods is that they account for uncertainty in covariance parameter estimates, 
and they provide a framework for incorporating prior knowledge into estimates of concentration, 
soil properties, etc. A disadvantage is that they can be computationally burdensome; however, 
several methods have been developed to reduce computational time (e.g., Banerjee et al. 2008; 
Heaton et. al. 2019). Empirical Bayesian kriging (Gribov and Krivoruchko 2020) has increased in 
popularity due to its availability in ArcGIS Pro software. One disadvantage is that it does not 
model anisotropy or provide cokriging capability (ArcGIS Pro 2.8). 

Spatially explicit Bayesian regression models may be useful in subsurface applications because 
they can combine concentration measurements and covariate information (e.g., soil types, 
outputs from hydrologic models) to predict concentrations at unobserved locations while 
accounting for spatial correlation. Unlike traditional frequentist approaches, these methods 
quantify uncertainty in the estimates of the spatial covariance parameters and propagate this 
uncertainty into interpolated (kriged) values. New Bayesian methods for identifying locations 
that exceed a threshold, particularly those discussed in French and Hoeting (2015) are worth 
researching for applicability to the subsurface. 

An area requiring further research is the incorporation of prior belief of contamination in a fully 
Bayesian paradigm. The Markov Bayes method uses conditional probability to incorporate prior 
belief and measurements to update the contamination concern map (CCM) but does not provide 
a posterior distribution of contamination (and therefore lacks uncertainty estimation as part of 
the analysis). A fully Bayesian approach would provide uncertainty as a function of observations 
based on the number of and spatial proximity of “hard” data points and the prior belief map. 

Contaminant fate and transport and geophysical characteristics could be incorporated into 
Bayesian methods through explanatory model variables and/or prior distribution(s). 

Research to identify the best Bayesian methods to include in VSP would be required, and then 
subsequent algorithm development and coding that would be needed to accommodate 
Bayesian analysis for subsurface applications. 

4.2.6 Variogram Tomography 

Most geostatistical models assume second-order stationarity for the covariance function. If 
anisotropy is assumed to exist, the anisotropy is assumed to be globally constant also; that is, 
the direction and magnitude of anisotropy is the same across the domain. This assumption is 
inappropriate for complex geological environments in the subsurface when highly nonlinear 
patterns of contamination exist. Further, the random field representing a subspace can be either 
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non-homogeneous or homogeneous and it is important to accurately characterize it in 
subsurface modeling to avoid biased parameter estimates. Here are potential approaches for 
addressing these. 

• Incorporating locally varying anisotropy: Imposing constant anisotropy (i.e., second-order 
stationarity) in models with known locally varying spatial features can compromise the 
accuracy of model estimates. Rather than using an approach that incorporates multiple 
variograms, which is potentially computationally expensive depending on the data size, 
incorporating locally varying anisotropy can achieve decreased computational requirements 
as well as increased accuracy (Lillah et al. 2012). Boisvert and Deutsh (2011) provide an 
algorithm that uses GSLIB in combination with other executable packages for kriging with 
locally varying anisotropy.  

• Kriging with external drift: Kriging with external drift accounts for nonstationarity in the mean 
by modeling it as a linear combination of covariates (Wadoux et al. 2018; Goovaerts 2000) 
where the linear combination is allowed to vary locally using either a frequentist (traditional) 
approach (Dambon et al. 2022) or a Bayesian approach (Gelfand et al. 2003). Wadoux et al. 
(2018) proposes an extension of kriging with external drift which accounts for nonstationarity 
in both the mean and variance. Similar to the mean model, the variance is modelled as a 
linear combination of covariates. Such extensions of kriging with external drift could be 
explored further for subsurface modeling. Where GLS methods assume a global functional 
relation for the mean, kriging with external drift allows the effect of each explanatory variable 
to vary spatially as a function of location. 

• Variogram matrix functions for vector random fields with second-order increments (needs 
further investigating): Developing novel covariance or variogram matrix functions for vector 
random fields with second-order moments can also yield suitable models to model 
subsurface (Ma 2011; Du and Ma 2012). For example, Du and Ma (2012) proposes 
variogram matrix functions for vector elliptically contoured random fields. Further research 
studies on this can be explored further for subsurface modeling. 

VSP updates would require further research to identify which of these methods to include, and 
then subsequent algorithm development (or library identification) and coding to accommodate 
their use in subsurface applications. 

4.2.7 Artificial Intelligence/Machine Learning 

The development and use of machine learning (ML) and artificial intelligence (AI) methods have 
dramatically increased over the last 15 years. One of the reasons for the popularity of AI/ML 
methods is their flexibility to discover and model complex and nonlinear relationships in massive 
datasets. AI/ML methods have been applied to subsurface data to perform tasks such as 
delineating layers (Wohlberg et al. 2005), clustering observations (Romary et al. 2015), and 
mapping contaminant plumes (Tao et al. 2019). As one example, recent extensions to random 
forest algorithms have been developed for both global (Hengl et al. 2018) and local (Georganos 
et al. 2021; Ancell et al. 2021; Benito 2021) spatial regression problems. 

AI/ML methods could be used to predict contaminant levels at unmeasured locations by 
combining concentration measurements with other subsurface measurements or model outputs 
(e.g., groundwater transport, soil properties, layer information). While traditional AI/ML methods 
are particularly suited to scenarios with large amounts of data available to train and test the 
models, they are not appropriate when very few observations are available and they often lack 
interpretability. Another challenge with using these methods is that it can be difficult to quantify 
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uncertainty in order to create confidence intervals or perform hypothesis tests. In Section 
3.4.1.4, few-shot machine learning was discussed as an approach being advanced in 
conjunction with remote subsurface sensing techniques and high-performance forward 
prediction for the purposes of improving site characterization while minimizing costs and 
exposure risks. An approach is currently being developed to reliably estimate subsurface 
property distributions, including permeability, porosity, and hydraulic conductivity, that control 
fate and transport of radioactive material. Additionally, such an AI/ML approach could be used 
to combine information from discrete well and borehole datasets with modeled data (e.g., from 
flow and transport models or indirect measurements collected through ERT). The resulting 
predictive models and predictions may capture relationships between these disparate datasets 
for the purpose of compliance survey design.  

Currently, PNNL is applying deep (few shot) learning to such multimodal sensing data, to help 
investigate subsurface parameters that govern subsurface systems. Findings from current 
research may provide guidance leading to recommendations about AI/ML methods suitable for 
inclusion in VSP for characterization and/or compliance phase survey design. Typically, AI/ML 
methods lack uncertainty estimates and therefore would not be appropriate for hypothesis 
testing or decision-making purposes. We recommend a scoping study to follow up on current 
research and other recent methodological developments to identify which AI/ML methods are 
best suited to characterization or subsurface compliance phase applications, make a 
recommendation, and plan the path forward to implementation in VSP. 

4.3 Dimensionality of Approach 

Two paradigms can be considered for subsurface compliance surveys: 

• Layered Approach: When contaminant distributions are homogeneous within layers of the 
subsurface, a layered approach may provide simplification to an otherwise complex 
conceptual site model. A layered approach that considers each individual layer as a decision 
unit (e.g., with different acceptable limits [DCGLs]and/or exposure pathways) may effectively 
reduce the 3-D subsurface volume problem to a set of distinct 2-D problems. 

• Volume Approach: When spatial dependence exists between layers, layers are not well-
defined, there is heterogeneity in the effects of geophysical properties on contaminant fate 
and transport within and between layers, and/or to ensure or confirm that a layered 
approach does not underestimate contamination. Simplification of these problems may not 
be feasible, so sampling and statistical analysis for compliance surveys should consider the 
entire complex volume as a single decision unit to account for the complex processes 
governing the end state. Further, data may not be available to model individual layers with 
rigor and hence a complex volume approach could be the best option due to data volume. 

• Section 4.2.1 provides a good example of differences between layered and volume 
approaches. 

4.3.1 Layered Approach 

A layered approach when layers are distinct, well-defined, and homogeneous with respect to the 
geophysical properties governing contaminant fate and transport, sampling and statistical 
analysis of compliance can consider each layer as a separate decision unit, potentially with a 
unique acceptable limit. Geophysical models and/or dose models can be used to identify layers 
and acceptable limits (e.g., DCGLs) for each layer. Further, if exposure pathways applicable to 
each layer are examined, it may be determined that some layers need not be considered in the 
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compliance phase (i.e., when exposure risk is very low or nonexistent). Additional complexity in 
decision statements will be required, however, to address potential outcomes where data in one 
layer support decisions that no further remediation is required but support further remediation in 
another. 

This simplified approach that considers each individual layer as a decision unit effectively 
reduces the 3-D problem back to a set of distinct 2-D problems. Although each layer represents 
a 3-D volume, the homogeneity of it implies that each observation on the layer can be treated as 
a point on an x-y plane. This in turn allows surface, or MARSSIM-like methods, to be 
implemented with each layer. In a MARSSIM-like approach, horizontal layers of the subsurface 
could be classified as Class I, II, or III, depending on their probability of containing 
contamination. The horizontal extent of potentially impacted volume(s) would need to be 
determined. PNNL anticipates that subsurface geostatistical tools like those reviewed in Section 
3.4 will help define these boundaries, in addition to the probability of contamination 
classification. Layers or volumes could also be classified by their contribution to dose. A 
combination of probabilities and contribution to dose could also be used to define decision units 
for evaluation against dose-based criteria or action level and areas requiring additional sampling 
to verify a final status decision. 

Considerations for using this approach include: 

• A layered approach will ignore spatial dependence between layers—it should not be used if 
non-negligible vertical spatial correlation is present and/or impacts contaminant fate and 
transport. 

• Due to physical constraints of collecting samples via wells and/or boreholes, samples in 
deeper layers cannot be obtained without also sampling/accessing the layers above them. 
Consequently, the total number of sample locations and sample placement for the volume 
may be governed by the layer with the highest sample size (particularly when a deeper layer 
requires a higher sample size than a shallower layer). 

• Different DCGLs may be applicable to distinct subsurface layers. Decision statements and 
alternative decisions may differ from layer-to-layer if findings and results of statistical testing 
differ. 

• Risk information must be incorporated into the data analysis when depth discrete data is 
needed to assess risk. For example, surface or shallow subsurface concentrations may be 
most limiting for radionuclides dominated by an external dose pathway. Layer 
concentrations should not be averaged if doing so leads to underestimated concentrations. 

• Averaging across the z-coordinate results in a loss of fine-scale variation; possible that an 
elevated area is missed because it gets “averaged out.” 

• A simple layered approach will therefore only be applicable for sites that model the 
subsurface as a collection of 2-D layers that meet the following assumptions: 

o Contamination is isotropic and data have been collected at one depth per x-y 
location (e.g., at one depth within each borehole and the same depth in every 
borehole). 

o Contamination is isotropic and data were previously collected at multiple z-
locations per x-y location (e.g., multiple data points along the z-axis within a 
borehole or well at each x-y location) but observations are similar and can be 
averaged at each x-y location. 
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o Contamination is isotropic in the x-y direction within one or more 2-D layers and a 
kriging (prediction) model will be used to account for this anisotropy (a different 
model could be used within each layer) and previously collected contamination 
data include one data point per x-y location in the z-direction or multiple 
isotropic/similar points that can be averaged for each x-y location. 

• When there is z-direction anisotropy, a complex 3-D volume approach should be taken 
(i.e., data should not be averaged at individual x-y locations) where the subsurface is 
considered as a complex volume and/or comprised of multiple layers, each of which is itself 
a complex 3-D volume. 

As discussed in Fagan 2022, VSP uses the kriging algorithms available through the GSLIB 
(Deutsch and Journel 1998), which includes ordinary, simple, and indicator kriging. Using 
GSLIB, VSP can produce maps of kriged 2-D surfaces, conditional variance, interquartile range 
of predictions, and reference uncertainty index. VSP can also produce contours on kriged 
surfaces that represent the probability of exceeding a specified threshold or an upper 
confidence or tolerance limit. In cases where data are collected at multiple z-locations within a 
layer, the GSLIB algorithms used for 2-D layers could be extended to 3-D volumes by activating 
the z-coordinate, which is available in GSLIB.  

Current implementation of the GSLIB in VSP uses isotropic variogram models. Anisotropic 
models may be required in a layered approach when spatial dependence in one or more layers 
is not uniform but directional in the x-y plane. GSLIB includes anisotropic extensions to the 
isotropic models. Adding these 2-D modeling and hypothesis testing capabilities in VSP would 
add value for both surface and subsurface approaches where anisotropic contamination 
distributions are present in the layers. 

Current visualization and user interface capabilities in VSP would need to be updated to show 
independent layers and results simultaneously and enable toggling layers on and off. Compute 
time may increase as the number of layers and size of data in each increase. Parallel or cloud 
computing in VSP may be required if it becomes too cumbersome. 

4.3.2 Model a Complex 3-D Volume  

When the subsurface is too complex to model independent layers, a complex approach to 
statistical sampling and analysis in the subsurface may be required. Such complexity could 
arise when spatial dependence exists between layers, layers are not well-defined, and/or there 
is heterogeneity in the effects of geophysical properties on contaminant fate and transport, both 
within and between layers. Simplification may not be feasible, so sampling and statistical 
analysis for compliance surveys should consider the entire complex volume as a single decision 
unit to account for the complex processes governing the end state. Unfortunately, such models 
and analyses will be more complex to implement, understand, and communicate. Therefore, 
excellent communication and training should be prioritized in future efforts to add this capability 
in VSP. Further, VSP’s user interface, help files, and automatically generated reports should 
focus on clear communication of complex topics, for the purpose of communicating within and 
between practitioners, regulatory bodies, and stakeholders.  

Considerations for using a complex volume approach include: 

• Spatial dependence between layers cannot be ignored when non-negligible vertical spatial 
correlation is present and/or impacts contaminant fate and transport. 
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• The total number of sample locations in the subsurface volume may be governed by the 
deepest regions of the subsurface. In cases where deeper locations require sampling and 
data collection, data will need to be collected at the same x-y location but at shallower z-
locations due to physical constraints of collecting samples vertically, via wells and/or 
boreholes.  

• Concerns of cross-contamination between depths/layers (similar to the layered approach). 

• A single DCGL may apply to the entire subsurface volume. Decision statements and 
alternative decisions may apply to the entire volume. Alternatively, while a single DCGL 
could be applicable to the entire vadose zone, individual layers could include DCGLs that 
cannot be diluted or averaged across the larger volume (e.g., the surface soil layer 
dominates the dose and surface concentrations should not be averaged with lower 
concentration residual radioactivity at lower depths). In such cases, both a layered approach 
and a complex volume approach should be used to ensure that compliance survey design 
incorporates all relevant information and that all required estimates can be obtained with 
desired margins of error for statistical decision making. 

• Collecting data from all numerous z-locations will result in information about fine-scale 
variation, lowering the likelihood that an elevated area is missed due to averaging. For 
groundwater-dependent pathways and large-scale excavation scenarios (e.g., basement 
excavation or a large construction project), total inventory and volume-wide averages will 
likely suffice due to mixing of residual radioactivity in a well or due to large-scale soil 
disturbance. For other intruder scenarios involving disturbance of relatively small soil 
volumes (e.g., well drilling scenario), maximum concentrations for individual volumes may 
be more appropriate. Additional research is needed to determine the importance of elevated 
areas with respect to the likelihood of exposure and dose, and how this depends on the size 
of the elevated area.  

Implementation of the GSLIB in VSP currently only uses the 2-D functionality but could be 
updated to include 3-D functionality. Similar to the layered approach, anisotropic models will 
likely be required in a complex volume approach when spatial dependence is not uniform but 
directional in the x-y plane and in the z-direction. Current visualization capabilities in VSP can 
show 3-D volumes; however, user interface updates discussed in Section 3.3 would be 
required. 

4.4 VSP Advancements 

Many capabilities for visualization and preliminary analyses exist in other subsurface 
visualization and analysis tools, including those detailed in Section 3.2 and other publicly 
available sources. VSP development should consider integration with such tools, either 
through the current desktop software or in future migration of VSP to the cloud.  

Several statistical methods described above would enhance VSP’s benefits in the subsurface. 
This report proposes prioritizing methods based on existing VSP capabilities and ease of 
expanding them from 2-D to 3-D, applicability to the compliance phase, and requirements for 
new algorithm development. 

• High priority: Enhance current 2-D capabilities to 3-D and enable anisotropy 
– Enhance 3-D data handling, computation, and user interface  
– Enhance 3-D data visualization, including observations, multidirectional variograms, and 

results of statistical models and analysis  
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– Add anisotropy capabilities (variogram modeling and visualization) to all 2-D kriging 
algorithms currently included in VSP. 2-D FRK already handles anisotropy and will not 
need to be updated.  

– Update all 2-D kriging capabilities to 3-D (including FRK), including anisotropy. 
– All of the above for both layered and complex volume approaches 
Discussion: VSP already uses GSLIB which supports 3-D kriging and anisotropy, so the 
VSP updates to enable these features would only require updates to data management and 
user interface components of VSP and would not require algorithm development. 
Enhancements of 3-D visualization can expand on existing 3-D visualization capabilities in 
VSP. Overall, these improvements can be classified as upgrades and expansions to existing 
VSP capabilities rather than requiring significant new development of computational 
functions.  

• Medium priority: Develop algorithms and code to support methods with promise for 
subsurface compliance phase applications: 
– GLS 
– LISA hot spot detection 
– Bayesian Elipgrid 
– Bayesian methods 
– Expanding current Gaussian and MGK capabilities from 2-D to 3-D. 

Discussion: Implementing GLS in VSP can leverage semivariogram calculation and 
variogram modeling already available in VSP; additional updates would be required to 
incorporate explanatory variables beyond location coordinates in GLS and/or Bayesian 
regression models. VSP statisticians and software developers would need to review 
computational details for the new methods and evaluate which computational methods to add 
to VSP. Where possible, methods from GSLIB, R, boost, SADA, or other computational 
libraries would be used.   

• Low priority: Develop (or use existing) algorithms and code to support methods with promise 
for other RSSI phase applications 
– Geostatistical simulation including GEM, MrDM, and MrsDM 
– AI/ML 
– Variogram tomography 

Discussion: VSP does not currently contain these capabilities. There may be existing SADA 
code that implements GEM, MrDM, and MrsDM that VSP could leverage to implement these 
methods. There are numerous powerful and mature commercial off the shelf AI/ML 
frameworks available, so implementation of such methods would likely be best accomplished 
by developing external packages or tools and then integrating them with VSP (either through 
libraries that can be ported into VSP or through establishing an interconnection between VSP 
and outside tools). Variogram tomography could likely be implemented by expanding current 
use of the GSLIB library, as could kriging with external drift. 

Additionally, several functions in SADA (Version 5) described in the SADA user guide (Stewart 
et al. 2006) could be added to VSP, in collaboration with SADA developers.  

• 3-D visualization capabilities that allow the user to: 
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– View sampling locations and corresponding data from different angles (i.e., rotating the 
subsurface volume) 

– Visualize interpolated data within the subsurface volume produced by inverse distance 
weighting interpolation 

• Computing and visualizing directional 3-D variograms, which would be especially useful for 
evaluating the presence of anisotropy in the data 

• Search for 3-D hot spots by estimating the probability of discovering a hot spot shape 
specified by a user-defined ellipsoid (i.e., Bayesian Elipgrid). 

To integrate these capabilities into VSP, review of SADA source code will be required to 
evaluate the feasibility of integration versus re-coding the algorithms. VSP is currently 
architected to rely on several FORTRAN-based dynamic link libraries (DLLs) including a 
customized version of GSLIB, so wrapping key SADA functionality into a DLL may be a viable 
option to provide a technical solution for accessing those capabilities. An alternative approach 
would be to refactor and reimplement the algorithms in C++ for direct integration into the VSP 
source code and then use the SADA code for validation and verification to ensure the VSP 
implemented version is correctly performing the analyses. Selection of which approach to use 
for which method would be based on code complexity and estimated levels of effort required.  

While the visualization capabilities would most likely not need to rely on SADA code for VSP 
implementation, PNNL would consider visualization in SADA as a guide for best practices and 
lessons learned, seeking to provide similar or improved functionality and user experience with 
3-D visualizations.  
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5.0 Compliance Survey Design 
Sampling plans for the compliance survey in subsurface applications should be developed with 
specific survey objectives in mind. These typically include demonstrating that the potential dose 
is below the release criterion for each survey unit (e.g., considering the DCGLw) and/or that the 
potential dose from small areas of elevated activity is below release criteria (e.g., DCGLemc) 
(Barr et al. 2022). In surface applications, the Wilcoxon Rank Sum or Sign tests are frequently 
used to demonstrate DCGLw compliance, and scanning surveys are typically used to 
demonstrate compliance with DCGLemc. The required coverage of scanning in such surveys is 
determined by the class designation of the survey unit. 

There are several challenges associated with determining the number and location of samples 
for subsurface applications. An understanding of fate and transport of contaminants from data 
collection and modeling efforts will be a critical part of compliance survey planning. Lack of 
scanning survey data and difficulty identifying the boundaries of a subsurface volume 
represented by a sample, however, present challenges. Another difficulty is that different 
subsurface layers may require different numbers of samples to achieve desired levels of 
statistical confidence for declaring that each is in compliance. This may not be a challenge when 
excavation is used for remediation, but when borehole or other costly sampling methods are 
required, a method for choosing an appropriate sample size will need to be identified. Finally, 
there may be different DCGLs for specific depths and thicknesses in the subsurface due to 
different exposure pathways (NRC 2022). 

5.1 Number and Location of Samples 

As is the case in surface applications, the number of samples in subsurface compliance surveys 
should be a function of desired levels of statistical confidence and the statistical methodology 
that will be used to determine if decision-making criteria have been met. The complexity of 
subsurface contamination and challenges with sampling may preclude the use of the simple 
nonparametric Wilcoxon Rank Sum or Sign tests, therefore alternative methods will need to be 
identified. 

• Various criteria can be used to determine the number of samples to collect in the 
subsurface.  

• The number of samples can be chosen to minimize prediction error (e.g., mean squared 
prediction error).  

• The number of samples can be chosen to minimize prediction uncertainty (e.g., average 
kriging standard error). 

• The number of samples can be determined based on an assessment of the value of each 
additional sample, quantified by either prediction error or prediction uncertainty. 

The choice of survey locations should be made so that the resulting sample data provide 
representative information which are sufficient to demonstrate that local areas of elevated 
activity are unlikely to exist, with high confidence. While previous site activity or 
decommissioning activities may have established boreholes or wells where samples have 
previously been collected and can continue to be collected, compliance survey planning 
(e.g., DQA activities discussed in Section 3.2) should establish whether each sampling location 
should be used as part of the compliance survey or not. Since nonrandom sampling locations 
can lead to biased assessments (e.g., if they were preferentially selected in proximity to leaks 
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and/or using judgment sampling) (EPRI 2016), additional random samples should be placed to 
ensure that site estimates and resulting decisions are not biased. Further, local areas of 
elevated concentrations and classification like that used in the surface MARSSIM approach 
could vary by layer. Therefore, it will be important to consider designs that provide adequate 
coverage of each area and layer within the subsurface volume to ensure decisions reflect these 
conditions.  

General guidance for sampling in the subsurface is provided in EPRI (2016). The following 
highlight main points therein:  

• Sample spacing should consider spatial scale (distance between two points at which spatial 
correlation is negligible).  
– If spacing is greater than the spatial scale, then inference will be difficult and uncertainty 

estimates will not reflect the spatial structure (EPRI 2016). 
– If spacing is less than the spatial scale, redundancy can occur and there may be little 

added value of geostatistics (and additional sample points) (EPRI 2016). 

• Edge and/or boundary sampling should be located throughout the sample domain. Low 
coverage at borders of the domain can lead to increased prediction uncertainty due to 
extrapolation (EPRI 2016). 

• Prior information, although it is valuable and should be used to guide sample designs, if 
samples are preferentially clustered around regions of concern, declustering methods 
should be considered that assign weights to data points to mitigate biasing effects 
(EPRI 2016). 

• Dimensionality sampling must be done in 3-D and particular attention should be paid to 
potential anisotropy (EPRI 2016). 

5.1.1 Model Based Survey Design 

Given the complexity of subsurface investigations and the cost and difficulty of subsurface 
sampling, we anticipate decisions about compliance to be predicated on model-based inference 
rather than design-based inference (de Gruijter et al. 2006; Stewart 2011). Models will combine 
concentration measurements with spatial location information and/or subsurface features 
(e.g., soil type, transport model output) in a spatially explicit regression framework to predict 
concentrations and the uncertainty in those estimates at unobserved locations (Lark 2012). 
Previously collected measurement data and geophysical models will be important for 
understanding spatial correlation, spatial variation, and ultimately for identifying areas with high 
prediction error and uncertainty, which will inform model-based compliance survey designs. 
Section 4.0 cataloged numerous geostatistical methods to estimate contamination and 
uncertainty at unsampled locations. The number and location of samples required to meet 
survey goals will depend on which of these is the planned approach. The approach, in turn will 
depend on the conditions of the subsurface (i.e., isotropy, anisotropy) and whether a 2-D layer 
or 3-D complex volume approach is used. In sites with anisotropy.  

There are several methods for optimizing the design of surveys for 2-D applications (Myers 
1997). In de Gruijter et al. (2006), authors discuss model-based design approaches for 
estimating global (e.g., mean) and local (e.g., hot spots) quantities. Zhu and Stein (2006) use 
simulated annealing or a two-step algorithm for finding sampling designs that provide good point 
and interval predictions. Krause et al. (2008) use entropy and information gain to optimize 
sampling locations under the assumption of a Gaussian process. The extension of these 
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methods to the subsurface is not immediately obvious because sampling a specific subsurface 
location may require excavation of, or borehole drilling through, layers above. If excavation is 
being used, it may be possible to use the 2-D approaches. When excavation is not being used, 
a possible approach is using the maximum of the sample sizes determined for each layer. 
Additional samples may be necessary for verifying the absence of hot spots in certain layers. 

Some approaches have been developed for optimizing the placement of additional boreholes in 
subsurface applications. Morshedy and Memarian (2015) examined this problem for the 
purpose of minimizing kriging variance, or prediction error. Zhang et al. (2022) examined the 
effectiveness of different sampling designs on the performance of 3-D soil mapping. Because 
existing sampling locations are likely to exist, frameworks for determining the number and 
location of additional sampling locations may be desirable. Judgement samples may also be 
desired if there are locations that have previously been identified as having elevated 
measurements. 

PNNL recommends a scoping study and report to research and develop model-based survey 
sample design approaches corresponding to OLS for isotropic cases and to GLS for anisotropic 
cases, when the study goals include estimating global (e.g., mean) or local quantities (e.g., hot 
spots). The scoping study would review de Gruijter et al. (2006), Zhu and Stein (2006), and 
Krause et al. (2008), and related/more recent publications; determine the best option(s) for 
licensees; and outline a path forward for implementation. A fully Bayesian methodology should 
also be investigated as part of this scoping study. Particularly, Bayesian model-based 
approaches that provide a measure of uncertainty in posterior estimates of contamination and 
that use continuous measurements should be reviewed. Flow and transport model data and 
geophysical characteristic metrics like those discussed in Section 3.4 could be incorporated into 
such models through a Bayesian prior distribution and/or through independent variables in a 
Bayesian regression or kriging model. For example, the approaches described in French and 
Hoeting (2016), Hewitt et. al. (2019), or Cressie and Suesse (2020) could all be used to identify 
regions that exceed the DCGLemc.  

5.1.2 Markov Bayes and Bayesian Elipgrid 

SC&A (2022) recommends Bayesian Ellipgrid for initial survey design, before a detailed CCM is 
available, and Markov Bayes for secondary survey design to indicate where additional data 
need to be collected. Markov Bayes and Bayesian Elipgrid are not strictly Bayesian methods but 
could use their conditional probability framework to incorporate “soft data” described by Stewart 
et al. (2006) as well as “hard data” (observations).  SC&A proposed using Bayesian Elipgrid as 
the initial survey design, based on knowledge about hot spot sizes that may exist and then after 
the data are collected according to this design, using Markov Bayes for secondary survey 
design.  

Bayesian Elipgrid is an extension of the (non-Bayesian) Elipgrid algorithm used to create 
sampling designs and is intended to detect regions of elevated contamination (SC&A 2022). 
Unlike Elipgrid, Bayesian Elipgrid assumes elevated zones exist with user-specified 
probabilities, specified based on knowledge about the site and/or results of previous RSSI 
phases. Both Elipgrid and Bayesian Elipgrid can be used to determine the number and location 
of samples. While they have been applied to surface applications, they may not be appropriate 
for subsurface applications because both assume a uniform probability that contamination 
exists. This assumption may not hold in the subsurface, especially with anisotropy expected in 
subsurface volumes. In these cases, calculations assuming isotropy when in fact anisotropy is 
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present, calculations will likely overestimate the number of samples required, resulting in too 
many samples (Stewart and Powers 2009). Assuming isotropy could also lead to sampling that 
does not capture, for example, contamination concentrated along transport pathways. Such 
considerations should be examined when using this method for survey design. 

Once data are collected using the initial survey design developed using Bayesian Elipgrid, 
SC&A (2022) recommends using Markov Bayes to create a probability map (e.g., probability 
of contamination exceeding a threshold) by combining the “prior belief” (soft data) with 
observations collected through the survey (hard data). Markov Bayes is a distribution-free 
method that honors the observations. It can be used to create point estimates of the probability 
of elevated contamination in areas or volumes of the subsurface (SC&A 2022). Note that 
Markov Bayes is not technically a fully Bayesian method—it does not rely on a statistical prior 
distribution or likelihood function to derive a posterior distribution accounting for distributional 
assumptions. Markov Bayes, therefore, does not provide a measure of uncertainty in resulting 
probability maps. Further, information is lost when hard data are converted to zeros and ones 
via thresholding (SC&A 2022). There is no distinction between, for example, a measurement 
well below the threshold and a measurement slightly below the threshold, because both are 
coded as zero.17  

SC&A recommends using the combination of Bayesian Elipgrid and Markov Bayes for the 
purpose of characterization or initial scoping survey designs early in the RSSI process. We 
agree that these methods may be appropriate at these stages but note that they would be less 
appropriate in the compliance phase, primarily because the Markov Bayes results do not include 
a measure of uncertainty and therefore could not be used to support statistically-based 
decisions about a site. VSP’s current 2-D module for detecting hot spots implements the 
Davidson (1995) Elipgrid algorithm but does not include the Bayesian Elipgrid or Markov Bayes 
modules. We recommend adding both in 2-D and in 3-D, which would require new code 
development. Resources may exist in GSLIB and [possibly] in a SADA development version 
that has not been released, either or both could be leveraged for VSP development purposes. 

5.1.3 Check and Cover 

NUREG/CR-7021 and SC&A (2022) propose check and cover as a possible metric for choosing 
the sample size. The goal of this approach is to minimize the maximum sum of value-weighted 
distances, and it provides a metric to characterize the value of each additional sample (Stewart 
and Powers 2009). A desirable feature of this approach is that it can incorporate information 
from the CCM to choose the number and location of samples. A drawback of this approach is 
that it does not account for uncertainty in the CCM or utilize a metric (e.g., statistical power, 
kriging variance) related to the decision that will be made with the resulting data. While it can 
provide a sampling plan that covers much of the site and areas of potentially elevated 
concentrations, it does not optimize sampling locations with respect to the decision that will be 
made about the site. Thus, check and cover is most appropriate for sampling campaigns early in 
the investigation and remediation process (Stewart 2011) but not in the compliance phase. This 
method should remain a low priority to add to VSP until other methods relevant to the 
compliance phase have been added. 

 

 
17 The Markov assumption also needs to be checked when applying this method (Goovaerts 1997; 
Goovaerts and Journel 1995), a critical and non-trivial assumption. 
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5.2 VSP Advancements 

New survey design methods required for the subsurface will be required in VSP. Each method 
will need to be developed and implemented, including new design dialogs where users will enter 
inputs and subsequent computational results would be shown that determine the required 
number of samples and sample placement. User input will be required to control how samples 
should be placed within the 3-D volume (e.g., at specified depths, randomly throughout the 
subsurface volume, or at multiple depths at sampled x-y locations). Help files and report 
generators would be required to document the basis for sampling plans and specific parameters 
that were chosen to arrive at the final survey designs.  

Current 3-D placement and visualization methods in VSP (described in Section 3.3) could be 
used to display the resulting designs, although improvements to data filtering and visualization 
would be needed to streamline the user experience of working with complex 3-D data and 
subsequent sampling plans. An immediate need will be to update current “sample” definition in 
VSP to include not only the x-y data collection location but also to enable observations at one or 
more z-coordinates to be associated with the sample location so that different samples can be 
placed and identified along the vertical direction when well or borehole sampling will be 
performed.  
Implementing new survey design methods in VSP will require additional research to determine 
the best algorithm to use and development of the code required to implement it. Where 
possible, methods from GSLIB, R, boost, SADA, or other computational libraries would be used. 
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6.0 Recommendations 
Table 4 contains the VSP updates recommended for subsurface compliance phase survey 
sample design and geostatistical analysis. 
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Table 4. Recommended Updates to VSP Software for Subsurface Compliance Surveys and Geostatistical Analysis 

Priority Task ID VSP Improvement 

1 3-D Data Management 

1 Adding the capability to track subsurface data within a single borehole/well using (x, y, z, t) coordinates, that is tracking observations at distinct depths (z locations) and timestamps (t) within 
one borehole/well located at a single (x, y) coordinate (i.e., back-end software development required to handle 3-D–4-D data). 

2 Improve VSP's capability to generate, filter, and track borehole/well labels (i.e., back-end software development required to handle 3-D–4-D data). 

3 Add the capability for unit conversion 

4 Ability to combine data and read metadata from disparate sources (including data files and separate metadata files) and sensor platforms and to provide details (e.g., instrument label, field of 
view, sample matrix) into a single dataset. 

5 Ability to capture metadata including uncertainty and/or DQA corresponding to individual datasets or individual data points from disparate sources in a combined dataset. 

2 3-D Sample Point Placement Upgrade 6 Update VSP to allow placing sample points throughout the volume will provide value for subsurface decommissioning and the compliance phase of the process. 

3 Lag-k Report 
7 Scoping report to determine what is required to finalize Lag-k Report: NRC report formatting requirements, address previous technical comments, Information Release; determine if other 

methods should be considered for this type of data; include a summary and recommendation in Task 1a report. 
8 Implementation of lag-k (or alternative recommended) method. 

4 3-D Data Visualization & DQA 

9 
Extend 3-D mapping so that user-defined 3-D and vertical dimension information and data could be used to define subsurface volumes, soil and rock strata boundaries, location and depth of 
groundwater wells, aquifer locations and dimensions, and layers associated with dose models for subsurface volumes. User-defined information could be imported, entered manually via the 
data interface. 

10 Allow user to specify, visualize, drape multiple individual 2-D layers separately (as planes) within a  3-D volume (e.g., observed, modeled and/or interpolated data).  

11 Enable display of 3-D vector layers in 3-D space (e.g., show well screen interval color-coded by value of parameter in 3-D space). 

12 Enable 3-D volume visualization (not as layers but as a complex volume), including observed and/or interpolated data. 

13 Allow users to specify and apply vertical exaggeration to emphasize vertical features that are too small to see relative to the horizontal scale using a factor to specify how much greater the 
vertical scale is to appear than the horizontal scale (e.g., 5x, 10x, 20x). 

14 Enable the user to control how much of the 3-D volume is displayed and its transparency level (i.e., to display and apply sampling or analysis modules) and to set different transparency levels 
for each subsurface layer or volume to aid in seeing other features in the model 

15 Plots that make potential elevated volumes or 3-D hot spots easier to identify on maps (e.g., iso-contours) 

5 LISA Analysis 16 Add LISA capabilities for hot spot detection. 

6 Enhanced 3-D Data Management 

17 Add the capability to identify different instruments, fields of view, etc., using different symbols or color scales on site maps 

18 Add the capability to identify different analytes and/or sample matrices (e.g., groundwater, surface water, and soil types) using different symbols or color scales on site maps 

19 Add the capability to denote uncertainty and/or DQA metrics for each dataset or data point using different symbols or color scales on site maps 

20 Add the capability to automatically determine optimal symbol/color combinations given the various characteristics in a combined dataset. 

7 Enhanced  3-D Data Visualization 
Capabilities 

21 Enable the user to slice 3-D volumes vertically and horizontally, either by drawing a slice or providing 2-D coordinate inputs) and visualize data on the sliced plane including display of 
isocontours 

22 Include ability to show isovolumes according to selected parameter values (e.g., volume greater than 5 pCi/g)  

23 Update visualization to include rotatable subsurface volumes and structures including building footprints, piping systems, and tanks as separate data layers that can be turned on/off in the 
VSP interface 

24 Provide the ability to subset data interactively (e.g., by selecting data only at specific depths or observed at specific times) for visualization and geospatial analysis. Build on data filtering 
capability in Analyze Data module so that filtered data is displayed on the map and in the coordinate view 

8 Variogram analysis & visualization 
(multiple directions, 2-D and  3-D) 25 Add the capability to calculate and view variogram/semivariogram plots in multiple selected directions on same plot, each view providing the estimated semivariogram values at the sill, range, 

nugget for a specific direction (in up to four directions) 
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Priority Task ID VSP Improvement 

26 Add the capability to calculate and view multiple variogram/semivariogram surfaces, where a surface corresponds to the semivariogram values at all distances within a plane (slice) of the 3-D 
volume, providing information about whether anisotropy exists or not. 

27 Add the capability to display H-scattergrams, or scatterplots with the value of a variable at one location plotted against the value of the same variable at a different location, where each pair 
of observations are separated by distance h. Provide the capability to view multiple scattergrams at different h-distances to help determine spatial scale. 

9 3-D Kriging & Anisotropy 28 
Update existing 2-D Gaussian and MGK modules to accommodate 3-D data. Update existing 2-D kriging modules (ordinary, simple, indicator kriging) to accommodate 3-D data. Update existing 
2-D kriging modules and new 3-D kriging models to include anisotropy using variograms in multiple directions. (See also #19-20.) Include automatic calculation and fit of variogram models in 
multiple directions 

10 GLS Analysis 29 Add GLS modeling capabilities, for model fitting, estimation, prediction, and hypothesis testing. 

11 Enhanced Subsurface Sampling 
Capability 

30 
Scoping report to document deep-dive literature review, identify method(s), present method to NRC, determine details of tasks for implementing at least one new subsurface model-based 
survey design method (e.g., based on uncertainty estimates resulting from GLS model or posterior distribution from hierarchical Bayesian model) in VSP (not including implementation). 
Document details of method, tasks required for implementation, determine if and what existing open-source statistical software code is available, and chart a path forward. 

31 Implement new survey design methods to determine the number and placement of new sample locations in VSP will require additional research to determine the best algorithm for this use 
and then development of the code required to implement it. (Estimate could change based on scoping report.) 

12 3-D Elipgrid 32 Update current Elipgrid algorithm in VSP to accommodate 3-D data  

13 Bayesian Geostatistical & Sampling 
Method 

33 Scoping report to identify method, determine details of tasks for implementing at least one Bayesian method in VSP (not including implementation). Document details of method, determine if 
and what existing open-source statistical software code is available, chart a path forward, present method to NRC. 

34 Implement Bayesian method(s) from scoping report.  

14 Enhanced Continuous Data 
Management 

35 Enable placement of scan lanes along a DEM surface to facilitate scan survey for subsurface surfaces during remediation 

36 Add the capability to analyze collection time and location information to calculate velocity and identify significant time gaps or deviations from planned survey velocity.  

37 Add the capability to analyze survey altitude to evaluate the average altitude and flag or adjust for deviations from the expected survey altitude. 

38 Improve hot spot detection and boundary identification by adding alternative formulations of upper tolerance limits (UTLs) and adding upper simultaneous limit (USL) methodology accounting 
for spatial autocorrelation (i.e., to determine effective sample size of correlated data leading to improved estimation of standard error and confidence bounds). 

15 Cokriging in 2-D and 3-D 
39 Display scatterplot matrices between multiple variables and/or bivariate statistics (e.g., correlations) to determine whether cokriging or multivariate analysis should be considered. 

40 Add cokriging and multivariate analysis functionality in VSP would allow multiple analytes to be analyzed simultaneously, such that the analyses could capitalize on correlations between 
analytes, particularly useful in cases where data for one analyte are more readily available than another but their behavior/presence/concentrations is correlated.  

16 GEM, MrDM, and MrsDM 
41 Scoping report to document details of tasks required to implement GEM (MrDM and MrsDM) in VSP (not including implementation). Collaborate with Rob Stewart to gather details of each 

method, determine if and what SADA code is available, and chart a path forward.  

42 Implement GEM, MrDM, and MrsDM. If resources exist in development but unreleased SADA versions, they could be useful for development purposes. (Estimate could change based on 
scoping report.) 

17 AI/ML for Subsurface 

43 Identify and implement which AI/ML method(s) are best suited to subsurface compliance phase applications. 

44 
Identify AI/ML methods best suited to subsurface in compliance phase survey design and statistical analysis, determine details of tasks required to implement at least one AI/ML method in 
VSP (not including implementation). Determine if and what software code has already been developed, if and what existing open-source statistical software code is available and chart a path 
forward. Document details in scoping report. (Estimate could change based on scoping report.) 

18 Check & cover for subsurface 45 Add check and cover capability as VSP sampling module 

19 2-D and 3-D Bayesian Elipgrid 46 Implement Bayesian Elipgrid in 2-D and 3-D 

20 Markov Bayes 47 Implement Markov Bayes methods to create a probability map, including adding functionality for users to combine add prior belief (soft data) with collected observations (hard data).  

21 3-D FRK 48 Update existing 2-D FRK module to accommodate 3-D data. 
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