Table A.1 Gall Report for NRC Generic Letters

Document: GL Letters, NRC Generic Letters, 1989-1994 Reviewed by: Dwight R. Diercks, ANL

Effect of Aging on Component Function	on Contrib to Failure	 Reported progs 	Rel.progs	Report Recommendations	Page No.	Item
Erosion/corrosion caused by high-velocity flow of water through piping has caused several incidents of piping failure or wall thinning below ASME Code allowables.	Moderate	NUREG-1344		Implement long-term erosion- corrosion monitoring programs. [4]	89-08	
Fluctuations in water temperature within BWR vessel in nozzle region produces high-cycle fatigue and resulting crack initiation and growth in nozzles.	Frequent	NUREG-0619		Not stated	89-21, p. 5	2
Fracture toughness of support materials may be inadequate, creating the potential for fracture or lamellar tearing in service.	Not stated	NUREG-0577		Maintain minimum temperature above fracture transition temperature; replace supports if necessary [4]	8 9 -21, pp. 6	3
The gradual buildup of macroscopic biological fouling organisms (e.g., blue mussels, American oysters, Zebra mussels, and Asiatic clams) inhibits coolant flow, ultimately resulting in flow rates below technical specifications.	Frequent	NUREG/CR-5210; NUREG/CR-5234		Implement surveillance and control program outlined in Generic Letter 89-13[4]	89-13; 89- 13, Suppl. 1	4
Combination of residual or service stresses, sensitization from welding, and oxygenated cooling water can cause IGSCC of piping, resulting in leakage.	Formerly frequent	NUREG-0313		Follow recommendations in NUREG-0313. [4]	89-21, p. 11	5
Neutron irradiation over extended time periods can cause embrittlement of the reactor pressure vessel material, particularly near the beltline, resulting in loss of impact resistance and possible failure in a severe pressurized overcool event.	Not stated	NUREG- 0744:ASTM E- 185;Reg. Guide 1.99, Rev. 2		Follow NUREG-0744 methods for evaluating Charpy upper shelf impact strength. [4]	89-21, pp. 5-6, 16; 92-01, Rev. 1	6

.

Page 1B

Document: IN&E	3 1989, 1989 NRC Information Notices and Bulletins
Reviewed by:	Dwight R. Diercks, ANL

tem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	Cooling system	Valves	Carbon steel valve bodies	Carbon steel	Not stated	ERO/CAV	Loss of material
2	Cooling system	Coolant pump	Pump shaft	A-286	Byron Jackson	FAT	Cumulative fatigue damage
3	Cooling system	Coolant pump	Ring surrounding bearing housing	Not stated	Byron Jackson	Not stated	Not stated
4	Cooling system	Steam generator	Tubing mechanical plugs	Inconel 600	Westinghouse	CORR/PWSCC	Crack initiation and growth
5	Cooling system	Steam generator	Tubing mechanical plugs	Inconel 600	Babcock & Wilcox	CORR/PWSCC	Crack initiation and growth
6	Cooling system	Steamlines	Atmospheric dump valves	Not stated	Control Components, Inc.	CONTAM	Loss of desired surface properties
7	(Various water systems)	Pumps	Impeller, bushings, and other internal components	Brass bushings; other materials not stated.	Not stated	ERO/CAV; VIBR	Loss of material; physical damage
8	Electrical control system		Electrical cable insulation	Neoprene chloroprene and other organic polymers	Not stated	ELE-TEMP	Chemical and physical degradation
9	Turbine	High-press. steam extraction line	14-in. piping	Carbon steel	Not stated	ERO/CORR	Wall thinning
10	Containment system	Containment structure	Steel shell	(Carbon?) steel	Not stated	CORR/BA	Loss of material

Document: IN&B 1990, 1990 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
Service water system	Check valve	Swing arm	17-4 PH stain-less steel, H1100 heat treatment	Borg-Warner	CORR/SCC	Crack initiation and growth
Service water system	Motor-operated butterfly valve	Valve seat	Not stated	BIF/General Signal Corp.	ENVIR	Physical degradation
Service water system	Piping and heat exchangers	Valve seat	Not stated	Not stated	CONTAM	Buildup of deposits
	Service water system Service water system Service water	Service water system Check valve Service water system Motor-operated butterfly valve Service water Piping and heat	Service water system Check valve Swing arm Service water system Motor-operated butterfly valve Valve seat Service water Piping and heat Valve seat	Service water system Check valve Swing arm 17-4 PH stain-less steel, H1100 heat treatment Service water system Motor-operated butterfly valve Valve seat Not stated Service water system Piping and heat Valve seat Not stated	Service water systemCheck valveSwing arm17-4 PH stain-less steel, H1100 heat treatmentBorg-WarnerService water systemMotor-operated butterfly valveValve seatNot statedBIF/General Signal Corp.Service waterPiping and heatValve seatNot statedNot stated	Service water systemCheck valveSwing arm17-4 PH stain-less steel, H1100 heat treatmentBorg-WarnerCORR/SCCService water systemMotor-operated butterfly valveValve seatNot statedBIF/General Signal Corp.ENVIRService waterPiping and heatValve seatNot statedNot statedCONTAM

Page 1A

Document: IN&B 1989, 1989 NRC Information Notices and Bulletins Reviewed by: Dwight R. Diercks, ANL

Effect of Aging on Component Function			Rel.progs	Report Recommendations	Page No.	. Iter
Significant localized wall thinning of 16- and 24-in. valve bodies apparently caused	Not stated	Not discussed in report		Not stated	89-01	
by cavitation can lead to rupture.					1	
Abrupt decoupling of pump shaft and	Not stated	Not discussed in		Use improved vibration monitoring	89-15	
impeller probably caused by shaft fracture		report		system to detect growing cracks in	05-15	1
or failure of cap screws and drive pins,		1		shaft [2]		
resulting in pump failure. Root cause is]		(-)		
undetermined, but possibly fatigue.						
Failure of attachment weld was repaired	Not stated	Not discussed in		Repair with full-penetration welds	89-20	<u>+</u>
by fillet weids that failed four years later.		report		and realignment of ring. [2]	03-20	
resulting in pump failure and loose parts		1			1	
in the recirculation loop.	}					1
Intergranular cracking, apparently	Not stated	Not discussed in		Replace plugs from suspect heats o	00.00	
associated with improper heat treatment		report		material; discontinue use of		'
and/or susceptible heats of material, can				Westinghouse plugs. [4]	Bull. 89-	
cause mechanical tube plugs to loosen,				westinghouse plugs, [4]	01, 89-01,	
leak, and sometimes be forcibly ejected.					Suppi. 1 &	
causing additional tube damage.					2.	
Intergranular cracking, apparently	Not stated	NRC Bull, 89-01		Conduct addy averagt in an action of		
associated with intragranular carbides and		NNO Duil 05-01		Conduct eddy current inspections of	89-65	:
relatively little intergranular precipitation	× .			installed plugs. [4]	ĺ	ĺ
improper heat treatment and susceptible			1			
heats of material, could lead to possible]	
plug failure	· · ·					
Foreign particles from steamlines lodge in	Not stated	Not discussed in	<u> </u>			
valve clearance areas and on sealing	1101 512100	report		Design modifications have been	89-38	e
surfaces, resulting in leakage past valve		report	1	implemented by the manufacturer [1]		
blug piston ring and consequent valve			1			
malfunctioning.						
Repeated operation of the pumps at 60%	Not stated	Not discussed in	<u> </u>			
or less of their design flow resulted in	NOT Stated			Avoid sustained operation of pumps	89-08	7
slow deterioration of internal components,		report		at low flow rates [4]		
ausing eventual loss of pump function.						
Prolonged exposure of electrical cable	Not stated					
nsulation to temperatures above their	NOTSIALED	NRC Temporary		Provide better containment cooling to	89-30	8
environmental qualification (EQ) design		Instruction 2515/98		maintain temperatures below the EQ		
emperature, e.g., in reactor containment.				temperature [4]		
an lead to insulation breakdown and						
ailure.						
brupt change in I.D. at nozzle-to-pipe	Net shate of					
onnection apparently causes flow	Not stated	NRC Bull. 87-01		Not stated	89-53	9
urbulence, leading to accelerated	4					
rosion-corrosion of adjacent piping.						
	Alet stated	1005050				
oric acid leaking from instrument line	Not stated	10CFR50, Appendix		Containment in-service inspection	89-79; 89-	10
ompression fittings condenses on the		J		for wall thinning by corrosion [4]	79, Suppl.	
uter surface of the containment steel					1	
hell, resulting in general and pitting						
orrosion.	1			1		1

Document: IN&B 1990, 1990 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Preexisting casting defects, including porosity, hot cracks, and weld repairs, plus improper heat treatment, resulted in propagating cracks in the high chloride service water that caused fracture and loss of function.	Not stated	Aerospace Materials Spec. 5398A and Mil. Spec. MIL-H- 6875		Replace with parts from another vendor; inspect parts for flaws before installation. [4]	90-03	
Valve seat material hardens with time under service conditions, causing increase in coefficient of friction and possible failure of valve to open.	Not stated	GL 89-10		Set open torque switch to maximum value; test and inspect valves. [4]	90-21	2
Accumulation of silt and corrosion products in piping reduced emergency water flows to levels below design basis conditions.	Not stated	10CFR50, Append. A and B		Cleaning of contamination and adjustments in flow distribution [4]	90-39	3

Page 1B

	wed by: Dwight System	R. Diercks, ANL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
4	Service water system	Containment air coolers	Tubes	Not stated	Not stated	CONTAM	Buildup of deposits
5	Service water system	Service water lines	Check valves	Not stated	Not stated	CONTAM	Buildup of deposits
6	Service water system	Piping		Not stated	Not stated	CORR; CORR/MIC	Loss of material; corrosion product buildup
7	Cooling system	Steam generator	Upper shell-to- transition cone girth welds	Not stated	Westinghouse and Combustion Engineering	CORR; FAT/THERM	Loss of material; cumulative fatigue damage
8	Cooling system	Steam generator	Tubes	Not stated	Westinghouse and Combustion Engineering	CORR/SCC	Crack initiation and growth
9	Cooling system	Pressurizer	Pressurizer heater thermal sleeves	Inconel 600	Not stated	CORR/PWSCC	Crack initiation and growth
10	Cooling system	Coolant pumps	Bolts fastening turning vanes	A453, Gr. 660 (Alloy A-286)	Not stated, but similar to Westinghouse design	CORR/IGSCC	Crack initiation and growth
11	Pressure vessel	Pressure vessel upper head	Weld cladding and base-metal heat- affected zone	Not stated	Not stated	CORR/SCC	Crack initiation and growth

Document: IN&B 1990, 1990 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

Document: IN&B 1991, 1991 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

m	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	Cooling system	Moisture separator drain	6-inch, schedule 40 piping	Carbon steel	Not stated	ERO/CORR	Wall thinning
2	Cooling system	Feedwater regulating valve bypass line	6-inch piping	Carbon steel	Not stated	ERO/CORR	Wall thinning
3	Cooling system	Low-pressure drain system	Piping	Carbon steel	Not stated	ERO/CORR	Wall thinning
4	Cooling system	Flow-measuring- orifice	Orifice flange	Carbon steel	Not stated	ERO/CORR	Wall thinning
5	Cooling system	Moisture separator reheater	8-inch elbow	Carbon steel	Not stated	ERO/CORR	Wali thinning
6	Cooling system	Steam generators	Feedwater distribution feedring piping	Carbon steel	Combustion Engineering	FAT/THERM;ERO/ CORR	Cumulative fatigue damage; wall thinning

Page 2A

Document: IN&B 1990, 1990 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

Effect of Aging on Component Function			Rel.progs	Report Recommendations	Page No.	Item
Buildup of sitt and corrosion products in containment air cooler tubes reduced service water flow rates to unacceptable levels.	Not stated	10CFR50, Append. A and B		Remove deposits [4]	90-39	
Buildup of silt in emergency water service line check valve could have prevented system from functioning.	Not stated	10CFR50, Append. A and B		Remove deposits [4]	90-39	5
Acidic well water and MIC have resulted in a corrosion pitting rate of 24 mils per year in the affected components.	Not stated	10CFR50, Append. A and B		Chemically clean system and/or replace pipe [4]	90-39	e
Corrosion fatigue from thermal cycling, dissolved oxygen in feedwater, and Cu alloys in feedwater system result in crack initiation at surface corrosion pits and subsequent crack growth into girth welds.	Not stated	Not discussed in report		Perform more frequent inspections of affected region. [4]	90-04	7
Secondary side-initiated cracking of steam generator tubes, typically in the expansion transition near the tubesheet or at the support plate, has resulted in leaking cracks in several PWRs.	Not stated	Not discussed in report		Plug leaking tubes; develop improved NDE techniques to detect cracks [4]	90-49	8
Residual stresses from reaming or roll joining plus a susceptible Inconel 600 microstructure and the PWR coolant environment lead to PWSCC and leakage.	Not stated	Not discussed in report		Implement augmented inspection program. [4]	90-10	9
Alloy A-286 is subject to IGSCC at peak stresses >100 ksi, depending upon Cr content, fabrication practice, and environment. The present failures occurred in foreign reactors and threatened coolant pump function.	Not stated	B&W Owner's Group Report BAW- 1842		Discontinue the use of Alloy A-286 as a reactor structural material. [4]	90-68	10
Grinding residual stresses, low delta- ferrite content, and high dissolved-oxygen in the coolant induce interdendritic SCC of weld cladding, and resulting cracks propagate into underlying base metal, possibly threatening structural integrity.	Not stated	General Electric Co. RICSIL No. 050		PT of back-clad region for surface cracks and enhanced UT for subsurface cracks. [4]	90-29	11

Document: IN&B 1991, 1991 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

Effect of Aging on Component Function Contrib to Failure Reported progs **Rel.progs Report Recommendations** Page No. Item High-velocity turbulent flow of water Not stated Not discussed in System found to be susceptible by 91-18 through piping caused wall thinning by report EPRI CHEC code and should have erosion/corrosion and resulted in pipe been inspected [4] rupture and actuation of fire-protection deluge system High-velocity turbulent flow of water Not stated Not discussed in Failed piping replaced [4] 91-18 2 through piping caused wall thinning by report erosion/corrosion and resulted in steam leak and repair outage. High-velocity turbulent flow of water Not stated Not discussed in Failed piping temporarity replaced 91-18 3 through piping caused wall thinning by report with A106, Gr. B; permanent erosion/corrosion and resulted in piping replacement to be A335-P22. [4] rupture. High-velocity turbulent flow of water Not stated Not discussed in Failed flanges temporarily replaced 91-18 4 through piping caused wall thinning by report with same material; more-resistant erosion/corrosion and resulted in flange material being considered for rupture. permanent replacement. [4] High-velocity turbulent flow of water Not stated Not discussed in System found to be susceptible by 91-18. 5 through piping caused wall thinning by report CHECMATE code and should have Suppl. 1 erosion/corrosion and resulted in elbow been inspected [4] rupture and actuation of fire-protection deluge system. Cracking and wall thinning resulted in Not stated Not discussed in Component redesigned for 91-19 6 component failure and introduction of increased strength and erosion report loose parts into secondary side of steam resistance. [4] generator.

Page 2B

-

Reviewed by: Dwight B Diercks ANI	Document: IN&E	3 1991, 1991 NRC Information Notices
Homou by: Dright H. Distorio, Ante	Reviewed by:	Dwight R. Diercks, ANL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
7	Cooling system	Steam generators	Tubing	Not stated	Mitsubishi (based on Westinghouse design)	FAT	Cumulative fatigue damage
8	Cooling system	Steam generators	Tubing	Not stated	Combustion Engineering	Not stated	Not stated
9	Cooling system	Steam generators	Tubing	Not stated	Babcock & Wilcox	FAT	Cumulative fatigue damage
10	Cooling system	1-inch accumulator fill line	Nozzle-to-pipe weld	Not stated	Not stated	FAT; VIBR	Cumulative fatigue damage; crack initiation and growth
11	Cooling system	Condensate storage tanks	Diaphragm	Not stated	Goodyear Co.; Lorel Corp.	ENVIR	Chemical or physical degradation

Document: IN&B 1992, 1992 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

tem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	Cooling system	Steam generators	4-inch, schedule 80 feedwater piping	A106B carbon steel	Westinghouse	ERO/CORR	Wall thinning
2	Cooling system	Primary coolant loop	Reducing tee riser	Not stated	Not stated	ERO/CORR	Wall thinning
3	Cooling system	Pressurizer power- operated relief valves	Valve stems	SA 564, Type 630, H900-H1150 (17-4 PH) stainless steel	Rockwell International (now Edward Valve Co.)	EMBR/TE	Loss of fracture toughness
4	Emergency condenser system	Manual gate valves	Valve bodies	CF8M cast stainless steel	Not stated	FAT	Cumulative fatigue damage
5	Reactor internal support structure	Core shroud support plate	Welded access hole	inconei 600 with Inconei 82 or 182 weld filler metal	General Electric	CORR/IGSCC	Crack initiation and growth

Document: IN&B 1993, 1993 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

em	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	Emergency Core Cooling system	Residual heat removal pump	Thrust bearing	Not stated	Ingersoll-Rand	WEAR	Attrition
2	Emergency Core Cooling system	Residual heat removal pump	Discharge check valve lock wire	Not stated	Copes-Vulcan	FAT	Cumulative fatigue damage
3	Emergency Core Cooling system	Residual heat removal pump	Discharge check valve disk and hanger assembly	Stainless steel locking device; other parts not stated	Pacific Valve . Engineering	VIBR	Loosening

Document: IN&B	1991, 1991 NRC Information Notices
Reviewed by:	Dwight R. Diercks, ANL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
High-cycle fatigue failure of steam generator tube at uppermost support plate resulted in excessive primary-to- secondary leak rate.	Not stated	Not discussed in report		Incorrect insertion of antivibration corrected [4]	91-43	7
Cracking of steam generator tube at U- bend at a location where flow conditions permit contaminants to be deposited on the tube surface resulted in excessive primary-to-secondary leak rate.	Not stated	NRC Bull. 88-02, Fig. 1		Not stated	91-43	8
Tube cracking at lower face of upper tubesheet resulted in excessive primary- to-secondary leak rate.	Not stated	NRC Bull. 88-02, Fig. 1		Not stated	91-43	9
Two ruptures of the nozzle-to-pipe weld in the accumulator fill line during filling were caused by flow-induced vibration and resulted in spillage of coolant.	Not stated	Not discussed in report		Revise operation procedures [4]	91-50	10
Long-term deterioration of diaphragms in contact with their service environment results in the development of holes and tears, with consequent leaks and possible clogging of equipment.	Not stated	Not discussed in report		Replace diaphragms after 9 years or more frequently if indicated by inspections. [4]	91-82	11

Document: IN&B 1992, 1992 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
High-velocity flow of water through piping caused wall thinning by erosion/corrosion and necessitated the replacement of 90 feet of piping for which the wall thickness was at or near the minimum allowable.	Not stated	Not discussed in report		Redesign piping to reduce flow velocity. [4]	92-07	1
High-velocity flow of water through reducing tee riser caused wall thinning by erosion/corrosion and necessitated com- ponent replacement because wall thick- ness was near the minimum allowable.	Not stated	NRC Bull. 87-01; NRC GL 89-08		Not stated	92-35	2
Valve stems are subject to secondary aging after several thousand hours at 600 F, resulting in increased susceptibility to fracture when subjected to excessive torque from power actuator.	Not stated	Not discussed in report		Not stated	92-60	3
Fatigue (possibly thermal) resulted in leaking cracks in at least one gate valve and partially through-wall cracks in several other valves.	Not stated	Not discussed in report		Not stated	92-50	4
Apparent IGSCC of welds joining access hole covers to shroud support plates resulted in circumferential cracking in weld region, with some cracks possibly propagating into the adjacent base metal.	Not stated	GE SIL No. 462, Suppi. 3		Perform periodic visual and UT examinations of region; repair procedures being developed [4]	92-57	5

Document: IN&B 1993, 1993 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	item
Thrust load during normal operation exceeded design value, resulting in abnormally high wear of bearing and failure after approx. eight fuel cycles.	Not stated	Not discussed in report		Redesign pump to reduce bearing load; replace periodically. [4]	93-08	1
Inadequate disk nut torquing allowed nut to rotate back and forth. Resulting cyclic loading caused high-cycle fatigue failure of lock wire, loss of disk nut and washer, and check valve failure.	Not stated	Not discussed in report		Replace lock wire with 1/8-in. cotter pin [4]	93-16	2
Inadequate capscrew torquing, missing capscrews, and improper reuse of locking device results in capscrew loosening, loss of disk and hanger assembly, and check valve failure.		Not discussed in report		Revise maintenance procedure to ensure correct installation. [4]	93-16	3

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	Emergency Core Cooling system	oling system removal pump strainers and containment sump screens		Not stated	Not stated	CLOG	Blockage of flow passages
5	Emergency Core Cooling system	High-pressure coolant injection pump	Steam exhaust rupture disk	Stainless steel	Black Sivalis & Bryson, Inc.	Not stated	Not stated
6	Cooling system	Steam generators	Feedwater piping	Not stated	Westinghouse and Combustion Engineering	FAT/THERM	Cumulative fatigue clamage
7	Cooling system	Piping	Feedwater piping and other components	Carbon steel	Not stated	ERO/CORR	Wall thinning
8	Cooling system	Turbine-driven feedwater pumps	Turbine stop valve	Not stated	Not stated	CONTAM	Loss of lubricant properties
9	Cooling system	Motor-operated gate and globe valves	Valve yoke	Case carbon steel	Walworth	FAT	Cumulative fatigue damage
10	Cooling system	Jet pump	Hold-down beam	Not stated	General Electric Co.	CORR/IGSCC; FAT	Crack initiation and growth; cumulative fatigue damage
11	Spent fuel storage system	Spent fuel storage racks	Borafiex neutron absorbing material	Polymer base with silica filler and neutron absorber (boron?)	Brand Industrial Services, Inc.	ENVIR	Physical degradation
12	Reactor internals	Core shroud	Beltline region welds	Stainless st eel	General Electric Co.	CORR/IGSCC	Crack initiation and growth
13	Reactor internals	Fuel rods	Fuel rod cladding	Zircaloy	Westinghouse, Siemens, General Electric Co.	WEAR/FRET	Attrition

Document: IN&B 1993, 1993 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

Document: IN&B 1994, 1994 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
Electrical generating system	Turbines	Turbine blades	Not stated	General Electric Co.	FAT	Cumulative fatigue damage
Electrical generating system	Turbine low auto stop oil pressure switch	Plunger rod, bushing, and case	stainless steel and aluminum	Not stated	CORR	Corrosion product buildup
Cooling system	Steam generator	Kinetically weld- repaired tubes	Inconel 600	Babcock & Wilcox	CORR/PWSCC	Crack initiation and growth
	Electrical generating system Electrical generating system	Electrical generating system Electrical generating system stop oil pressure switch	Electrical generating system Turbines Turbine blades Electrical generating system Turbine low auto stop oil pressure switch Plunger rod, bushing, and case Cooling system Steam generator Kinetically weld-	Electrical generating systemTurbinesTurbine bladesNot statedElectrical generating systemTurbine low auto stop oil pressure switchPlunger rod, bushing, and casestainless steel and aluminumCooling systemSteam generatorKinetically weld-Inconel 600	Electrical generating systemTurbinesTurbine bladesNot statedGeneral Electric Co.SystemTurbine low auto stop oil pressure switchPlunger rod, bushing, and caseStainless steel and aluminumNot statedCooling systemSteam generatorKinetically weld-Inconel 600Babcock & Wilcox	Electrical generating systemTurbinesTurbine bladesNot statedGeneral Electric Co.FATElectrical generating systemTurbine low auto stop oil pressure switchPlunger rod, bushing, and casestainless steel and aluminumNot statedCORRCooling systemSteam generatorKinetically weld-Inconel 600Babcock & WilcoxCORR/PWSCC

Document: IN&B 1993, 1993 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

Effect of Aging on Component Function	on Contrib to Failure		Rel.progs	Report Recommendations	Page No.	Item
Foreign debris can block emergency core	Not stated	Not discussed in		Remove debris [4]	93-34 and	
cooling screens and sumps, resulting in		report		1	93-34.	
possible reduced emergency core cooling					Suppl. 1	
in and accident situation.					T T T	
Rupture disk failed unexpectedly after 20	Not stated	Not discussed in		Replace 20-year-old rupture disks	93-67	5
years of service, resulting in personal	1	report		with new ones. [4]		
injuries. Cause of failure is unclear, but						
vendor speculated that an unspecified	· ·					
aging process may have caused the						
strength to degrade.						
Thermal stratification in feedwater lines,	Frequent	NUREG/CR-0691		Reduce severity of thermal cycles.	93-20	6
particularly during cold, low-flow				[4]		Ĭ
conditions, leads to rapid thermal fatigue] [
loading, resulting in cracking and leakage.					1	
Erosion/corrosion has been observed to	Frequent	ASME Section XI.		Develop improved inspection and	93-21	
cause excessive wall thinning and]	IWA 4100 and 4300		repair procedures in accordance	55-21	- 1
possible piping failure in numerous plants.				with ASME Section XI. [4]		
Inspection and repair procedures are				With ASMIE Section XI. [4]	1	
often inadequate.						
Gradual buildup of contaminants in the	Not stated	Not discussed in		Flush oil system [4]		
control oil for the stop valve on the		report		Flush oli system [4]	93-48	8
turbine-driven feed water pump caused		report				1
the valve to stick open when the main					1 1	1
turbine tripped, resulting in overfill of the					1	
pressure vessel.						
Preexisting defects, component design,	Not stated	Not discussed in				$ \rightarrow $
and insufficient bolt torque can lead to the	Not out to a			Weld repair cracks; torque bolts	93-97	9
initiation and growth of fatigue cracks that		report		sufficiently when reinstalling yokes.	I. I	
could cause eventual component failure.				[4]		
IGSCC that initiated at a machined radius	Not stated	Net diama and in				
propagated over ~80% of the cross-	Not stated	Not discussed in		Replace beams of similar design if in	93-101	10
sectional area. The resulting loss of		report		service for more than 8 years. [4]	1	
preload apparently led to fatigue crack						
growth and eventual component failure.						1
Surveillance coupons of Boraflex tested	Net state of		·			.
after five years had degraded	Not stated	EPRI TR-101986		Not stated	93-70	11
substantially. Similar degradation of the						
Boraflex used in the high-density spent						
fuel storage racks would result in loss of		Ĩ				
subcriticality margin in the pool.	Í					
					ļ	1
IGSCC in the HAZ of core shroud circum-		GE RICSIL 054,		Add stiffening braces to the top	93-79	12
terential welds near the beltine resulted in		Rev. 1		portion of the shroud. [4]		
axial cracking that may compromise the					l I	
structural integrity of the shroud.				<u> </u>		
		Not discussed in		Install vibration damping; redesign	93-82	13
flow-induced vibrational fretting can lead	ļ	report		core to reduce vibration. [4]		
to cladding perforation and fuel rod failure.						

Document: IN&B 1994, 1994 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Hem
Torsional excitation of the turbine- generator shaft from an electrical system disturbance causes vibration, resulting in separation of turbine blades by high-cycle fatigue.	Not stated	Not discussed in report		Not stated	94-01	1
Apparent galvanic corrosion between the SS plunger rod and the remaining Al parts caused corrosion product buildup and switch malfunction, resulting in an erroneous signal to the control computer and turbine overspeed.	Not stated	Not discussed in report		Not stated	94-11	2
Tubes repaired with kinetically welded sleeves may be susceptible to PWSCC adjacent to the sleeve because of residual stresses introduced, despite the post- weld heat treatment. Result is tube leakage.	Not stated	Not discussed in report		Not stated; problem still under investigation [4]	94-05	3

Page 4B

Document:	IN&B	19	994,	199	4	NRC	Info	ormation Notices

Reviewed by:	Dwight R. Diercks,	ANL
--------------	--------------------	-----

	wed by: Dwight System	R. Diercks, ANL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
4	Cooling system	Main steam isolation valve	Guide ribs	Not stated	Atwood & Morrill Co., Inc.	WEAR	Attrition
5	Cooling system	Standby service water pump	Bolts and lockwashers in shaft coupling assemblies	Carbon steel	Not stated	CORR	Loss of material
6	Cooling system	Pipe snubbers	Internal lubricant	Hydrocarbon grease	Pacific Scientific	ELE-TEMP	Chemical and physical degradation
7	Emergency core cooling system	Air dampers and solenoid valves	Elastomer seals	Buna-N	Not stated	ELE-TEMP	Chemical and physical degradation
8	Emergency core cooling system	Shutdown cooling suction isolation valves	Sealing surfaces of valve disk and slide seat ring	Stellite	Anchor-Darling	RESID; FAT/THERM	Crack initiation; cumulative fatigue damage
Ø	Emergency core cooling system	High-pressure coolant injection motor-operated valve	Torque switch drive pinion gear roll pin	AISI 1070 carbon steel	Limitorque	EMBR; ENVIR	Loss of fracture toughness; chemica and physical degradation
10	Emergency core cooling system	High head safety injection pump	Pump casing	Carbon steel clad with stainless steel	Dresser Industries, Pacific Pump Division	Not stated; CORR/BA	Crack initiation and growth; loss of material
11	Reactor internals	Core shroud	Core plate support ring weldment	Stainless steel	General Electric Company	CORR/IGSCC	Crack initiation and growth

•

Document: IN&B 1994, 1994 NRC Information Notices Reviewed by: Dwight R. Diercks, ANL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Improper clearances between valve poppet and body can cause excessive wear of guide ribs, resulting in failure of valve to close property.	Not stated	NRC Inspect. Rept. 50-458/93-18		Install anti-rotation modification from manufacturer [4]	94-08	4
Extensive general corrosion of the bolts and lockwashers in the pump shaft coupling assemblies caused shifting of internal parts and damage to impellers and bowls, resulting in degraded vibration performance.	Not stated	Not discusses in report		Rebuild pumps; modify testing procedure to detect internal changes before severe damage occurs. [4]	94-45	5
Prolonged exposure to temperatures of 38 to 93 deg. C caused the internal lubricant grease to bake and dry out, resulting in insufficient drag resistance during testing.	Common	Not discussed in report		Replace failed snubbers; develop criteria for service life program. [4]	94-48	6
Prolonged exposure to elevated temper- atures causes the Buna-N elastomer seal material to break down, resulting in leak- age of the nitrogen supply for the auto- matic depressurization valves and possible failure of these valves in a LOCA situation.	Not stated	Not discussed in report		Replace affected components with qualified replacements. [4]	94-06	7
High residual stresses from inadequate stress relief or thermal fatigue led to the initiation and growth of cracks in the sealing surfaces of the valves, resulting in excessive valve leakage.	Not stated	Not discussed in report		Not stated	94-30	8
Brittleness of roll pin material, possibly combined with hardening of grease in drive mechanism in one case, caused shear fracture of pin under load, resulting in failure of valve.	Not stated	Not discussed in report		Replace with larger diameter pin fabricated of Type 416 stainless steel for better ductility and impact resistance. [4]	94-49	9
Cracking of the stainless steel cladding from an unidentified cause leads to exposure of the underlying carbon steel, which corrodes relatively rapidly in contact with boric acid in the coolant.	Not stated	Pacific Pump Bulletin 037-0-0104- 0		Perform field inspections described in Pacific Pump Bulletin 037-0-0104- 0. [4]	94-63	10
IGSCC in and near the HAZ of the outside circumference of the core plate support ring weldment resulted in a 360 circum-ferential crack with a max. depth of -2.13 cm in two different reactors.	Not stated	GE RICSIL 054, Rev. 1		Safety implications under investigation by NRC. [4]	94-42	11

•

Page 5B

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	Control Rod Drive	Scram Solenoid Pilot Valves	Pressure and Exhaust Diaphragms	Rubber	Automatic Switch Company	ELE-TEMP	Hardening, crackin
2	Control rod drive	Scram solenoid pilot valves	Diaphragm	Buna-N	General Electric	EMBR	Loss of fracture toughness
3	Containment	Personal Airlock	Door Shaft Seal Range Bolts	Not stated	Not stated	WEAR	Attrition
4	Containment	Main Steam Isolation Valves	Seat Surfaces, Actuator Spring	Not stated	Not stated	WEAR, RATCH	Attrition, change in dimension
5	Containment	Vent Valve	Seal	Nitrile Elastomer	Atwood and Morrill Co.	WEATH	Loss of capacity
6	Containment	H2/O2 gas analyzer	Analyzer pump diaphragm	Not stated	Teledyne	Not stated	Not stated
7	Penetration Pressurization System	Inboard Containment Purge Exhaust Valves	Boot Seal	Not stated	Not stated	ENVIR	Chemical or physic degradation
8	Condenser System	Low Pressure Turbines	Exhaust Boot Seal	Fabric Reinforced Rubber	Uniroyal	FAT	Cumulative Fatigu Damage
9	Feedwater	Check Valve	Seal	Rubber (Parker E692)	Not stated	ELE-TEMP/ERO	Physical degradation, loss material
10	Hot Leg Loop	Isolation Valve	Valve Stem	17 4PH Stainless Steel (ASTM A 56M Type 630)	Not stated	CORR/SCC	Crack initiation an growth
11	Auxiliary Feedwater	Pump Pneumatic Speed Control Loop	Different Pressure Transmitter	Not stated	Not stated	EDS (setpoint drift)	Loss of function
12	Emergency diesel	Fuel oil injector	Injector screw	Not stated	Nordberg	Not stated	Not stated
13	generator Spent fuel pool exhaust ventilation	pump Charcoal absorber	Seal on bypass damper blade edge	Rubber	Johnson Controls	Not stated	Not stated
14	Spent fuel pool exhaust ventilation	Charcoal absorber	Damper blades	Not stated	Johnson Controls	Not stated	Not stated
15	Fail-safe accumulator	2 way solenoid valve	Seal O-ring	Not stated	Versa Product Co.	FAT	Cumulative fatigue damage
16	Power system	Steam generator	Tube	Not stated	Combustion Engineering System- 80	CORR/IGSCC	Crack initiation an growth

Document: LER's, Licensee Event Reports (LERs)

80

Document: LER's, Licensee Event Reports (LERs) Reviewed by: Ma and K. E. Kasza, ANL

Effect of Aging on Component Functio			Rel.progs	Report Recommendations	Page No.	1 - 1
Control rod failed to scram due to	Frequent	Not discussed in	PS TS Req.	Use of new diaphragm material [2]	94-005-01	l
legradation of pilot valve elastomers		report				[
hardening, cracking and permanent set)	1					
aused by high temperature produced by					1	
he energized solenoid coils.						
Control air leakage through degraded	Not applicable	Not discussed in	PS TS Req.	Not stated	94-005-00	
solenoid diaphragms rendered valve		report				
noperable and failure to scram a control						
rod resulted.			<u> </u>			
Excessive force to support shaft bearing	Moderate	Not discussed in	10CFR50 App.	Including inspection of the shaft seal	92-026-00	1
and increased use of the airlock caused		report	J & PS TS	gasket bolts in plant maintenance		1
he shaft seal flange to loosen and move			Req.	and inspection [4]		
away from its seating, resulting in test						
pressure drop below criteria of						
containment airlock leakage test.						
During local leak rate testing, the leak rate	Frequent	Not discussed in	PS TS Req.	Replace springs on regular basis [4]	92-013-01	
imit was exceeded due to degraded valve		report				
seal seat surfaces (misalignment of the						
coppet seat caused by wear of the guide						
ibs.)						
eakage of rubber seal attributed to	Not stated	Not discussed in	PS TS Req.	The failed seal was replaced and the	89-005-00	
weather checking on exposed surface and		report		leak rate met acceptance cri teria.		
storage causing unacceptable leakage in			1	To prevent recurrence, both shelf life		ľ
an Appendix J Type B leakrate test.				and durometer testing requirements		
				shall be considered in the		
				procurement documents [4]		
ncorrect readings of oxygen	Not applicable	Not discussed in	PS TS Reg.	Not stated	92-009-00	
concentration because of air leak into		report				
analyzer.						
Environmental aging of seal material	Not stated	Not discussed in	ASME Sec XI	Not stated	93-001-00	
aused leakage of PPS exceeding		report	& PS TS Reg.			
allowable rate. Seating area was cleaned						
and the leakage stopped.						
Loss of condenser vacuum due to fatigue	Moderate	Not discussed in	PS TS Reg.	Replace entire boot seal rather than	92-010-00	
ailure of the north low pressure turbine		report		performing local repair [2]		
exhaust boot seal (a fabric reinforced		10pon				
ubber expansion joint), causing an						
automatic turbine trip and reactor trip.						
_eakage of rubber seal due to thermal	Frequent	Not discussed in	ASME Sec XI	Replace the soft seal material	86-017-01	
aging and erosive wear, causing	riequent	report	IWV & PS TS	(Parker E692) with a new material	00-017-01	
excessive leak rate of the check valves.		report	Req.	more resistive to thermal aging and		
ACESSIVE IBAR TALE OF THE CHECK VALVES.			Ined.	erosive wear than the original [4]		
Crack due to tensile stress on the stem	Infrequent	Not discussed in	ASME Sec XI	To minimize the in service stresses.	86-008-01	1
and entrapped water propagated through	in equerit	report	IWV & PS TS	the valves will be soft back seated	00-000-01	•
the valve stem diameter, resulting in the		report		during plant heatup and hard back		
alve gate being in a partially closed			Req.	seated only when operating		
osition.				temperature is reached [4]		
	Not stated	* Not discussed in	PS TS Reg.		89-016-02	
noperability of the pump pneumatic	Not stated	Not discussed in	PS IS Req.	Record turbine steam bowl	09-010-02	1
speed control loop due to leaking bellows,		report		pressures, including the speed		
etpoint drift, limited pump speed and				control loop. In the preventive		
tischarge pressure below that needed to				maintenance/calibration program at		
nject water into the stearn generators				initial plant startup, perform periodic		
under some accident conditions.	Netensieshie	Not discussed in	DC TC Don	full flow test [4]	000 000 00	
Emergency diesel generator not operable	Not applicable	Not discussed in	PS TS Req.	Not stated	92-009-00	1
o allow fixing of injector pump.		report				
Over time the rubber seals lose pliability	Not applicable	Not discussed in	PS TS Req.	Not stated	92-008-00	1.
nd allow leakage in the ventilation		report				
ystem.						
Bent damper blades prevented sealing	Not applicable	Not discussed in	PS TS Req.	Not stated	92-008-00	1
and caused leakage in the ventilation		report	1			
ystem.						
Deterioration of O-ring caused control air	Not applicable	Not discussed in	PS TS Req.	Not stated	93-005-00	1
eakage and failure of solenoid to meet		report				
pecs.			1			
	Not applicable	Steam Generator	ASME Sec XI	Not stated	93-001-02	1
ow pressurizer level and pressure		Task Force formed	IWB & PS TS			
causing reactor trip and radiation in			Req.]		
-		1	1.04.	1		
secondary system.				1		

Page 1B

Document:	LER's,	Licensee	Event	Reports (LERs)
Reviewed h	V. 1.	la and K		

Reviewed by: Ma and K. Kasza, ANL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer		
17	Main steam line	Isolation valve (globe valve)		Not stated	Atwood and Morrill Company Inc.	ARD mechanism CORR/PIT	ARD effects Local loss of materi
18	Main steam line	Isolation valve (globe valve)	Seat	Not stated	Atwood and Morrill Company Inc.	CREEP	Change in dimension
19	Essential cooling water	Traveling screen filter	Flexible coupling	Elastomeric	Rexnord	ENVIR	Chemical or physica degradation
20	Not stated	High Pressure Turbine Stop Valve	Auto Stop Oil Line	Not stated	Not stated	RESID/FAT	Crack initiation, cumulative fatigue damage
21	Penetration Pressurization System	Inboard Containmen Purge Exhaust Valves	Seal Seat	Not stated	Not stated	ENVIR	Chemical or Physica Degradation
22	Emergency Power System	Diesel Generator	Fuel Oil	Not stated	Not stated	ox	Buildup of Deposit
23	Emergency Power System	Diesel Generator	Fuel Oil	Not stated	Not stated	ox	Buildup of Deposit
24	Containment Spray System	Heading Piping	Spray Nozzle	Piping: Carbon Steel	Not stated	CLOG	Blockage of flow passages
25	Fire Protection	3-hour Fire-rated Barriers	Penetration Fire Seal	Silicone Foam	Not stated	Improper installation/lack of inspection rqmt_	Loss of Function
26	Steam Generator Blowdown Outlet	Air-operated Isolation Valve	Valve Actuator Rubber Diaphragm	Rubber	Not stated	ENVIR	Physical Degradation
27	Not stated	Main Condenser	Expansion Joint	Rubber	Not stated	ENVIR	Physical Degradation
28	Not stated	Turbine	Low Pressure Exhaust Boot Seal	Rubber	Uniroyal	FAT	Cumulative Fatigue Damage
	Emergency Cooling System and Containment Spray System	Motor-operated Valves	Not stated	Not stated	Not stated	Improper Switch Setting	Loss of Function
30	Primary Containment Isolation System		O-rings, Seat Rings, Gaskets	Ethylene-propylene, Rubber	Various	ENVIRWEAR	Physical Degradation, Attrition
	Containment Penetration	Electric Penetration Assemblies	Seals	Polyurethane	Bunker Ramo	Hydrolysis	Physical Degradation, Attrition

. _____

Page 2A

Document: LER's, Licensee Event Reports (LERs) Reviewed by: Ma and K. Kasza, ANL

Effect of Aging on Component Functio			Rel.progs	Report Recommendations	Page No.	
	Moderate	Not discussed in	ASME Sec XI	Not stated	93-003- 01: 003-	17
on valves is exceeded.		report	& PS TS Req.		01,003-	
Technical specification for leakage limits	Infrequent	Not discussed in	ASME Sec XI	Not stated	93-003-01	18
on valves is exceeded.		report	& PS S&T Req.			
Aging of elastomeric couplings resulted in	Not applicable	Not discussed in	PS S&T Req.	Not stated	93-010-00	19
their cracking and failure of traveling		report				
screen filter to operate.			00.007.0		89-011-00	20
Turbine stop valve closure due to auto stop oil line weld leak resulted in a manual	Rare	Not stated	PS S&T Req.	Perform visual inspection of the accessible welds, measure vibration	09-011-00	2
reactor trip and a manual safety injection.				of the auto stop oil line during plant		
The weld failure was due to inadequate				startup [4]		
field installation (overlapping welds) and						
fatigue.						
Environmental aging of seal material	Not stated	Not stated	PS S&T Req.	Not stated	93-013-01	21
caused leakage of PPS exceeding						
allowable rate. Seating area was cleaned and the leakage stopped.						
Oxidation of fuel oil due to a high	Infrequent	Not stated	RG 1.9, RG	Periodic replace ment of the fuel oil	89-001-00	22
concentration of insolubles clogging the	Introquent	NOT Stated	1.108 & PS TS	and use of a higher grade diesel fuel		
sample filter, causing inoperability of			Req.	oil which has a longer shelf life [4]		
diesel generator.						
Oxidation of fuel oil due to a high	Infrequent	Not stated	RG 1.9, RG	Periodic replacement of the fuel oil	89-001-01	23
concentration of insolubles clogging the			1.108 & PS TS	and use of a higher grade diesel fuel		
sample filter, causing inoperability of			Req.	oil which has a longer shelf life. Add		
diesel generator.				a biocide, a dispersant and a		
Nozzle blockage due to accumulation of	Frequent	Not stated	PS S&T Reg.	stabilizer to extend the shelf life. [4] Replacement of the CSS nozzles	90-021-00	24
the deteriorated coating of the CSS piping	riequent	NOTSTATED	& PS TS Reg.	with clog resistant nozzles [4]	90-021-00	24
inner surface could block the CSS flow.			at o to heq.			
Gaps, tears, or splits due to improper	Frequent	Not stated	PS S&T Req.	Use a different type of foam and	90-002-00	25
installation and lack of inspection	•		1	different installation techniques [4]		
requirements were found in the seals.						
Propagation of a fire across boundary		Ì				
would affect the plant safe shutdown.	Not stated	Alet stated	ASME Sec XI	Not stated	92-001-00	26
Failure of rubber diaphragm resulting in air leakage and failure of the valve	NOT STATED	Not stated	IWV & PS S&T	NOT STALLED	92-001-00	20
closure.			Reg.			
The air leakage through the torn	Infrequent	Not stated	PS S&T Reg.	Periodic replacement of the	92-003-00	27
expansion joint rubber belt caused low			& PS TS Req.	expansion joints [2]		
vacuum in the main condenser and						
subsequent manual reactor and main						
turbine trip.	Nototod	hist stated	IDC CRT Dee	Net stated	92-007-00	28
Failure of the north low pressure turbine boot seal due to fatigue caused	Not stated	Not stated	PS S&T Req.	Not stated	92-007-00	20
condenser low vacuum and subsequent						
automatic reactor and turbine trip.						
isolation valves were not capable of full	Frequent	GL89-10	ASME	Reconfigure and test the MOVs to	92-006-00	29
closure under design basis conditions due				satisty the GL89 10 criteria [4]		
to improper drive gear sets and torque						
switch settings.			1005550			
Brittle and broken O-ring seals of the reactor vessel stabilizer hatch indicated	Frequent	Not stated	10CFR50 App.	Periodic replacement of the O-rings	88-014-00	30
that the ethylene propylene (EP) material			3	[4]		
is generally unable to resist harsh						
environments. O-rings made of silicone						
rubber were in good condition.						
Degradation of seal material,	Frequent	Not stated	PS S&T Req	Use a more durable material,	91-011-02	31
polyurethane, due to hydrolysis would				ethylene propylene rubber; install a		1
allow moisture intrusion into the electrical				silicone rubber O-ring as a backup		
penetration assembly during a LOCA event, potentially resulting in discontinuity				seal; upgrade the nitrogen supply system to safety-grade system [4]		

Table A.1 Gall Report for NRC Bulletins

.

Document:	BL 89-01, 1989 NRC Information Notices and Bulletin	iS
Reviewed by	Dwight R. Diercks, ANL	

item Sys	stem	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	oling system	U	Tubing mechanical plugs	Inconel 600	Westinghouse	CORR/PWSCC	Crack initiation and growth

.

Document: BL 89-02, 1989 NRC Information Notices and Bulletins Reviewed by: Dwight R. Diercks, ANL

Item	System	Structure/Comp	Subcomponent	Materiais	Manufacturer	ARD mechanism	ARD effects
1	Residual heat-	Swing check valve	Retaining block stud	Type 410 stainless	Anchor Darling	CORR/SCC	Crack initiation and
	removal system		(bolt)	steel (A193, Gr B6,			growth
				Type 410 SS)			

Table A.1 Gall Report for NRC Bulletins

.

Document: BL 89-01, 1989 NRC Information Notices and Bulletins Reviewed by: Dwight R. Diercks, ANL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	item
Intergranular cracking, apparently	Not stated	Not discussed in		Replace plugs from suspect heats of	89-33;	1
associated with improper heat treatment		report		material; discontinue use of	Bull. 89-	
and/or susceptible heats of material, can			1	Westinghouse plugs. [4]	01, 89-01,	
cause mechanical tube plugs to loosen,					Suppl. 1 &	
leak, and sometimes be forcibly ejected,					2.	
causing additional tube damage.						

.

Document: BL 89-02, 1989 NRC Information Notices and Bulletins Reviewed by: Dwight R. Diercks, ANL

Effect of Aging on Component Function	Reported progs	Rel.progs	Report Recommendations	Page No.	Item	
Susceptibility to SCC was apparently	Not stated	ASME SA193-B6		Inspect bolts for cracks; replace	BL 89-02	1
enhanced by improper heat treatment				defective bolts with bolts having Rc		
(hardness too high), coupled with				hardness <=26. [4]		
presence of borated water. Resulting						
cracking led to bolt fracture.						

A.2 Electrical Components and Systems

Page 1A

Document: BNL A-3270-11-85, Seismic Endurance Tests of Naturally Aged Small Electric Motors Reviewed by: Jerry Edson, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Electric Motors	Terminal Boxes	Not stated	Not stated	CORR	Improper sealing of the cover gaskets
2		Electric Motors	Stator Winding	Not stated	Not stated	Not stated	Break down of varnish and insulation
3		Electric Motors	All Other Components	Not stated	Not stated	Not stated	Not stated

.

Document: BNL A-3270-3-86, Testing Program For The Monitoring of Degradation in a Continuous Duty 460 volt Class 'B', 10 hp Electric Motor Reviewed by: Jerry Edson, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Electric Motor	Dielectrics (Insulation)	Organic insulation materials	Not stated	ELETEMP MOIST- EL RAD, VIBR, CURSTR, VOLSTR, CONTAM	Insultion degradation causes leakage through the insulation
2		Electric Motor	Bearings	Not stated	Not stated	Not stated	Ball or roller surface defects cause vibration
3		Electric Motor	Cage (Rotor)	Not stated	Not stated	Not stated	Damaged or defective cage
4		Electric Motor	Stator	Steel, Copper, Organic insulation	Not stated	THERM-CY, FAT	Stress caused by differences in thermal expansion rates

Document: CHAPTER 24 CABLES, Aging and Life Extension of Major Light Water Reactor Components Reviewed by: E. W. Roberts, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1			Non-Shielded Single & Multi-Conductor Jacketed	Polymers, Rubber, Sicicon, Copper, Kapton	Not stated	ELETEMP, MOIST- EL, OXIDAT, & RAD	Jacket embrittlement & cracking, propagating thru insulation
2			Shielded Pair Multi- Conductor Jacketed	Polymers, Rubber, Silicon & Copper	Not stated	ELETEMP, MOIST- EL, OXIDAT, & RAD	•
3			Connections - Non- Sealed	Not stated	Not stated	ELETEMP & MOIST-EL	Moisture diffuses into cables and connection internals
4			Connections - Compression Sealed	Polymers	Not stated	ELETEMP, RAD, & VIBR	Seals not hermetic
5			Cables, Halogination of Filled Polymers	Polymers	Not stated	ELETEMP, RAD, & MOIST-EL	Electrolytes that increase leakage or losses
6			Mineral Insulated Cable	Not stated	Not stated	THERMO-CY & VIBR	Open hermetic seals
7			Terminal Strips	Not stated	Not stated	CONTAM	Increase leakage or losses

Document: Letter Report/INEL, Summaries of Research Reports Submitted in Connection With the Nuclear Aging RESEARCH (NPAR) PROGRAM Reviewed by: L.C. Meyer, INEL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	Battery Chargers and Inverters	Circuit Breakers	Contacts, Coil, Linkages, & Case	Not stated	Not stated	WEAR & LOSLUB	Bearing wear & solidification of lubrication
2	Battery Chargers and Inverters	Circuit Breakers	Contacts, Coil, Linkages, & Case	Not stated	Not stated	FAT, OXIDAT	Metal fatigue, embrittlement & cracking of insulation
3	Battery Chargers and Inverters	Circuit Breakers	Contacts, Coil, Linkages, & Case	Not stated	Not stated	OXIDAT & WEAR	Oxidation and pitting of contact surfaces

Document: BNL A-3270-11-85, Seismic Endurance Tests of Naturally Aged Small Electric Motors Reviewed by: Jerry Edson, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Leakage of moisture into the box could lead to termination corrosion and overheating which could cause degraded performance or failure to operate	Not stated	Not discussed in report	No specific program	Not stated	3, 4	1
Excessive leakage current and decreased performance or failure to operate	Not stated	Not discussed in report	No specific program	Not stated	4	2
Not stated	Not stated	Not discussed in report	No specific program	Not stated	A-6	3

Document: BNL A-3270-3-86, Testing Program For The Monitoring of Degradation in a Continuous Duty 460 volt Class *B*, 10 hp Electric Motor Reviewed by: Jerry Edson, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rei.progs	Report Recommendations	Page No.	ltem
Leakage through the insulation causes imbalances between phases, phases with below normal current, and overheating in phases with above normal current. Results in decreased output.	Not stated	Not discussed in report	IEEE 334-1974 Section 14	Not stated	1. 3, 12	1
Increased friction and reduced output	Not stated	Not discussed in report	IEEE 334-1974 Section 14	Not stated	3, 15	2
Decreased speed or torque	Not stated	Not discussed in report	IEEE 334-1974 Section 14	Not stated	15	3
Additional aging stress to the windings	Not stated	Not discussed in report	IEEE 334-1974 Section 14	Not stated	3_	4

Document: CHAPTER 24 CABLES, Aging and Life Extension of Major Light Water Reactor Components Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	on Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Circuit ground or short	Frequent	Limited	No specific program	Utilities (1) monitor temp/rad determine hot spots, (2) perform periodic inspections, & (3) don't disturb cables [4]	845,848,8 54,863, & 865	1
Circuit opens, grounds, total loss of function	Frequent	Limited	No specific program	Utilities adopt improved failure analysis & recording [4]	845,848,8 54,863, 865	2
Circuit opens, grounds, total loss of function	Not stated	Not discussed in report	No specific program	Not stated	845,848,8 63, 865	3
During DBE moisture enters through connection, contacts corride, circuit grounds or shorts	Not stated	Not discussed in report	No specific program	Not stated	845,848,8 50,863, & 865	4
Disable function during dbe	Not stated	Not discussed in report	No specific program	Not stated	845,848,8 63, & 865	5
DBE-excessive leakage disables cable	Not stated	Not discussed in report	No specific program	Not stated	845,848,8 51, & 865	6
DBE-excessive leakage disables cable	Not stated	Not discussed in report	No specific program	Not stated	833,845,8 48, & 865	7

Document: Letter Report/INEL, Summaries of Research Reports Submitted in Connection With the Nuclear Aging RESEARCH (NPAR) PROGRAM Reviewed by:

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Failure to operate	Occasional	Not discussed in report	Vendor specific program, Tech. Spec. surveil.	Not stated	4-18	1
Fails to open - trip coil force becomes less than spring force.	Occasional	Not discussed in report	Vendor specific program, Tech. Spec. surveil.	Not stated	4-18	2
Fails to open - loss of continuity across contacts.	Rare	Not discussed in report	Vendor specific program, Tech. Spec. surveil.	Not stated	4-18	3

Page 2A

Document: Letter Report/INEL, Summaries of Research Reports Submitted in Connection With the Nuclear Aging RESEARCH (NPAR) PROGRAM Reviewed by: L. C. Meyer, INEL

em	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
4	Battery Chargers and Inverters	Fuse		Not stated	Not stated	FAT	Metal fatigue
5	Battery Chargers and inverters	Fuse		Not stated	Not stated	ELE-TEMP	Melting of link
6	Battery Chargers and Inverters	Relay	Contacts	Not stated	Not stated	OXIDAT & WEAR	Oxidation & pitting of contact surfaces
7	Battery Chargers and Inverters	Relay	Coil	Not stated	Not stated	CORR	Electromechanical action causing corrosion of fine wires.
8	Battery Chargers and Inverters	Electrolytic Capacitors		Not stated	Not stated	ELETEMP	Over heating by internal stresses causes loss of electrolyte
9	Battery Chargers and Inverters	Electrolytic Capacitors		Not stated	Not stated	VIB	Failure of leads
10	Battery Chargers and Inverters	Oil Filled Capacitors		Not stated	Not stated	ELETEMP	Over heating forms gasses and dielectric breakdown
11	Battery Chargers and Inverters	Oil Filled Capacitors		Not stated	Not stated	VIB	Failure of leads
12	Battery Chargers and Inverters	Transformer	Wire	Not stated	Not stated	THERM-CY & ELETEMP	Cracking of insulation
13	Battery Chargers and inverters	Transformer	Wire	Not stated	Not stated	LOTEMP	Cracking of moistur seals
14	Battery Chargers and Inverters	Transformer	Wire	Not stated	Not stated	VOLSTR	Insulaton material deterioration
15	Battery Chargers and Inverters	Transformer	Wire	Not stated	Not stated	VIB & ELETEMP	Fracture of connecting wires and changes in shunting.
16	Battery Chargers and Inverters	Silicon Controlled Rectifier		Not stated	Not stated	VOLSTR & CURSTR	Transients resulting in over voltage & current & overheating
17	Battery Chargers and Inverters	Resistor		Not stated	Not stated	VIB	Lead fails
18	Battery Chargers and Inverters	Resistor		Not stated	Not stated	ELETEMP	Decrease in resistance values at temperature increases
19	Battery Chargers and Inverters	Printed Circuit Boards		Not stated	Not stated	THERM-CY	Cracking of input lines
20	Battery Chargers and Inverters	Printed Circuit Boards		Not stated	Not stated	CORR	Loss of material
21	Battery Chargers and Inverters	Printed Circuit Boards		Not stated	Not stated	VIB	Loose or open connection
22	Battery Chargers and Inverters	Surge Suppressor		Not stated	Not stated		Semiconductor barrier breakdown due to overheating.
23	Battery Chargers and Inverters	Connectors	:	Not stated	Not stated	FAT & VIB	Fatigue of wires at terminals
24	Battery Chargers and Inverters	Meters	· · · · · · · · · · · · · · · · ·	Not stated	Not stated	CONTAM	Dirt on movement and increase in bearing friction
25	Battery Chargers and Inverters	Meters	Coil Insulation	Not stated	Not stated	ELETEMP	Coil insulation degrades causing shorting
26	Battery Chargers and Inverters	Meters	Contacts	Not stated	Not stated	WEAR & CORR	Contacts pitting or corrosion
27		Cable	Insulation	Not stated	Not stated	ELETEMP, RAD, & MOIST-EL	Loss of dielectric properties & changes in structure

Document: Letter Report/INEL, Summaries of Research Reports Submitted in Connection With the Nuclear Aging RESEARCH (NPAR) PROGRAM Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function Fails open due to equipment load cycling	Occasional	Not discussed in	Rel.progs	Report Recommendation		
rais open due to equipment load cycling	Occasional	report	program, Tech.		4-18	1 '
Fails open due to heat generated by	Rare	Not discussed in	Vendor specific	Not stated	4-18	
surrounding components.		report	program, Tech.			
Contacts open - loss of continuity across contacts	Rare	Not discussed in report	Tech. Spec. surveillance	Not stated	4-18	e
Open circuit of coil - loss of continuity through coil wires.	Rare	Not discussed in report	Vendor specific program	Not stated	4-18	7
Loss of capacitance and degraded system operation.	Occasional	Not discussed in report	Vendor specific program	Not stated	4-18	6
Open circuit	Rare	Not discussed in	Vendor specific	Not stated	4-18	5
Loss of capacitance	Occasional	Not discussed in	program Vendor specific	Not stated	4-18	10
		report	program			
Open circuit	Rare	Not discussed in report	Vendor specific program	Not stated	4-18	11
Short circuit - turn to turn or to ground	Occasional	Not discussed in report	Vendor specific program	Not stated	4-19	12
Short arcuit - turn to turn or to ground	Occasional	Not discussed in report	Vendor specific program	Not stated	4-19	13
Short arcuit - turn to turn or to ground	Occasional	Not discussed in report	Vendor specific	Not stated	4-19	14
Change in inductance	Rare	Not discussed in report	Vendor specific program	Not stated	4-19	15
Short or open circuit	Occasional	Not discussed in report	Vendor specific program	Not stated	4-19	16
Open circuit	Rare	Not discussed in report	Vendor specific program	Not stated	4-19	17
Change in resistance value and degraded circuit operation.	Rare	Not discussed in report	Vendor specific program	Not stated	4-19	18
Change in output	Rare	Not discussed in report	Vendor specific program	Not stated	4-19	19
Open circuit at terminals or within printed circuit board.	Rare	Not discussed in report	Vendor specific	Not stated	4-19	20
Change in output	Occasional	Not discussed in	program Vendor specific	Not stated	4-19	21
Short circuit	Rare	Not discussed in report	Program Vendor specific program	Not stated	4-19	22
Open or short circuit	Occasional	Not discussed in	Vendor specific	Not stated	4-19	23
No response (stuck)	Occasional	Not discussed in report	program Vendor specific program	Not stated	4-19	24
No response from meter	Rare	Not discussed in report	Vendor specific program	Not stated	4-19	25
Fails to open or close	Occasional	Not discussed in	Vendor specific	Not stated	4-19	26
Cracks when flexed & loss of flexibility, oss of imperviousness, failure frequently xoupled with presence of moisture or vater.	Rare	report Not discussed in report	program No specific program	Not stated	3-33	27

Page 3A

Document: Letter Report/INEL, Summaries of Research Reports Submitted in Connection With the Nuclear Aging RESEARCH (NPAR) PROGRAM Reviewed by: L. C. Meyer, INEL

_	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
28		Cable	Insulation	Not stated	Not stated	ELETEMP, RAD, & MOIST-EL	Loss of dielectric properties & changes in structur
29		Cable	Insulation	Not stated	Not stated	ELETEMP, RAD, & MOIST-EL	Loss of dielectric properties & changes in structure
30	(Pressure Transmitters)	Force Balance Type	Force Bar & Linkage	Not stated	Not stated	WEAR & VIB	Wear of pivot points
31	(Pressure Transmitters)	Force Balance Type	Force Motor (Feedback Coil)	Not stated	Not stated	VOLSTR ELETEMP	Insulation failure & coil burnout
32	(Pressure Transmitters)	Force Balance Type	Amplifier	Not stated	Not stated	THER-CY & VOLSTR	Shorting or opening of electronic components
33	(Pressure Transmitters)	Force Balance Type	Housing Seals	Not stated	Not stated	ELETEMP, RAD, OR EMBR	Compresive set or cracking
34	(Pressure Transmitters)	Force Balance Type	Diaphragm	Not stated	Not stated	CORR	Perforation of diaphragm from corrosion
35	(Pressure Transmitters)	Force Balance Type	Diaphragm Seal	Not stated	Not stated	Not stated	Seal deterioration from decomposition
36	(Pressure Transmitters)	Capicitance Type Transmitters	Sensing Cell	Not stated	Not stated	Not stated	Perforation in cell allowing leakage of fluid
	(Pressure Transmitters)	Capicitance Type Transmitters	Terminal Cover Plate Seal	Not stated	Not stated	EMBR, ELETEMP, & RAD	Embrittlement and seal cracking
	(Pressure Transmitters)	Capicitance Type Transmitters	Electronics	Not stated	Not stated	OXIDAT & CONTAM	Circuit continuity lost and bridging of circuits
	(Pressure Transmitters)	Capicitance Type Transmitters	Electronics	Not stated	Not stated	VOLSTR & ELETEMP	Shorting or opening of component
	(Pressure Transmitters)	Capicitance Type Transmitters	Sensing Cell	Not stated	Not stated	ELETEMP OR RAD	Chemical changes in fill-oil
	(Pressure Transmitters)	Capicitance Type Transmitters	Électronics	Not stated	Not stated	RAD, ELETEMP, OR VOLSTR	Change in component parameters

Document: Letter Report/INEL, Summaries of Research Reports Submitted in Connection With the Nuclear Aging RESEARCH (NPAR) PROGRAM Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functi Cracks when flexed & loss of flexibility,	Rare	Not discussed in	Rel.progs No specific	Report Recommendations	Page No. 3-34	-
loss of imperviousness, failure frequently coupled with presence of moisture or		report	program	NOT STATED	3-34	2
water.				1		
Cracks when flexed & loss of flexibility,	Rare	Not discussed in	No specific	Not stated	3-34	2
loss of imperviousness, failure frequently coupled with presence of moisture or	1	report	program			
water. Adverse changes in insulation						
resistance may cause attenuation of						1
signals.						
Failure to operate - decrased accuracy or	Occasional	Not discussed in	RG 1.118	Not stated	4-43	30
complete failure. Zero shift may result		report	IEEE 338-		1	۳ I
from bent components causing transmitter failure to operate as required.			1987, ISA		1	
actisiting failure to operate as required.			67.06, Tech			
Failure to operate - loss of output	Rare	Not discussed in	Spec			
	11000	report	RG 1.118. IEEE 338-	Not stated	4-43	31
			1987, ISA			[
			67.06, Tech			
			Spec			
Failure to operate - may fail high, low, lose	Occasional	Not discussed in	RG 1.118,	Not stated	4-43	32
accuracy, or fail with steady output.		report	IEEE 338-			
			1987, ISA			
			67.06, Tech			
Failure to operate - inability of seal to	Occasional	Not discussed in	Spec	Not stated		
provide moisture and pressure barrier		report	RG 1.118, IEEE 338-	Not stated	4-43	33
results in failure of electronics due to			1987. ISA			
shorting and corrosion from ingress of			67.06. Tech			
environmental contaminants.			Spec			
Failure to operate as required - zero shift	Occasional	Not discussed in	RG 1.118,IEEE	Not stated	4-43	34
or leakage through diaphram causing		report	338-1987,ISA			•••
variable instrument drift as pressures across diapharam equalize			67.06,10 CFR			
Failure to operate as required - leakage	Occasional		50.49			
hrough diaphram causing variable	Occasional	Not discussed in	RG 1.118,	Not stated	4-43	35
nstrument drift as pressures across		report	IEEE 338- 1987, ISA			
fapharam equalize			67.06, Tech			
			Spec			
ailure to operate or loss of accuracy or	Rare	Not discussed in	RG 1.118,	Not stated	4-44	
trift		report	IEEE 338-			
			1987, ISA			
			67.06, Bul 90-			
ailure to operate - inability to provide	Rare	Not discussed in	01 RG 1.118,IEEE			
noisture and pressure boundary resulting		report	338-1987.ISA	NOT STATED	4-44	37
loss of electronics due to ingress of			67.06,10 CFR			
nvironmental contaminants			50.49			1
ailure to operate or loss of signal or	Occasional	Not discussed in	RG 1.118,	Not stated	4-44	38
poradic operation		report	IEEE 338-			~
			1987, ISA			l
			67.06, Tech	· · · · · · · · · · · · · · · · · · ·		1
ailure to operate - loss of output, may fail	Occasional	Not discussed in	Spec RG 1.118	Not obtain		
igh or low.		report	IEEE 338-	Not stated	4-44	39
			1987, ISA			
			67.06, Tech			
ailure to encode as as a			Spec			
ailure to operate as required such as ero shift, reduced accuracy, or changes	Rare	Not discussed in	RG 1.118,	Not stated	4-45	40
response time.		report	IEEE 338-			
			1987, ISA			
ailure to operate as required - loss of	Occasional	Not discussed in	67.06, IN 95-20 RG 1.118,	Not stated		
ccuracy, drift, or zero shift.		report	IEEE 338-	Not stated	4-45	41
			1987, ISA			
			67.06, Tech			
			Spec		1 1	
		Į	1			1
1						

Page 4A

Document: Letter Report/INEL, Summaries of Research Reports Submitted in Connection With the Nuclear Aging RESEARCH (NPAR) PROGRAM Reviewed by:

		Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
_	System (Pressure Transmitters)	Strain Gage Type	Strain Gage	Not stated	Not stated	Not stated	Loss of continuity in bridge circuit related to aging
43	(Pressure Transmitters)	Strain Gage Type	Seals	Not stated	Not stated	CONTAM, EMBR, ELETEMP, OR RAD	Embrittlenent or cracking
44	(Pressure Transmitters)	Strain Gage Type	Potentiometer	Not stated	Not stated	CORR & ELETEMP	Corrodes open due to thermal stress
45	(Pressure Transmitters)	Strain Gage Type	Electric Module	Not stated	Not stated	Not stated	Component deterioration or change in parameters
46	(Pressure Transmitters)	Strain Gage Type	Bourdon Tube	Not stated	Not stated	CORR	Perforation of tube allowing leaks to transmitter housing

Document: NISTIR 4485, Annotated Bibliography - Diagnostic Methods and Measurement Approached to Detect Incipient Detects Due to Aging of Cables Reviewed by: L.C. Meyer, INEL

	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
tem System1	Cable	Not stated	Not stated	Not stated	Not stated	Not stated

Document: NISTIR 4487, Detection of Incipient Defects in Cables by Partial Discharge Signal Analysis Reviewed by: L.C. Meyer, INEL

Reviewed by: tem System	L. C. Meyer, INEL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	Cable	Insulation	Not stated	Not stated	MOIST-EL, OXIDAT, ELETEMP, & RAD	Defects develop from these mechanisms
						<u> </u>

Document: NISTIR 4787, The Use of Time-Domain Dielectric Spectroscopy to Evaluate the Lifetime of Nuclear Power Station Cables Reviewed by: Jerry Edson, INEL

		erry Edson, INEL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	System	Electrical Cable	Jacket	Vinyl	Not stated	Not stated	Not stated
2		Electrical Cable	Insulation	PE, XLPE, XLPO	Not stated	ELETEMP & RAD	Chemical reactions, crosslinking, ionization
3	3	Electrical Cable	Insulation	PE, XLPE, XLPO	Not stated	ELETEMP COMBINED WITH RAD	Chemical reactions, crosslinking, ionization

Document: NUREG-1377 R3, NRC Research Program on Plant Aging: Listing and Summaries of Reports Issued Through July 1992 Reviewed by: Jerry Edson, INEL

 ewed by: J System	erry Ed	son, INEL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
Listing and Summaries of NPAR Report		Buddard outp				NOT SPECIFICALLY ADDRESSED IN THE REPORT	

Document: Letter Report/INEL, Summaries of Research Reports Submitted in Connection With the Nuclear Aging RESEARCH (NPAR) PROGRAM Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	item
Failure to operate - loss of output.	Rare	Not discussed in report	RG 1.118, IEEE 338- 1987, ISA 67.06, Tech Spec	Not stated	4-45	42
Failure to operate - inability to provide moisture and pressure barrier leading to failure of electronics due to contamination.	Occasional	Not discussed in report	RG 1.118,IEEE 338-1987,ISA 67.06,10 CFR 50.49	Not stated	4-45	43
Failure to operate - fails over range, wire- wound potentiometer corrosion of resistive elements leads to failure	Occasional	Not discussed in report	RG 1.118, IEEE 338- 1987, ISA 67.06, Tech Spec	Not stated	4-45	44
Failure to operate or loss of full output	Occasional	Not discussed in report	RG 1.118, IEEE 338- 1987, ISA 67.06, Tech Spec	Not stated	4-45	45
Failure to operate as required - drift, contamination of transmitter internals, and failure to respond	Rare	Not discussed in report	RG 1.118, IEEE 338- 1987, ISA 67.06, Tech Spec	Not stated	4-45	46

Document: NISTIR 4485, Annotated Bibliography - Diagnostic Methods and Measurement Approached to Detect Incipient Defects Due to Aging of Cables Reviewed by: L.C. Meyer, INEL

Effect of Aging on Component Function Contrib to Failure		Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
This is a collection of 156 reveiwed	Not stated	Not discussed in	No specific	Not stated	NA	1
abstracts of reports and papers related to		report	program			
cable aging and defect assessment						
covering the 1970-1986 period. An						
additional list of 850 citations was						
compiled from references given in the						
reveiwed papers.						

Document: NISTIR 4487, Detection of Incipient Defects in Cables by Partial Discharge Signal Analysis Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	on Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
The defects will degrade insulating	Occasional	Not discussed in	No specific	Six recommendations each for	1 and 120	1
properties of cable insulation.		report	program	partial discharge research and		
				hardware development. Three for	1	
				software. [4]		

Document: NISTIR 4787, The Use of Time-Domain Dielectric Spectroscopy to Evaluate the Lifetime of Nuclear Power Station Cables Reviewed by: Jerry Edson, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Not stated	Not stated	Not discussed in report	No specific program	Not stated	15	1
Embrittlement, softening, loss of elongation and reduced dielectric strength could cause failure to accurately transmit voltage or current.	Not stated	Not discussed in report	No specific program	Not stated	1, 2, 4, 7, 8, 15, 17, 22-38	2
Embrittlement, softening, loss of elongation and reduced dielectric strength could cause failure to accurately transmit voltage or current.	Not stated	Not discussed in report	No specific program	Not stated	1, 2, 4, 7, 8, 15, 17, 22-38	3

Document: NUREG-1377 R3, NRC Research Program on Plant Aging: Listing and Summaries of Reports Issued Through July 1992 Reviewed by: Jerry Edson, INEL

Effect of Aging on Component Function Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
The purpose of the report is to present a	Not discussed in the	No specific	Not stated		1
listing and summaries of 123 NPAR	report	program			
reports. Specific aging effects and					
recommendations are addressed by the				[
individual reports.					

Document: NUREG/CP-0100, Proceedings of the International Nuclear Aging Symposium, Session 3 Reviewed by: L. C. Meyer, INEL

tem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
17		Resistance Temperature Devices		Not stated	Not stated	THERM-CY	Conductive compounds become insulative
18		Electrical Wiring	Insulation	Kapton (Aeromatic polymide)	Not stated	MOIST-EL & ELE- TEMP	Insulation cracking and loss of mechanical properties
19		Pressure Transducers	Force Balance Type Sensors	Not stated	Foxboro	CONTAM & FRZ- THAW	Blockage of sensing lines
20		Pressure Transducers	Not stated	Not stated	Rosemount	CONTAM & FRZ- THAW	Blockage of sensing lines
21		Micro Processor & ICs	IC DIE	Silicon, Silicon oxide, & interfaces	Not stated	CONTAM, VOTSTR, CURSTR	Contamination causes shorts, V & I stresses cause burnout
22	<u></u>	Micro Processor & ICs	IC DIE	Metalization	Not stated	CORR	Corrosion from adjacent materials
23		Micro Processor & ICs	IC Package	Metalic leads & container and glass seals	Not stated	FAT, CORR, VIB, & CONTAM	Corr from adjacent materials, vib causes fat, contam shorts
24	Diesel Generator	Not stated	Not stated	Not stated	Not stated	WEAR & LOSLUB	Wear from lack of lubrication during fast starts
25		Cable	Insulation	EPR, CSPE, & XLPE	Four vendors listed	RAD, ELETEMP, & MOIST-EL	Insulation degradation from all three mechanisms

Document: NUREG/CP-0105, Seventeenth Water Reactor Safety Information Meeting (Electrical Parts) Reviewed by: L. C. Meyer, INEL

em	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
14	Auxiliary Feedwat System	er	Not stated	Not stated	Not stated	Not stated	
15	Auxiliary Feedwat System	er Cable		Various cable materials	Seven vendors Identified	RAD AND ELETEMP	Not stated
16	Auxiliary Feedwat System	er Steam Generator	Tubes	Not stated	Westinghouse	FAT, EROS, CORR	Primary water stress corrosion cracking (PWSCC)
17	Auxiliary Feedwat System	er Circuit Breakers		Not stated	Not stated	Not stated	Not stated
18	Audilary Feedwat System	ər Turbinə Drivən Pump		Not stated	Not stated	Not stated	Not stated
19	Auxiliary Feedwat System	er Compressors		Not stated	Not stated	WEAR, CONTAM, & VIB	Set point drift, degraded parts, & loose connections
20	Auxiliary Feedwat System	er Dryers		Not stated	Not stated	CORR & CONTAM	Blockage, deteriation of components
21	Auxiliary Feedwat System	er Valve		Not stated	Not stated	WEAR, CONTAM, AND CORR	Set point drift, fracture/cracking, component deterioration

Page 5A

Document: NUREG/CP-0100, Proceedings of the International Nuclear Aging Symposium, Session 3 Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	on contrib to Failure		Rel.progs	Report Recommendations	Page No.	Item
Never-seez usd in thermal wells lose conductivity with age and effects response time of RTD.	Not stated	Reg Guides 1.118 and 1.105	Reg Guides 1.118 and 1.105	Not stated	363-366	1
Cracking can result in contamination intrusion and improper output.	Occasional	Not discussed in report	No specific program	Not stated	130-131	18
Partial or full blockage of sensing lines effects the transducer response time.	Not stated	IEEE-Std 338, Reg Guide 1.118, & ISA Std 67.06	IEEE 338, Reg Guide 1.118, ISA 67.06	Not stated	137-139	19
Partial or full blockage of sensing lines effects the transducer response time.	Not stated	IEEE-Std 338, Reg Guide 1.118, & ISA Std 67.06	IEEE 338, Reg Guide 1.118, ISA 67.06	Not stated	138-139	20
Contamination enters by cracks or from MFG process and if moved by handling can short gate elements, voltage and current spikes may overstress leads or connections weakened by manufacturing process or chemical reactions of materials used in IC.		IEEE-323-1983	No specific program	As new vendors & technologies emerge, their aging sensitivity should be addressed. [2]	146-152	21
Metalization may fail because of corrosion from adjacent materials	Not stated	IEEE-323-1983	No specific program	As new vendors & technologies emerge, their aging sensitivity should be addressed. [2]	146-152	22
Vibration may crack glass seals allowing contamination to enter case, corr from moisture entering cracked seals or adjacent materials, contamination left from mfg process or entering through seal gracks may cause component shorting.	Not stated	IEEE-323-1983	No specific program	As new vendors & technologies emerge, their aging sensitivity should be addressed. [2]	146-152	23
Decreases reliable life of diesels		Not discussed in report	Section 7.5, IEEE 749-1983	Not stated	153-157	24
The report is not an aging evaluation, but only describes long term tests to letermine the amount of insulation legratation from radiation, elevated emperature, pwr atmospheres, and herted BWR atmospheres.		IEEE Std-74 & IEEE STD-383-1974	No specific program	Not stated	158-166	25

.

Document: NUREG/CP-0105, Seventeenth Water Reactor Safety Information Meeting (Electrical Parts) Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio			Rel.progs	Report Recommendations	Page No.	Iten
This report develops an aging risk assesment methodology using the aPWR AFW system to demonstrate method	Not stated	Not discussed in report	No specific program	Not stated	377-398	1
This report covered loca testing of aged cables. Aging information provided in other Sandia reports on cable aging	Not stated	Not discussed in report	No specific program	Not stated	399-410	1!
PWSCC damages steam tubes at three locations; roll transition regions. U-bends, and tube dents. Leaks at these locations can lead to shuting down the reactor.	Rare	Not discussed in report	No specific program	Not stated	411-431	16
This report covers NPAR phase 2 tasks related to resolving technical safety issues	Not stated	NPAR	No specific program	Not stated	433-437	17
This report only provides an overview and identifies the turbine driven pump as historically having the most failures with the turbine i&c/governor control system having half of these failures. Does not have specific aging data.	Not stated	Not discussed in report	No specific program	Comprehensive testing of components and i&c. [2]	439-451	18
Degraded operation or failure	Occasional	Not discussed in report	No specific program	Not stated	453-471	19
Failure or degraded operation	Occasional	Not discussed in report	No specific	Not stated	453-471	20
Failure to operate, failure to open or kose, or degraded operation	Occasional	Not discussed in report	No specific program	Not stated	453-471	21

Page 5B

Document: NUREG/CP-0105, Seventeenth Water Reactor Safety Information Meeting (Electrical Parts) Reviewed by: L. C. Meyer, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
22	Auxiliary Feedwater System	Diesel Generator		Not stated	Not stated	Not stated	Not stated
23	Auxiliary Feedwater System	Circuit Breakers	Not stated	Not stated	Not stated	Not stated	Not stated
24	Auxiliary Feedwater System	Not stated	Not stated	Not stated	Not stated	Not stated	Not stated
25	Auxiliary Feedwater System	Not stated	Not stated	Not stated	Not stated	Not stated	Not stated

Document: NUREG/CR-3956, In Situ Testing of the Shippingport Atomic Power Station Electrical Circuits Reviewed by: L. C. Meyer, INEL

m	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	Pressurizer Heater Feeder Circuit	Cable	Conductor	NO. 6 AWG, single copper conductor	Okonite	CORR	Increased loop resistance
2	Pressurizer Heater Feeder Circuit	Cable	Insulation	1/16 IN. thick oil base	Okonite	Not stated	Low insulation resistance
3	Pressurizer Heater Feeder Circuit	Cable	Jacket	1/32-IN. black neoprene	Okonite	Not stated	Not stated
4	Pressurizer Heater Main Feeder Circuit	Cable	Conductor	NO. 10 AWG Copper	Not stated	CORR	Not stated
5	Pressurizer Heater Main Feeder Circuit	Cable	Insulation	Silicon rubber with glass braid	Not stated	OXIDAT	Degraded insulator resistance
6	Pressurizer Heater Main Feeder Circuit	Cable	Jacket	Silicon rubber	Not stated	Not stated	Not stated
7	Instrumentation and Control	Heater, MOV, and RTD Circuits	Stop Joint, Splices, and Terminals	Not stated	Not stated	MOIST-EL AND CORR	Loss of material, an corrosion product buildup
8	Rod Control Position Indicator Cables	Cable	33 Conductor, NO. 16 AWG, Stranded Wire	Copper	Okonite	Not stated	Not stated
9	Rod Control Position Indicator Cables	Cable	Insulation	Oil base insulation	Okonite	Not stated	Not stated
10	Rod Control Position Indicator Cables	Cable	Jacket	Neoprene	Okonite	Not stated	Not stated
11	Resistance Temperature Detector Circuits	Cable	Insulation	NO. 18 AWG, tinned copper stranded. spiral wrapped and shielded with a chrome vinyl jacket	Not stated	Not stated	Not stated
12	Resistance Temperature Detector Circuits	RTDs	Sensing Element	Platinum	Leeds and Northrup	Not stated	Not stated
13	Resistance Temperature Detector Circuits	Terminals and Stop Joints	Not stated	Not stated	Not stated	CORR AND MOIST-EL	Increase in resistance, open circuit, and film on terminals
14	Nuclear Instrumentation	RG-149U Cables	Insulation	NO. 18 AWG copper center conductor and polyethylene insulation	Not stated	Not stated	Not stated
15	Motor Operated Valves	Limit Switches	Contacts	Not stated	Not stated	CORR	Material buildup on contacts
16	Motor Operated Valves	Cable	Not stated	Not stated	Not stated	Not stated	Not stated
17	Motor Operated Valves	Motor	Not stated	Not stated	Not stated	Not stated	Not stated

 Document:
 NUREG/CP-0105, Seventeenth Water Reactor Safety Information Meeting (Electrical Parts)

 Reviewed by:
 L. C. Meyer, INEL

 Effect of Aging on Component Function Contrib to Failure
 Reported progs
 Rel.progs
 I

Effect of Aging on Component Function	on Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Failure to start	Occasional	Not discussed in report	IEEE 387-1984 Section 7.5, IEEE 749-1983	Not stated	473-495	22
Failure to transfer		Not discussed in report	IEEE 741-1986 Section 7	Not stated	473-495	23
This report only covers the use of NPAR results in inspection activities. Aging summaries are covered in other npar reports	Not stated	Not discussed in report	N/A	Not stated	497-407	24
This report covers a methodology for managing aging in nuclear power plants	Not stated	Not discussed in report	N/A	Not stated	509-529	25

Document: NUREG/CR-3956, In Situ Testing of the Shippingport Atomic Power Station Electrical Circuits Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functi The effect was a small decrease in	Dere Contrib to Failure		Rei.progs	Report Recommendations	Page No.	. Ite
available wattage to heaters	Rare	Plant specific maintenance	No specific program	Keep moisture out [2]	5, 6, & 7	
Degraded heater oeration, one circuit	Rare	Plant specific	No specific	Keep moisture out of cables [2]	5, 6, 7, &	+
failed because of low insulation resistanc	e	maintenance	program	Reep moisture out of cables [2]	21	
Not stated	Rare	Not discussed in	No specific	Not stated	6	+
		report	program	Not stated	ь	1
Marginal operation	Rare	Not discussed in	No specific	Not stated		+
		report	program	NOTSTATED	6	
Marginal operation of heaters	Rare	Not discussed in	No specific	Net state t		
		report	program	Not stated	6	
Not stated	Rare	Not discussed in				
		report	No specific	Not stated	6	1
Nonenvironmentaly sealed splices and	Occasional	Not discussed in	program			
terminals presents vulnerable areas for		report	No specific	Periodic plant maintenance to clean	7 and 21	
oxidation, corrosion, dust, and moisture		report	program	terminals and check seals and to		
contamination to set in.				use ECCAD to check circuits before		
None	Rare	Not discussed in		failure [2]		
			No specific	Not stated	7, 8, and	
		report	program		21	
None	Rare		-			L.
	nale	Not discussed in	No specific	Not stated	7, 8, and	
None	Rare	report	program		21	
	nare	Not discussed in	No specific	Not stated	7, 8, and	1
lone	0	report	program		21	
	Rare	Not discussed in	No specific	Not stated	7, 8, and	1
		report	program		21	
One circuit shorted to ground at the Instrument end	Rare	Not discussed in report	ANSI/IEEE 338-1987	Not stated	8, 9, and	1:
		184011	330-1987		21	
Circuits had higher than expected loop	Occasional	Not discussed in	Alo analifa			
esistance, four circuits had a series		report	No specific	Not stated	9, 10, and	1
esistance occuring at the stop joints,		nepon	program		21	
esistance problem also observed at						
ermination points in the control room, one						
ircuit was shorted to ground at the						
istrument end						
lone	Rare	Not discussed in	ANSI N42.4-	Not stated		
		report	1971	NOT Stated	12. 13,	14
			13/1		and 21	
				1		
sulation resistance exceeded the	Rare	Not discussed in	Vendor	Not stated		
andard recommended minimum,		report	specific, GL	NOT STATED	12, 20,	15
though not serious enough to alter the			89-10,		and 21	
tended limit switch function			NUREG-1352			
one	Rare	Not discussed in	No specific	Net stated		
		report		Not stated	12, 20,	16
one except two movs located outside,		Not discussed in	program		and 21	
posed to weather were inoperable.			Vendor	Not stated	12, 20,	17
		report	specific, GL		and 21	
	ļ		89-10, NUREG-1352		1	
•			INUREG-1352			

Page 6B

Page 7A

Document: NUREG/CR-3956, In Situ Testing of the Shippingport Atomic Power Station Electrical Circuits Reviewed by: L.C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
18	Motor Operated	Not stated	Not stated	Not stated	Not stated	WEATH	Not stated
	Valves						

Document: NUREG/CR-4156, Operating Experience and Aging-Seismic Assessment of Electric Motors Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		3 Phase Induction & Synchronous Motors		Copper	Not stated	VIB, THERM, AND SHRINK	Loosening of laminations and locking devices
2		3 Phase Induction & Synchronous Motors	Stator - Insulation	Mica, glass, resins, enamels, mylars, figer, varnish, and nonhygroscopic materials	Not stated	THERM, OXIDAT, MOIST-EL, AND RAD	Degraded dielectric properties & tensile strength, brittle
3		3 Phase Induction & Synchronous Motors	Rotor - Contuctors and Structural Components	Copper	Not stated	VIB & THERM	Rotor embalance, loose parts, and overheating
4		3 Phase Induction & Synchronous Motors	Rotor - Insulating Materials	Mica, glass, resins, enamels, mylars, fiber, vamish, and nonhygroscopic marteials	Not stated	CURSTR, THERM, RAD, AND MOIST- EL	Insulation damage, winding short, overheating of rotor coils
5		3 Phase Induction & Synchronous Motors	Rotor - Commutator and Brushes	Mica, copper, carbon, and steel in spring mechanism	Not stated	WEAR, FAT, DIRT, CONTAM, AND OXIDAT	Brush wearout, relaxed spring, oil deposits, & loose contact
6		3 Phase Induction & Synchronous Motors	Bearings	Steel, brass, and bronze	Not stated	VIB, THERM, WEAR, CONTAMIN, AND LOSLUBE	Material attrition, cracking of bearings, scoring of surface
7		3 Phase Induction & Synchronous Motors	Bolts, Flanges, and Housing	Steel, cast iron, brass, and copper	Not stated	VIB, CORR, FAT, THERM, AND MECHSTR	Sheared bolts, cracked flanges or housing, overheated frame
8		3 Phase Induction & Synchronous Motors	Seals and Gaskets	Polymers	Not stated	THERM, VIB, AND RAD	Cracking, shrinking, leaking of oil or water, embrittlement
9		3 Phase Induction & Synchronous Motors	MOV's Break Coils	Copper	Not stated	THERM, CORR, CURSTR	Corrosion product buildup, current overload, & misoperation
10		3 Phase Induction & Synchronous Motors	Conduit Box, Leads, and Connections	Copper	Not stated	VIB AND CORR, CONTAM, MOIST- EL	Leak, poor electrical contact, loose leads, improper seals
11		3 Phase Induction & Synchronous Motors	Motor	See sub- components	Not stated	WEAR, THERM, VIB, CURSTR, RAD, FAT, AND MOIST-EL	Misaligned parts, burned out motor, & disengaged motor

Document: NUREG/CR-4234 V2, Aging and Service Wear of Electric Motor-Operated Valves Used in Engineered Safety-Feature Systems of Nuclear Power Plant: Reviewed by: Jerry Edson, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Motor Operated Vaive	Gearbox - Gears	Not stated	EIM, Limitorque, Rotork	WEAR	Not stated
		l	I				

Page 7B

Document: NUREG/CR-3956, In Situ Testing of the Shippingport Atomic Power Station Electrical Circuits Reviewed by: L.C. Meyer, INEL

inoperable		Reported progs	Rel.progs	Report Recommendations	Page No.	ltem	
nioperable	Rare	Not discussed in	N/A	Not stated	12, 20,	18	I.
		report			and 21		Į.

Document: NUREG/CR-4156, Operating Experience and Aging-Seismic Assessment of Electric Motors Reviewed by: L. C. Meyer, INEL Effect of Aging on Component Eulertics Costribute Seiters

Effect of Aging on Component Funct Not stated	Occasional	Not discussed in	Rel.progs	Report Recommendations	Page No.	. iter
		report		in the second seco		· _
		report	Section 14	operational readiness acceptance	and 4-23	
				criteria, in-situ testing and monitorin	9	
Degraded operation or failure to function	Occasional	Not discussed in		programs [2]		
	Containing		IEEE 334-1974	4 Preventive maintenance programms	, S-2, 2-15,	
		report	Section 14	operational readiness acceptance	& 4-23	
			1	criteria, in-situ testing and monitoring	a	
				programs [2]		
Frame distortion, shift in rotor center of	Occasional	Alexandre and a			1	
gravity, insuficient cooling, winding short	occasional	Not discussed in	IEEE 334-1974	and a second sec	S-2, 2-20	;
short or overheating of rotor coils leading		report	Section 14	operational readiness acceptance	4-23	
to burnt motor and failure to function.				criteria, in-situ testing and monitoring		
Excess current due to aging from many				programs [2]		
starts, cage winding failure due to jogging	Occasional	Not discussed in	IEEE 334-1974		2-15. S-2	
over heating of rotor coils leading to burnt		report	Section 14	operational readiness acceptance	4-24	
motor, winding shorts, insulation				criteria, in-situ testing and monitoring		
shrinkage results in decreased output or				programs [2]	1	
failure to function.						
Loose brush connection, dirt & foreign particles, wear out of carbon brushes,	Occasional	Not discussed in	IEEE 334-1974	Preventive maintenance programms.	2-22, S-2	2
releved entire lead in the bar bits is		report	Section 14	operational readiness acceptance	4-25	J
relaxed spring load in the brush holder				criteria, in-situ testing and monitoring	4-23	
mechanisms, dirt/ moisture on				programs [2]		
commutator and oxidation effects results				F 3 [=]		
n decreased output or failure to function.				1 1		
Seized bearings, and overheating,	Occasional	Not discussed in	IEEE 334-1974	Preventive maintenance programms,	2-15.4-	6
excessive vibration could cause fracture]	report	Section 14	operational readiness acceptance	· ·	6
and bearing scoring, corrosion due to				criteria, in-situ testing and monitoring	22, 4-23,	
exposure to air.						
				· · ·	26, and 4-	
ailure to function or degraded operation	OCCCASIONAL	Not discussed in	IEEE 334-1974			
		report	Section 14	internetionaliterice programms,	2-15, 4-	- 1
				criteria, in-situ testing and monitoring	24, 4-25,	
					27, and 4- 28	
ecreased output or failure to function.	Occasional	Not discussed in	IEEE 334-1974			
		report			5-15 & 4-	8
				criteria, in-situ testing and monitoring	28	Í
		_		programs [2]	1	
urning of motor windings, jamming of	Rare	Not discussed in	Vendor			
reak coil, overload the motor drawing		report			5-15 & 4-	9
rge currents into the windings results in				criteria, in-situ testing and monitoring	28	
ilure to operate.				programs [2]		
egraded insulation, shorts, or open	Occasional	Not discussed in		Preventive maintanense and		
rcuits result in decreased output or		report	program	Preventive maintenance programms, 4	-28	10
ilure to function.			p.vymii	operational readiness acceptance		1
				criteria, in-situ testing and monitoring		- 1
urned or dead motor, disengaged motor,	Rare	Not discussed in		programs [2]		
overcurrent results in decreased output		report		Preventive maintenance programms, 4	-29	11
failure to function.		- sport	Section 14	operational reactiness acceptance	ł	
				riteria, in-situ testing and monitoring		
		1	1 It	programs [2]		

Document: NUREG/CR-4234 V2, Aging and Service Wear of Electric Motor-Operated Valves Used in Engineered Safety-Feature Systems of Nuclear Power Plant: Reviewed by: Jerry Edson, INEL Effect of Aging on Component Function Contrib to Failure Deported processors and Polymerica Structure Systems of Nuclear Power Plant:

Enilu	to the span of place to the state		the progo	Rel.progs	Report Recommendations	Page No.	Item
	re to open or close, failure to operate iquired	Not stated	Not discussed in report	Vendor specific, GL	Accurate and consistent mov testing should be performed. Good records should be maintained [4]	5 - 12, 15	1

Document: NUREG/CR-4234 V2, Aging and Service Wear of Electric Motor-Operated Valves Used in Engineered Safety-Feature Systems of Nuclear Power Plant: Reviewed by: Jerry Edson, INEL

.

•

em Sys	stem	Structure/Comp		Materials	Manufacturer	ARD mechanism	ARD effects Fastener loosening
2		Motor Operated	Gearbox - Fasteners	Not stated	EIM, Limitorque,	Not stated	Fasterier loosering
		Valve			Rotork		
3		Motor Operated	Gearbox - Stem Nut	Not stated	EIM, Limitorque,	WEAR	Not stated
		Valve			Rotork		
4		Motor Operated Valve	Gearbox - Drive Sleeve	Not stated	EIM, Limitorque, Rotork	WEAR	Not stated
		Motor Operated	Gearbox - Bearings	Not stated	EIM, Limitorque,	WEAR	Not stated
5		Valve	Geallox · Dealings	not balled	Rotork		
6		Motor Operated Valve	Gearbox - Lubericant	Not stated	EIM, Limitorque, Rotork	Not stated	Hardening
7		Motor Operated Valve	Gearbox - Shaft	Not stated	EIM, Limitorque, Rotork	WEAR, MECHSTR	Tapering of the sh
8		Motor Operated Valve	Gearbox - Clutch	Not stated	EIM, Limitorque, Rotork	WEAR	Not stated
9		Motor Operated Valve	Gearbox - Spring Pack and Torque Switch	Not stated	EIM, Limitorque, Rotork	Not stated	Response change
10		Motor Operated Valve	Gearbox - Stem Lock Nut	Not stated	EIM, Limitorque, Rotork	Not stated	Loosening
11		Motor Operated Valve	Gearbox - Seal	Not stated	EIM, Limitorque, Rotork	WEAR	Deterioration
12		Motor Operated Valve	Motor	Not stated	EIM, Limitorque, Rotork	CORR, WEAR	Not stated
13		Motor Operated Valve	Motor	Not stated	EIM, Limitorque, Rotork	ELETEMP	Break down of insulation
14		Motor Operated Valve	Switches - Contacts	Not stated	EIM, Limitorque, Rotork	CORR, CORR/PIT	Not stated
15		Motor Operated Valve	Switches - Insulation	Not stated	EIM, Limitorque, Rotork	ELETEMP	insulation breakdown
16		Motor Operated Valve	Switches - Grease	Not stated	EIM, Limitorque, Rotork	Not stated	Hamening
17	•	Motor Operated Valve	Switches - Gear and Cam	Not stated	EIM, Limitorque, Rotork	WEAR	Not stated
18		Motor Operated Valve	Switches - Fastener	Not stated	EIM, Limitorque, Rotork	Not stated	Loosening

Page 8B

Document: NUREG/CR-4234 V2, Aging and Service Wear of Electric Motor-Operated Valves Used in Engineered Safety-Feature Systems of Nuclear Power Plant: Reviewed by: Jerry Edson, INEL

Effect of Aging on Component Function Failure to open or close, failure to operate	Not stated	Not discussed in	Rel.progs	Accurate and consistent mov testing	Page No.	_
as required		report	specific, GL	should be performed. Good records		
		i aport	89-10,	should be maintained [4]	1	
			NUREG-1352			
Failure to open or close, failure to operate	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing	5 - 12, 15,	
as required		report	specific, GL	should be performed. Good records	72, 167	
			89-10	should be maintained [4]		
			NUREG-1352			L
Failure to open or close, failure to operate	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing		
as required		report	specific, GL	should be performed. Good records	72, 167	
			89-10,	should be maintained [4]	1	
			NUREG-1352		10.10	<u> </u>
Failure to open or close, failure to operate	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing		{ :
as required		report	specific, GL 89-10.	should be performed. Good records	/2, 16/	1
		,	NUREG-1352	should be maintained [4]		
Failure to open or close, failure to operate	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing	5,12,15	
as required	NOT STATED	report	specific, GL	should be performed. Good records		
as rodanos		Teport	89-10,	should be maintained [4]	12, 107	
			NUREG-1352			
Failure to open or close, failure to operate	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing	5 - 12 15	
as required		report	specific, GL	should be performed. Good records		
			89-10.	should be maintained [4]],	
			NUREG-1352			
Failure to open or close, failure to operate	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing	5 - 12, 15,	ε
as required		report	specific, GL	should be performed. Good records	72, 167	
			89-10	should be maintained [4]		
			NUREG-1352		i I	
Failure to open or close, failure to operate	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing	5 - 12, 15,	9
as required		report	specific, GL	should be performed. Good records	72, 167	
			89-10,	should be maintained [4]		
			NUREG-1352			
Failure to open or close, failure to operate	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing		10
as required		report	specific, GL	should be performed. Good records	72, 167	
			89-10,	should be maintained [4]		
			NUREG-1352			
Leakage of lubricant out from gearbox or	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing		11
eakage of contaminants into the gear box resulting in failure to open or close or		report	specific, GL	should be performed. Good records	72, 167	
ailure to operate as required			89-10, NUREG-1352	should be maintained [4]		
Failure to open or close or failure to	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing	5 10 15	10
operate as required	1101 342180	report	specific, GL	should be performed. Good records		12
			89-10,	should be maintained [4]	12, 107	
			NUREG-1352			
Failure to open or close or failure to	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing	5 - 12, 15	13
operate as required		report	specific, GL	should be performed. Good records		
			89-10,	should be maintained [4]	,	
			NUREG-1352			
Failure to open or close or failure to	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing	5 - 12, 15,	14
operate as required		report	specific, GL	should be performed. Good records		
			89-10,	should be maintained [4]		
			NUREG-1352			
ailure to open or close or failure to	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing	5 - 12, 15,	15
operate as required		report	specific, GL	should be performed. Good records	72, 167	
			89-10,	should be maintained [4]		
			NUREG-1352			
Failure to open or close or failure to	Not stated	Not discussed in	Vendor	Accurate and consistent mov testing		16
operate as required		report	specific, GL	should be performed. Good records	72, 167	
			89-10 NUREG-1352	should be maintained [4]		
ailure to open or close or failure to	Not stated	Not discussed in	Vendor			
operate as required	, lot stated	report		Accurate and consistent mov testing		17
perate as required		(aport	specific, GL 89-10,	should be performed. Good records	72, 167	
			NUREG-1352	should be maintained [4]		
ailure to open or close or failure to	Not stated	Not discussed in	Vendor	Accurate and convictant may to sting	E 10 10	
perate as required		report	specific, GL	Accurate and consistent mov testing	5 - 12, 15, 70 - 107	18
		ishout	89-10,	should be performed. Good records	72, 167	
			NUREG-1352	should be maintained [4]		

Page 9A

Document: NUREG/CR-4234 V2, Aging and Service Wear of Electric Motor-Operated Valves Used in Engineered Safety-Feature Systems of Nuclear Power Plant: Reviewed by: Jerry Edson, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
19		Motor Operated Valve	Valves - Operator	Not stated	Anchor Darling, Velan, ET	WEAR, CORR	Not stated
20		Motor Operated Valve	Valves - Yoke Bushing	Not stated	Anchor Darling, Velan, ET	WEAR	Not stated
21		Motor Operated Valve	Valves - Valve Stem	Not stated	Anchor Darling, Velan, ET	WEAR, MECHSTR	Tapering of the shaf
22		Motor Operated Valve	Valves - Fasteners	Not stated	Anchor Darling, Velan, ET	Not stated	Loosening
23		Motor Operated Valve	Valves - Valve Seat	Not stated	Anchor Darling, Velan, ET	WEAR, CORR	Not stated
24		Motor Operated Valve	Valves - Bonnet Seal	Not stated	Anchor Darling, Velan, ET	Not stated	Deterioration
25		Motor Operated Valve	Valves - Stem Packing	Not stated	Anchor Darling, Velan, ET	Not stated	Deterioration

Document: NUREG/CR-4257, Inspection, Surveillance, and Monitoring of Electrical Equipment Inside Containment of Nuclear Power Plants - With Applications to : Reviewed by: L.C. Meyer, INEL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Cable	600 V, 4 kV, and 13 kV Power Cable Insulation	Cross-linked polyethylene (XLPE)	Not stated	THERM, RAD, CHEM, AND MOIST-EL	Chemical changes, dielectric degradation, & cracks
2		Cable	600 V, 4 kV, and 13 kV Power Cable Insulation	Ethylene propylene	Not stated	THERM, RAD, CHEM, AND MOIST-EL	Chemical changes, dielectric degradation, & cracks
3		Cable	600 V, 4 kV, and 13 kV Power Cable Insulation	(PVC)	Not stated	THERM, RAD, CHEM, AND MOIST-EL	Radiation deterioration, dielectric degradation, & cracks
4		Cable	Cable Sheathing and Jacket	Chlorosulfonated polyethylene (CSP) and Kapton	Not stated	THERM, RAD, & CHEM.	Radiation deterioration, dielectric degradation, & cracks
5		Cable	Control Cable	Cross-linked polyethylene (XLPE)	Not stated	THERM, RAD, & CHEM.	Radiation deterioration, dielectric degradation, & cracks
6		Cable	Coaxial Cable	Cross-linked polyethylene (XLPE)	Not stated	THERM, RAD, & CHEM.	Radiation deterioration, dielectric degradation, & cracks
7		Cable	Mineral Insulation Metal Jacket Cable	Not stated	Not stated	RAD & VIB	Wear

Page 9B

Document: NUREG/CR-4234 V2. Aging and Service Wear of Electric Motor-Operated Valves Used in Engineered Safety-Feature Systems of Nuclear Power Plant: Reviewed by: Jerry Edson, INEL Effect of Aging on Component Europian Contribute Feature Description Contribute Provide Plant:

.

Effect of Aging on Component Fun Failure to open or close or failure to			Rel.progs	Report Recommendations	Page No.	ltem
operate as required Failure to open or close or failure to	Not stated	Not discussed in report	Vendor specific, GL 89-10, NUREG-1352	Accurate and consistent mov testing should be performed. Good records should be maintained [4]	5 - 12, 15,	
Pailure to open or close or failure to	Not stated	Not discussed in report	Vendor specific, GL 89-10, NUREG-1352	Accurate and consistent mov testing should be performed. Good records should be maintained [4]	5 - 12, 15, 72, 167	20
operate as required	Not stated	Not discussed in report	Vendor specific, GL 89-10, NUREG-1352	Accurate and consistent mov testing should be performed. Good records should be maintained [4]	5 - 12, 15, 72, 167	21
Failure to open or close or failure to operate as required	Not stated	Not discussed in report	Vendor specific, GL 89-10, NUREG-1352	Accurate and consistent mov testing should be performed. Good records should be maintained [4]	5 - 12, 15, 72, 167	22
Failure to open or close or failure to operate as required	Not stated	Not discussed in report	Vendor specific, GL 89-10, NUREG-1352	Accurate and consistent mov testing should be performed. Good records should be maintained [4]	5 - 12, 15, 72, 167	23
eakage	Not stated	Not discussed in report	Vendor specific, GL 89-10. NUREG-1352	Accurate and consistent mov testing should be performed. Good records should be maintained [4]	5 - 12, 1 <u>5,</u> 72, 167	24
		Not discussed in report	Vendor specific, GL 89-10, NUREG-1352	Accurate and consistent mov testing should be performed. Good records should be maintained [4]	5 - 12, 15, 72, 167	25

Document: NUREG/CR-4257, Inspection, Surveillance, and Monitoring of Electrical Equipment Inside Containment of Nuclear Power Plants - With Applications to I Effect of Aging on Component Eulerties Containment Functions to I Effect of Aging on Component Eulerties Containment of Nuclear Power Plants - With Applications to I

Effect of Aging on Component Function Chemical changes in polymer resulting	Rare	neported progs	Rel.progs	Report Recommendations	Page No.	Iter
from aging, loss of dielectric generally occurs after deterioration of mechanical properties, treeing may cause rapid breakdown of dielectric capabilities. loss of flexibility, can't withstand voltage stress		Not discussed in report	No specific program	Testing to be based on safety importance, determine root cause of failures, remove samples after 5 to 10 years for tests [4]	26,38,40	
Loss of dielectric generally occurs after detenoration of mechanical properties, treeing may cause rapid breakdown of dielectric capabilities. loss of flexibility, can't with stand voltage stress	Rare	Not discussed in report	No specific program	Testing to be based on safety importance, determine root cause of failures, remove samples after 5 to 10 years for tests [4]	26,38, 40, & 53	
Subject to deterioration from radiation, loss of dielectric generally occurs after detenoration of mechanical properties.	Rare	Not discussed in report	No specific program	Testing to be based on safety importance, determine root cause of failures, remove samples after 5 to 10 years for tests [4]	26,38, 40, & 53	
Major failure modes for sheathing are loss of flexibility and imperviousness, teffon glue fails at low radiaton doses resulting n inability to protect conductor insulation.	Rare	Not discussed in report	No specific program	Testing to be based on safety importance, kapton not recommended for applications subject to radiation doses > 0.01 mrad [4]	26,38, 40, & 53	
Loss of dielectric generally occurs after deterioration of mechanical properties, oss of flexibility, loss of imperviousness, aging similar to power cable. Results in ailure to properly transmit voltage or current.		Not discussed in report	No specific program	Testing to be based on safety importance, determine root cause of failures, remove samples after 5 to 10 years for tests [4]	26, 39, 40, & 53	5
Loss of dielectric generally occurs after deterioration of mechanical properties, loss of flexibility, loss of imperviousness, liging similar to power cable. Results in ailure to property transmit voltage or surrent.		Not discussed in report	No specific program	Testing to be based on safety importance, determine root cause of failures, remove samples after 5 to 10 years for tests [4]	26, 39 40, & 53	6
Conductor wear through insulation due to wending or vibration. Results in ffailure to ansmit voltage or current.		Not discussed in report	No specific program	Testing to be based on safety importance, determine root cause of failures. [4]	26, 30,	-7

Document: NUREG/CR-4257 V2, Inspection, Surveillance, and Monitoring of Electrical Equipment in Nuclear Power Plants - Pressure Transmitters Reviewed by: L.C. Meyer, INEL

uem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Force Balance Type Transmitter	Force Balance Bar & Linkage	316 stainless steel	The Foxboro Company	VIB AND WÉAR	Wear, failure to operate, bending component, zero shift
2		Force Balance Type Transmitter	Feedback Coil	Copper	The Foxboro Company	THERM,	Burnout
3		Force Balance Type Transmitter	Amplifier	Carbon resistors, transistors, OP amps, capacitors & diodes	The Foxboro Company	THERM, RAD, VOLSTR	Degradation of insulation, insulation breakdown, & crack
4		Force Balance Type Transmitter	Housing Seals	Viton	The Foxboro Company	THERM, RAD, & CONTAM	Embrittlement, cracking, and inability to seal
5		Force Balance Type Transmitter	Diaphragm Capsule	316 stainless steel	The Foxboro Company	CORR	Leakage or perforation
6		Force Balance Type Transmitter	Diaphragm Seal	316 stainless steel	The Foxboro Company	THERM OR RAD	Inability to maintain pressure barrier, variable instrument
7		Capacitance Type Transmitter	Sensing Cell	316 stainless steel	Rosemount	THERM AND RAD	Leakage, rupture, oi breakdown, or perforation
8		Capacitance Type Transmitter	Terminal Cover Seal	Ethylene propylene	Rosemount	THERM AND RAD	Embrittlement and cracking
9		Capacitance Type Transmitter	Electronics Cover Seal	Ethylene propylene	Rosemount	THERM AND RAD	Embrittlement and cracking
10		Capacitance Type Transmitter	Electronics Parts - Misc Small Components	Not stated	Rosemount	OXIDAT, THERM, AND VOLSTR	Degradation of insulation, arcing, shorts and open circuits
11	<u>, , , , , , , , , , , , , , , , , , , </u>	Strain Gage Type	Strain Gage	Resistive material	ITT Barton Instruments	VIB	Loss of continuity or open resistor
12		Strain Gage Type	Housing Seal	Ethylene propylene	ITT Barton Instruments	THERM AND RAD	Embrittlement or cracking
13		Strain Gage Type	Potentiometer	Phenolic body, nylon rotor, and slider	ITT Barton Instruments	CORR AND THERM	Corrosion material buildup lubricant loss
14		Strain Gage Type	Electric Module	Carbon resistor, transistors, operational amplifier, capacitors, and diodes	ITT Barton Instruments	VIB, THERM, OR RAD	Component deterioration or change in component parameters.
15	<u></u>	Strain Gage Type	Bourdon Tube	Haynes alloy NO 25	ITT Barton Instruments	CORR	Contamination build up and material loss

Document: NUREG/CR-4257 V2, Inspection, Surveillance, and Monitoring of Electrical Equipment in Nuclear Power Plants - Pressure Transmitters Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio			Rel.progs	Report Recommendations	Page No.	Item
Wear of pivot points, decreased accuracy,	Rare	Not discussed in	IEEE 338-1987	Not stated	9, 18 & 21	1
complete failure, zero shift, bending of		report				
components in level system,						
Loss of output	Rare	Not discussed in	JEEE 338-1987	Not stated	9, 18 & 21	2
		report			-,	
Shorting or opening of electronic	Occasional	Not discussed in	IEEE 338-1987	Not stated	9, 18 & 21	3
components, loss of accuracy, drift, zero		report				
shift, loss of signal, may fail high or low,						1
lose accuracy, or fail with steady output.	1					
nability of seal to provide moisture and	Occasional	Not discussed in	10 CFR 50.49	Not stated	9, 18 & 21	4
pressure barrier, ingress of environmental		report		1		
contaminants, and loss of pressure						
barrier results in transmitter drift or failure					i i	
o respond.						
Perforation of diaphragm from corrosion	Rare	Not discussed in	IEEE 338-1987	Not stated	9, 18 & 21	5
or flaw, variable instrument drift as		report			-,	-
pressures across diaphragm equalize,						
and leakage through diaphragm,						
permanent deformation of diaphragm, and						
zero shift.						
Variable instrument drift as pressures	Rare	Not discussed in	IEEE 338-1987	Not stated	9, 18 & 21	6
across diaphragm equalize, and inabilitity	nale		IEEE 330-1907	NOTSLATED	9, 10 0 21	0
o maintain pressure barrier.		report				
eakage of cell fluid through diaphragm,	Rare	Not discussed in	Enhanced	Not stated	9, 11, 19	1
oss of accuracy and drift, rupture allows		report	Surveillance -		& 21	
equalization of forces on diaphragm,			GL 90-01			
drastic change in sensing cell			Suppl. 1			
characteristics, oil breakdown due to					1 1	
hermal or radiation stress.						
nability of seal to provide moisture and	Occasional	Not discussed in	10 CFR 50.49	Not stated	9, 11, 19	8
pressure boundary, cracking due to		report			& 21	
hermal or radiation stresses, and loss of						
electronics due to ingress of						
environmental contaminants. Results in						
ransmitter drift or failure to respond.		<u> </u>				
nability of seal to provide moisture and	Occasional	Not discussed in	10 CFR 50.49	Not stated	9, 11, 19	9
ressure boundary, cracking due to		report			& 21	
hermal or radiation stresses, and loss of					1 [
lectronics due to ingress of						
nvironmental contaminants. Results in						
ansmitter drift or failure to respond.						
oss of signal, sporadic operation,	Occasional	Not discussed in	IEEE 338-1987	Not stated	9, 11, 19	10
horting or opening of components.		report			& 21	
exidation of contacts, bridging of circuits.					1-- 1	
· · · · · · · · · · · · · · · · · · ·		1				
oss of continuity in bridge circuit, loss of	Occasional	Not discussed in	IEEE 338-1987	Not stated	6, 7, 20 &	11
utput, loss of response to input pressure,		report		Not Stated	22	''
nd failure of instrument.		Topon			~ ~	
nability to provide moisture and pressure	Occasional	Not discussed in	10 CFR 50.49	Not stated	6, 7, 20 &	- 10
arrier, failure of electronics due to	Occasional		10 CFR 50.45	NOTStated	- F · · ·	12
ontamination. Results in instrument drift		report			22	
r failure to respond.				RI.A.A.B.A		
corrosion of resistive elements in	Occasional	Not discussed in	IEEE 338-1987	Not stated	6, 7, 20 &	13
otentiometer, wirewound potentiometer		report			22	
orrodes open due to thermal stress and						
orrosive lubricant, fails over range, and						
oss of span adjustment.						
	Occasional	Not discussed in	IEEE 338-1987	Not stated	6, 7, 20 &	14
oss of full output, calibration shift,		report			22	
oss of full output, calibration shift, omponent parameters change.						
						_ 1
omponent parameters change.	Occasional		IFFF 338-1987	Not stated	67.20.8	
omponent parameters change. ermanent deformation of tube, zero shift,	Occasional	Not discussed in	IEEE 338-1987	Not stated	6, 7, 20 &	15
omponent parameters change. ermanent deformation of tube, zero shift, aaks in bourdon tube to transmitter	Occasional		IEEE 338-1987	Not stated	6, 7, 20 & 22	15
omponent parameters change. ermanent deformation of tube, zero shift,	Occasional	Not discussed in	IEEE 338-1987	Not stated		15

Page	11A
rage	118

Document: NUREG/CR-4457, Aging of Class 1E Batteries in Safety Systems of Nuclear Power Plants Reviewed by: Jerry Edson, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Batteries - General			GNB/Gould, Exide, C&D		
2		Batteries	Grids	Lead-calcium alloy	GNB/Gould, Exide, C&D	ELETEMP	Plate growth, loss of contact with active material
3		Batteries	Active Material	Lead, lead dioxide	GNB/Gould, Exide, C&D	GAS, CONTAM	Dislodging or shedding of active material from the grid
4		Batteries	Separators	Rubber/glass mat, polyethelene sheets	GNB/Gould, Exide, C&D	ELETEMP	Decreased electrical insulation
5		Batteries	Electrolyte	Sulfuric acid and water	GNB/Gould, Exide, C&D	CONTAM	Chemical reactions, hydolysis
6		Batteries	Vents	Fused Alumina	GNB/Gould, Exide, C&D	MECHSTR	Vent breaks allowing contamination to enter
7		Batteries	Top Conductors	Lead-calcium alloy	GNB/Gould, Exide, C&D	ELETEMP, CORR, EMBR	Low electrolyte level causes corrosion and embrittlement
8		Batteries	Terminals	Lead-calcium alloy, lead-calcium with copper insert	GNB/Gould, Exide, C&D	CORR/OX, CORR	Poor electrical contact with external busses
9		Batteries	Container and Cover	Polycarbonate, styrene acrylonitrile, acrylo butadiene styrene	GNB/Gould, Exide, C&D	MECHSTR, CORR/OX	Oxidation of the lead causes plate growth

Document: NUREG/CR-4564, Operating Experience and Aging-Seismic Assessment of Battery Chargers and Inverters Reviewed by: Jerry Edson, INEL

tem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Chargers and Inverters	General				
2		Chargers and Inverters	Circuit Breakers	Not stated	PCP, Elgar	CONTAM, WEAR, EMBR, FAT, CORR/PIT, LOSLUB	Increased friction, binding, loss of continuity
3		Chargers and Inverters	Fuse	Not stated	PCP, Elgar	FAT, ELETEMP	Metal fatigue and melting of the fuse material
4		Chargers and Inverters	Relay	Not stated	PCP, Elgar	CORR/PIT, CORR	Loss of continuity across contacts and thru coil
5		Chargers and Inverters	Electrolytic Capacitors	Not stated	PCP, Eigar	ELETEMP, VIBR	Loss of electrolyte, failure of leads
6		Chargers and Inverters	Oil Filled Capacitors	Not stated	PCP, Elgar	ELETEMP, VIBR	Dielectric breakdown, failure c leads
7		Chargers and Inverters	Magnetics (Transformer, Inductor)	Copper, polyamide polymer, mylar tape, ferite steel	PCP, Elgar	ELETEMP THERM-C VIBR, LOTEMP, VOLSTR	Cracking/degr. of insulation and seals, wire fracture
8		Chargers and Inverters	Silicon Controlled Rectifier	Not stated	PCP, Elgar	ELETEMP, VOLSTR, CURSTR	Over heating due to transients

 Document:
 NUREG/CR-4457, Aging of Class 1E Batteries in Safety Systems of Nuclear Power Plants

 Reviewed by:
 Jerry Edson, INEL

 Effect of Aging on Component Function Contrib to Failure
 Reported progs
 Rel.progs

Effect of Aging on Component Function	on Contrib to Failure		Rel.progs	Report Recommendations	Page No.	Item
Incorporation		Not discussed in report	N/A	A Phase 2 study of seismic vulnerability and advanced surveillance methods for identying seismic vulnerability [1]	31	1
Increased temp. from overcharging, ac ripple, and the environment accelerates oxidation. Poor electrical contact and breaking of the container with subsequent loss of electrolyte results in reduced capacity or failure	Frequent	IEEE 450, RG 1.129	IEEE 450, RG 1.129	Not stated	8, 12, 13, 14, 24-26, 32, 33	2
Gassing caused by overcharging or contamination introduced into the electrolyte deteriorates the active material resulting in reduced capacity	Occasional	IEEE 450, RG 1.129	IEEE 450, RG 1.129	Not stated	8, 12, 13, 14, 24-26, 32, 33	3
Decreased electrical insulation resulting in internal shorts and failure of the battery		IEEE 450, RG 1.129	IEEE 450, RG 1.129	Not stated	8, 12, 13, 14, 24-26,	4
Chemical reactions and hydrolysis causes loss of electrolyte and loss of sulfuric acid resulting in reduced battery capacity	Not stated	IEEE 450, RG 1.129	IEEE 450, RG 1.129	Not stated	32, 33 8, 12, 13, 14, 24-26, 32, 33	5
Contaminates in the electrolyte result in reduced capacity	Not stated	IEEE 450, RG 1.129	IEEE 450, RG 1.129	Not stated	8, 12, 13, 14, 24-26, 32, 33	6
Embrittled top conductors are susceptible to breaking and causes loss of capacity	Occasional	IEEE 450, RG 1.129	IEEE 450, RG 1.129	Not stated	8, 12, 13, 14, 24-26, 32, 33	7
capacity and may result in total battery ailure	Not stated	IEEE 450, RG 1.129	IEEE 450, RG 1.129	Not stated	8, 12, 13, 14, 24-26,	8
Plate growth and handling stresses esults in cracked containers which allow electrolyte to escape resulting in reduced apacity or total failure	Frequent	IEEE 450, RG 1.129	IEEE 450, RG 1.129	Not stated	32, 33 8, 12, 13, 14, 24-26, 32, 33	9

Document: NUREG/CR-4564, Operating Experience and Aging-Seismic Assessment of Battery Chargers and Inverters **Reviewed by:** Jerry Edson, INEL **Effect of Aging Operation** Compared Experience Compared Function

Effect of Aging on Component Function	on Contrib to Failure		Rel.progs	Report Recommendations	Page No.	item
		Not discussed in report	N/A	A comprehensive PM and testing program supported by personnel training should be implemented. Procedures are needed [2]	6-7	
Failure to operate, tails open	Occasional	IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	ANSI/IEEE 741-1986 Section 7.3	Not stated	4-25, 4- 27, 5-4 thru 5-9	2
Fuse fails open. Failure to operate Contacts open, open ciruit of the coil, and	Occasional	IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	ANSI/IEEE 741-1986 Section 7.3	Pursue fuse failures due to thermal fatigue [2]	4-25, 4- 27, 5-4 thru 5-9, 6-7	3
relay fails to operate	Occasional	IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	Vendor specific, NEMA PE 5, IEC 142- 2	Not stated	4-25, 4- 27, 5-4 thru 5-9	4
Loss of capacitance and open circuit resulting in improper output or failure to operate	Frequent	IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	Vendor specific, NEMA PE 5, IEC 142- 2	Not stated	4-25, 4- 27, 5-4 thru 5-9 .	- 5
Loss of capacitance and open circuit resulting in improper output or failure to operate	Frequent	IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	Vendor specific, NEMA PE 5, IEC 142- 2	Not stated	4-25, 4- 27, 5-4 thru 5-9	6
Short circuits (turn to turn or to ground)or change in inductuance resulting in mproper output.		IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	Vendor specific, NEMA PE 5, IEC 142- 2	Not stated	2-19, 4- 25, 4-28, 5-4 thru 5- 9	7
Short or open circuit resulting in improper or no output		IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	Vendor specific, NEMA PE 5, IEC 142- 2	Not stated	4-25, 4- 28, 5-4 thru 5-9	8

Page 11B

tem System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
9	Chargers and Inverters	Resistors	Not stated	PCP, Elgar	ELETEMP, VIBR	Lead fails, decrease in resistance
10	Chargers and Inverters	Printed Circuit Boards	Not stated	PCP, Elgar	THERM-CY, CORR, VIBR	Cracking of circuit lines, open/loose at terminals
11	Chargers and Inverters	Surge Suppressors	Not stated	PCP, Elgar	ELETEMP, VOLSTR, CURSTR	Semiconductor barrier breakdown
12	Chargers and Inverters	Connectors	Not stated	PCP, Elgar	FAT	Wire breaks
13	Chargers and Inverters	Meters	Not stated	PCP, Elgar	CONTAM, ELETEMP	Increase in bearing friction, coil degrades
14	Chargers and Invertors	Switches	Not stated	PCP, Elgar	CORR, CORR/PIT	Loss of continuity across contacts
15	Chargers and Inverters	Potentiometer	Not stated	PCP, Elgar	ELETEMP	Loss of continuity across wiper arm

Document: NUREG/CR-4564, Operating Experience and Aging-Seismic Assessment of Battery Chargers and Inverters Reviewed by: Jerry Edson, INEL

Document: NUREG/CR-4715, An Aging Assessment of Relays and Circuit Breakers and System Interactions Reviewed by: L. C. Meyer, INEL

levi tem	ewed by: L.C.I System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Protective, Auxiliary, and Control Relays	Relay	Steel, aluminum, lexan, and phenolic	GE & Westinghouse	THERM	Shape changes for lexan, no effect for steel, al., or phnol.
2	-	Protective, Auxiliary, and Control Relays	Coil Wire, Spools, & Coatings	polyamide-imide insulated wire, copper magnet wire, and nylon bobbins	Not stated	THERM & VOLSTR	Thermality caused failures, open circuits, and shorts
3		Protective, Auxiliary, and Control Relays	Coil Spools	Nylon, Zytel & lexan	Not stated	THERM	Thermally caused failures
4		Protective, Auxiliary, and Control Relays	Coil Coating	Polyester tape, fiber glass tape, & varnish	Not stated	THERM	Thermally caused failures
5		Protective, Auxiliary, and Control Relays	Contact Carriers	Phenolic, Zytel, deirin, & nylon	Not stated	THERM	Nylon may change shape
e		Protective, Auxiliary, and Control Relays	Contacts	Silver alloy	Not stated	WEAR, CHEM	Oxidation when exosed to air & material attrition
7	 	Protective, Auxiliary, and Control Relays	Lead Wires	Copper	Not stated	VIB	Loose terminals
ŧ	3	Protective, Auxiliary, and Control Relays	Coil Lead Wire Insulation	Teflon, silicon rubber, and Tefzel	Not stated	THERM & RAD	Slow aging effects, degradation in insulation

and coil

Document: NUREG/CR-4564, Operating Experience and Aging-Seismic Assessment of Battery Chargers and Inverters Reviewed by: Jerry Edson, INEL

Effect of Aging on Component Function		Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Open circuits, change in resistance values resulting in improper or no output	Rare	IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	Vendor specific, NEMA PE 5, IEC 142- 2	Not stated	4-25, 4- 28, 5-4 thru 5-9	9
Change in output of the charger/inverter	Occasional	IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	Vendor specific, NEMA PE 5, IEC 142- 2	Not stated	4-25, 4- 28, 5-4 thru 5-9	10
Short ciruit within the surge arrestor and failure to operate	Rare	IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	Vendor specific, NEMA PE 5, IEC 142- 2	Not stated	4-25, 4- 28, 5-4 thru 5-9	11
Fatigue caused by installation stress causes wires to break resulting in open or short circuits and failure to operate	Occasional	IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	Vendor specific, NEMA PE 5, IEC 142- 2	Not stated	4-25, 4- 28, 5-4 thru 5-9	12
No or improper response from the meter	Occasional	IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	Vendor specific, NEMA PE 5, IEC 142- 2	Not stated	4-25, 4- 28, 5-4 thru 5-9	13
Switch failes open or closed		IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	Vendor specific, NEMA PE 5, IEC 142- 2	Not stated	4-25, 4- 28, 5-4 thru 5-9	14
Thermal degradation results in open or short circuit and improper output		IEEE-650, NEMA PE 5, IEC 146-2, IEEE-944	Vendor specific, NEMA PE 5, IEC 142- 2	Not stated	4-25, 4- 28, 5-4 thru 5-9	15

•

.

Document: NUREG/CR-4715, An Aging Assessment of Relays and Circuit Breakers and System Interactions Reviewed by: L. C. Meyer, INEL Effect of Aging on Component Function Contrib to Failure, Reported progs, Rel progs, Response

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	iten
Binding of control relays, have been noted for continuously energized compact relays with plastic cases resulting in improper operation or failure to operate		Not discussed in report	Protection: IEEE 741, IEEE 338	Perform root cause failure evaluation, develop test method for thermally induced failure cause, see report for more rec. [2]	28, 29, 35, and 160	
The higher temperatures associated with continuously energized coils have caused failures of relay coils and bobbins resulting in improper operation or failure to operate.	Rare	Not discussed in report	Protection: IEEE 741, IEEE 338	Perform root cause failure evaluation, develop test method for thermally induced failure cause, see report for more rec. [2]	28, 29, 35, and 160	2
The higher temperatures associated with continuously energized coils have caused failures of relay bobbins resulting in relay having improper operation or failure to operate.	Rare	Not discussed in report	Protection: IEEE 741, IEEE 338	Perform root cause failure evaluation, develop test method for thermally induced failure cause, see report for more rec. [2]	28, 29, 35, and 160	3
continuously energized coils have caused failures of relay coils (assumed it includes coatings) resulting in improper operation or failure of relay.	Rare	Not discussed in report	Protection: IEEE 741, IEEE 338	Perform root cause failure evaluation, develop test method for thermally induced failure cause, see report for more rec. [2]	28, 29, 35, and 160	4
Change in shape due to thermal aging can cause binding or improper contact mating resulting in improper operation or failure of relay.	Rare	Not discussed in report	Protection: IEEE 741, IEEE 338	Perform root cause failure evaluation, develop test method for thermally induced failure cause, see report for more rec. [2]	28, 29, 35, and 160	5
Wear due to use and testing resulting in failure to make proper contact.	Rare	Not discussed in report	Protection: IEEE 741, IEEE 338	Perform root cause failure evaluation, develop test method for thermally induced failure cause, see report for more rec. [2]	28, 29, 35, and 160	6
Loose terminations can cause ohmic neating and burnout		Not discussed in report	Protection: IEEE 741, IEEE 338	Perform root cause failure evaluation, develop test method for thermally induced failure cause, see report for more rec. [2]	28, 29, 35, and 160	7
mproper operation or failure to operate.		Not discussed in report	Protection: IEEE 741 IEEE 338	Perform root cause failure evaluation, develop test method for	28, 29, 35, and 160	8

Page 12B

Document: NUREG/CR-4715, An Aging Assessment of Relays and Circuit Breakers and System Interactions Reviewed by: L.C. Meyer, INEL

_	n System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
Ę	9	Protective, Auxiliary, and Control Relays	Slip Motor Rotor	Aluminum disc & stainless steel shaft	Not stated	CONTAM	Metalic iron based particles can preven operation
10	0	Time Delay Relays	Case	Steel, Lexan, and phenolic	Not stated	THERM	Shape changes for lexan & phenolic
11	1	Time Delay Relays	timing Motor	Magent wire with formal varnish	Not stated	THERM	Same as other insulation varnish
12	2	Time Delay Relays	Relay	Silver	Not stated	WEAR	Wear with use
13	3	Time Delay Relays	Relay	Delrin, Zyteł, phenolic, & nylon.	Not stated	THERM	Oxidation of contacts
14	4	Time Delay Relays	Cams	Deirin & metal	Not stated	THERM & WEAR	Delrin may change shape, metal may
15	5	Time Delay Relays	Timing Circuits	Resistance and capacitance networks with solid state components	Not stated	Not stated	wear Not stated
16	5	Time Delay Relays	Timing Diaphragm (Applies to Pneumatic Relay Only)	Silicon rubber	Not stated	THERM	Material may take a set if not exercised periodically.
17		Solid State Relays	Solid state Components - SCRs & TRIAC	Not stated	Not stated	THERM, RAD, VOLSTR, CURSTR, & VIB.	Insulation degradation from therm & rad, fatique from vib.
18		Molded Case Circuit Breakers	Contacts, Trip Device, Spring, and Case	Not stated	GE, Westinghouse, & Gould	THERM, ELECT, MECH, & ENV.	Material vaporized, annealing birnetal, wear, friction & fat
19		Metal-Clad Circuit Breakers	Housing, Doors, Frame & Mechanisms	Steel, electroplated steel, & cast bronze	GE, Westinghouse, & Gould	CURSTR, VIB, FAT, & CORR.	Loose parts, component failure, stiffening of joints.
20		Metal-Clad Circuit Breakers	Mechanisms Lubricants	Molybenium disulfide & petroleum-based grease	Not stated	LOSLUB AND THERM	Dryout and hardening of lubricants
21		Metal-Clad Circuit Breakers	Contacts	Silver Alloy on copper base	GE, Westinghouse, & Gould	CURSTR, WEAR, THERM, AND CONTAM	Loss of material, wear, and contamination
22		Metal-Clad Cri cuit Breakers	Insulating Materials for Power Path	Polyester, glass fiber-filled epoxy resin, & phenolic	GE, Westinghouse, & Gould	THERM, EMBR, AND VOLSTR	Contamination, loss of dielectric properties, & leakage path
23	Safety Injection	Relays	See relay Subcomponent Descriptions	See relay material descriptions	GE & Agastat	VOLSTR, THERM, VIB, AND WEAR	Thermal stress, coil burnout, set point drift, & con. wear
24	Safety Injection		Molded Case and Metal-Clad Circuit Breakers	See CB detail descriptions	GE, Westinghouse, & Gould	ELECT, THERM, VIB, WEAR, & ENV	Loss of material, corr, & arcing evaporation of contacts

.

 Document:
 NUREG/CR-4715, An Aging Assessment of Relays and Circuit Breakers and System Interactions

 Reviewed by:
 L. C. Meyer, INEL

 Effect of Aging on Component Function Contrib to Failure
 Reported progs
 Rel.progs
 Report

g	Not discussed in		Perform root cause failure	28, 29,	
	report	Section 7, IEEE 338-198	evaluation, develop test method fo 7 thermally induced failure cause se	35 and	
			report for more rec. [2]		
	report	Safety related: IEEE 741, IEEE 338	evaluation, develop test method for thermally induced failure cause, se	28, 30, 35, & 36. e	T
Bare	Not discussed in	Cofeb			
	report	IEEE 741,	Not stated	30, 35, & 36.	Γ
Rare	Not discussed in		Not stated		
	report	IEEE 741,	NOT STATED	30, & 35	
Rare	Not discussed in		Notatatad		
	report	IEEE 741	NOTSTATED	30, & 35	
Rare	Not discussed in		Not stated		
1			Inor stated	30, & 35	1
. [
Rare	Not discussed in				Ĺ
	report	Safety related: IEEE 741, IEEE 338		30	
Rare	Not discussed in	Safety related	Netenad	<u> </u>	
	report	IEEE 741, IEEE 338	NOT STATED	30 & 36	
Occasional	Not discussed in	Cofebury Labor			
			Not stated	26, 27,	
	report			28, & 30.	
		IEEE 338			
Occasional	Not discussed in				
			Replace after two nuisance trips,	78, 83,	
	report		develop diagnostic techniques for	91, 97,99,	
		Specific	early detection of component failures. [2]	113, and 163	
Bare	Not diama di				
	report	IEEE 741. Others: No	inspection and cleaning after each interruption of a major fault. [2]	85, 98, 99, 100, & 163	1
Occasional	Not discussed in				
	report		nterruption of a major fault. [2]	99, 100, &	2
Occasional	Not discussed in	Vandor			
	report	programs ii	nterruption of a major fault. [2]	99, 100, 101, &	2
Occasional	Not discussed in	Vendor specific li	repection and elegation of		
	report	programs ir	nterruption of a major fault. [2]	99, 100, 101, &	2
Occasional	Not discussed in	IEE 741-1986			
	report	1	etection technique to date at a		23
			d and new failure to detect both	£ 160	
Occasional	Plant maintenance		amostic toob		
		Section 7 d	eveloped for use with physical	162 8	24
	Rare Rare Rare Rare Occasional Occasional Occasional Occasional Occasional Occasional	RareNot discussed in reportRareNot discussed in reportOccasionalNot discussed in reportOccasionalNot discussed in reportRareNot discussed in reportOccasionalNot discussed in report	Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Occasional Not discussed in report Safety related: IEEE 741, IEEE 338 Occasional Not discussed in report Safety related: IEEE 741, IEEE 338 Occasional Not discussed in report Safety related: IEEE 741, IEEE 338 Occasional Not discussed in report Safety related: IEEE 741, IEEE 741, IEEE 338 Occasional Not discussed in report Safety related: IEEE 741, Others: No specific Occasional Not discussed in r	Nate Not discussed in report Safety related: IEEE 741, IEEE 338 Perform root cause failure report for more rec. [2] Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Not stated Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Not stated Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Not stated Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Not stated Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Not stated Rare Not discussed in report Safety related: IEEE 741, IEEE 338 Not stated Rare Not discussed in report Safety related: IEEE 741, IEEE 741,	Not discussed in report Safety related: IEEE 741.1 IEEE 741

Page 13B

m	System	Structure/Comp		Materials	Manufacturer	ARD mechanism	ARD effects
1	Reactor Protection	Pressure	Seals	Ethylene propylene	Not stated	THERM, RAD,	Leaks
	System	Transmitter				MOIST-EL	
2	Reactor Protection System	Pressure Transmitter	Fill-Oil	Silicon	Not stated	THERM & RAD	Oil degradation
3	Reactor Protection	Pressure	Electronic	Epoxy glass	Not stated	THERM, RAD,	Drift and
	System	Transmitter	Components	laminate, seats, & insulation materials		MOIST-EL	subcomponent degradation
4	Reactor Protection System	Pressure Transmitter	Piping & Valves	Stainless steel	Not stated	CORR	Blockage, leaks
5	Reactor Protection System	Pressure Transmitter	Valve Packing	Not stated	Not stated	WEAR	Leaks
6	Reactor Protection	Strain Gage	Bourdon Tube,	EDPM, Nylon,	Not stated	RAD, THERM,	Resistance change,
	System	Pressure Transduce	Electronic Components, Seals & Wire	copper, tefzel, & steel		MOIST-EL, & CONTAM	tube blockage, and shunting
7	Reactor Protection System	Pressure Switch	Bellows, Switch Contacts, Seals & Wire	Copper	Not stated	THERM, MOIST- EL, CONTAM, WEAR	Wear, tube blockage, and contact resistance change
8	Reactor Protection System	Resistance Temperature Device	Sensing Wire, Insulator & Sheath	Platinum, aluminum oxide powder, and inconel X750 or stainless steel sheath	Not stated	RAD, THERM, AND MOIST-EL	Resistance change and shunting
9	Reactor Protection System	Nuclear Instrument	Nuclear Sensitive Ion Chamber	Not stated	Not stated	THERMAL-CY AND MOIST-EL	Degrades sensor, low resistance, and erratic output
10	Reactor Protection System	Electronic Modules	Various Electronic Components	Not stated	Not stated	FAT & VIB	Loss of fatigue resistance
11	Reactor Protection System	Relays	Coils and Contacts	Not stated	Not stated	WEAR, CONTAM, CORR, AND CURSTR	Contacts wear, foreign material bui up causes short ck
12	2 Reactor Protection System	Scram Breakers	Contacts, Under Volatge & Shunt Trip Attachments	Not stated	Westinghouse	WEAR	Contact wear, pin binding in uv attachent, lack of lubricant
13	3 Reactor Protection System	Control Cable	Conductor	#16 AWG copper except nuclear instruments sue RG11/CU Coax	Not stated	CORR, MOIST-EL, RAD, & WEAR	Mechanical damag & corrosion on terminations
14	4 Reactor Protection System	Control Cable	Insulation	Cross linked polyethylene and polyethylene	Not stated	MOIST-EL, RAD, & WEAR	Mechanical damag insulaton degradation, and lo ir

Document: NUREG/CR-4740, Nuclear Plant-Aging Research on Reactor Protection Systems Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functi Seal failure allows leaks leading to	Occasional	Not discussed in	Rel.progs	Report Recommendations	Page No. 15, 18,	1
transmitter drift and moisture intrusion.	Contraction			NOT STATED		
		report	1987, RG	1	61, 65, &	
			1.118, ISA		69	
			67.06, Tech			
			Spec			
Degradation or loss of fill-oil causes	Rare	Not discussed in	IEEE 338-	Not stated	18, & 62	
transmitter drift and signal variance from		report	1987, RG			
other channels.			1.118, ISA			
			67.06, Tech			
			Spec			
Components are subject to drift of zero &	Occasional	Not discussed in	IEEE 338-	Not stated	18, 65, &	
span set points, and ultimate failure,		report	1987, RG	NOT STATED		
resulting in loss of data channel.		liebou			70	
			1.118, ISA			
			67.06, Tech			
Dis alter and the second se	<u></u>		Spec			i
Biockage causes degraded channel	Occasional	Not discussed in	IEEE 338-	Not stated	17, 19,28,	
operation, components are subject to		report	1987, RG		42. & 69	
oss of calibration, resulting in loss of data			1.118 ISA		,	
channel.			67.06, Tech			
			Spec		1 .	
Components are subject to loss of	Occasional	Not discussed in	IEEE 338-	Not stated		
calibration, resulting in loss of data	- Concisional			INOL STALEO	65	'
		report	1987, RG			
channel.			1.118, ISA			
			67.06, Tech		1 1	
			Spec		1	
Sensing element resistance change due	Occasional	Not discussed in	IEEE 338-	Not stated	15, 17,	e
o radiation, seal failure allows moisture to		report	1987, RG		48, & 69	
get into connectors that lead to shunting			1.118, ISA		40, 0. 09	
signal, foreign material blocks sensing	1					
ube.			67.06, Tech			
		_	Spec			
Wear leads to switch failure, seal failure	Occasional	Not discussed in	IEEE 338-	Not stated	17, 34,	7
allows moisture to get into connectors that		report	1987, RG		37, 49, &	
ead to shunting signal, foreign material			1.118, ISA		65	
blocks sensing tube.			67.06, Tech		~	
· · · · · · · · · · · · · · · · · · ·			Spec			
Sensing element resistance change due	Rare	Not discussed in			+	
o radiation, seal failure allows moisture to	1000	1	IEEE 338-	Not stated	17. 19,	8
b radiation, seal ratiure allows moisture to		report	1987, RG		27, 32, &	
et into sensor and moisture causes			1.118, ISA		70	
hunting of signal.			67.06, Tech			
			Spec			
ransmitter becomes noisy or erratic, also	Rare	Not discussed in	IEEE 338-	Not stated	19, 20,	0
ow insulation resistance (few problems		report	1987, RG			3
eported).		iopon	1.118, ISA		27, 33,	
		1			65, & 66	
			67.06, Tech		1 1	
			Spec			
mail system components such as	Occasional	Not discussed in	IEEE 338-	Not stated	27, 29-33,	10
ansistors, capacitors, logic elements,		report	1987, RG		35-37, 42-	
erminals and wire connectors are subject			1.118, ISA		45, 47-49	
mechanical fatigue-related failures due			67.06, Tech		65. & 70	
vibration, most failures are catastropic			Spec		^{35, a} / 0	
ith unknown cause.			Chac		1 1	i
ticking armature, open or short circuits	Occasional	Not discuss and in			<u> </u>	
the sell of the electronic circuits	Occasional	Not discussed in	IEEE 338-	Not stated	11, 13, B-	11
the coil of the electromagnet, and		report	1987, RG	1	7, & C-3	i
ontact degradation causes failure to			1.118, ISA		1 1	
anction.		1	67.06, Tech		1	
			Spec		1 1	
creased friction, nicking of latch	Occasional	Not discussed in	IEEE 338-	Not stated		4.0
urfaces caused by repeated opeations.				Not stated	66, 70,	12
inding and friction causes degraded		report	1987, RG	i	and	
•			1.118, ISA		Appendix	
peration or failure to operate.			67.06, Tech	1	В	
			Spec	.1	1 1	
crease in series resistance and loose	Rare	Not discussed in	No specific	Further research is needed to	20, 21,	13
onnections cause failure to accurately		report	program	determine if improved maintenance		.3
onduct current		1	p		23, 48, &	
			1	and new predictive techniques are	70	
actos sort insulation register of design	Para	Not discuss		needed. [4]		
ecreased insulation resistance damage	Rare	Not discussed in	No specific	Further research is needed to	20, 21,	14
ue to handling will accelerate aging and		report	program	determine if improved maintenance	23, 48, &	
sult in cable failing to accurately			-	and new predictive techniques are	70	
		,	1		1.~	
ansmit voltage and current.		1		needed. [4]	1 1	

Page 15A

Document: NUREG/CR-4740, Nuclear Plant-Aging Research on Reactor Protection Systems Reviewed by: L. C. Meyer, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	Reactor Protection System	Control Cable	Jacket	Neoprene and galvanized steel except nuclear cable had PVC and galvanized steel	Not stated	CORR, MOIST-EL, RAD, EMBR, & WEAR	Loss of material, attrition, and insulation degradation
16	Reactor Protection System	Cable Penetrations	Assembly, Seals, Cable, Connectors, & Inert Gas	SS, brass, elastomer, insul. Matl, polysulfone, polyolefin, gold plated copper	Not stated	CORR, MOIST-EL, & RAD	Loss of material, insulation degradation, loss of fill gass
17	Reactor Protection System		Transmitters, Electronic Modules, Cables, Breakers	See components	B&W	CORR, RAD, VIB, CURSTR, THERM, & CONTAM	See components

Document: NUREG/CR-4747 V1, An Aging Failure Survey of LWR Safety Systems and Components Reviewed by: L. C. Meyer, INEL

		Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects	
1	Four Systems			Not stated	Not stated	Not stated		-
	Covered (Same as				NOT STATED	NOTSTATED		
	Volume 2)		1					
L	<u> </u>	1						

System			Materials	Manufacturer	ARD mechanism	ARD effects
System	AC Circuit Breakers	Not stated	Not stated	Not stated	CONTAM	Buildup of deposits
Auxiliary Feedwater System	AC Circuit Breakers	Not stated	Not stated	Not stated	WEAR	Attrition
Auxiliary Feedwater System	AC Circuit Breakers	Not stated	Not stated	Not stated	VIBR	Loosening
Auxiliary Feedwater System	Flow Controllers	Not stated	Not stated	Not stated	CLOG	Flow blockage
Auxiliary Feedwater System	Flow Controllers	Not stated	Not stated	Not stated	Not stated	Loss of performanc
Auxiliary Feedwater System	Flow Controllers	Not stated	Not stated	Not stated	Not stated	Drift, contact failure module failure, or elect. failure
Auxiliary Feedwater System	Flow Control Recorders	Not stated	Not stated	Not stated	WEAR	Attrition
Auxiliary Feedwater System	Flow Control Recorders	Not stated	Not stated	Not stated	Not stated	Loss of performance
Auxiliary Feedwater System	Flow Transmitters	Not stated	Not stated	Not stated	CONTAM	Buildup of deposites causing erroneous/erratic signals
Auxiliary Feedwater System	Flow Transmitters	Not stated	Not stated	Not stated	Not stated	Out of calibration, drift, or module faulty
	Auxiliary Feedwater System Auxiliary Feedwater System Auxiliary Feedwater System Auxiliary Feedwater System Auxiliary Feedwater System Auxiliary Feedwater System Auxiliary Feedwater System Auxiliary Feedwater System Auxiliary Feedwater System Auxiliary Feedwater System	Auxiliary Feedwater SystemAC Circuit BreakersAuxiliary Feedwater SystemAC Circuit BreakersAuxiliary Feedwater SystemAC Circuit BreakersAuxiliary Feedwater SystemFlow ControllersAuxiliary Feedwater SystemFlow ControllersAuxiliary Feedwater SystemFlow ControllersAuxiliary Feedwater SystemFlow ControllersAuxiliary Feedwater SystemFlow ControllersAuxiliary Feedwater SystemFlow ControllersAuxiliary Feedwater SystemFlow Control RecordersAuxiliary Feedwater SystemFlow Control RecordersAuxiliary Feedwater SystemFlow Control RecordersAuxiliary Feedwater SystemFlow Control RecordersAuxiliary Feedwater SystemFlow Control RecordersAuxiliary Feedwater SystemFlow TransmittersAuxiliary Feedwater SystemFlow Transmitters	Auxiliary Feedwater SystemAC Circuit Breakers Ac Circuit BreakersNot statedAuxiliary Feedwater SystemAC Circuit Breakers AC Circuit BreakersNot statedAuxiliary Feedwater SystemAC Circuit Breakers Flow ControllersNot statedAuxiliary Feedwater SystemFlow Controllers Flow ControllersNot statedAuxiliary Feedwater SystemFlow Controllers Flow ControllersNot statedAuxiliary Feedwater SystemFlow Controllers Flow ControllersNot statedAuxiliary Feedwater SystemFlow Controllers RecordersNot statedAuxiliary Feedwater SystemFlow Control RecordersNot statedAuxiliary Feedwater SystemFlow Control RecordersNot statedAuxiliary Feedwater SystemFlow Control RecordersNot statedAuxiliary Feedwater SystemFlow Control RecordersNot statedAuxiliary Feedwater SystemFlow Transmitters Not statedNot stated	Auxiliary Feedwater System AC Circuit Breakers Not stated Not stated Auxiliary Feedwater System AC Circuit Breakers Not stated Not stated Auxiliary Feedwater System AC Circuit Breakers Not stated Not stated Auxiliary Feedwater System AC Circuit Breakers Not stated Not stated Auxiliary Feedwater System Flow Controllers Not stated Not stated Auxiliary Feedwater System Flow Control Recorders Not stated Not stated Auxiliary Feedwater System Flow Control Recorders Not stated Not stated Auxiliary Feedwater System Flow Transmitters Not stated Not stated Auxiliary Feedwater Flow Transmitters Not stated Not stated	Auxiliary Feedwater AC Circuit Breakers Not stated Not stated Not stated Auxiliary Feedwater AC Circuit Breakers Not stated Not stated Not stated Auxiliary Feedwater AC Circuit Breakers Not stated Not stated Not stated Auxiliary Feedwater AC Circuit Breakers Not stated Not stated Not stated Auxiliary Feedwater AC Circuit Breakers Not stated Not stated Not stated Auxiliary Feedwater Flow Controllers Not stated Not stated Not stated Auxiliary Feedwater Flow Controllers Not stated Not stated Not stated Auxiliary Feedwater Flow Controllers Not stated Not stated Not stated Auxiliary Feedwater Flow Controllers Not stated Not stated Not stated Auxiliary Feedwater Flow Control Not stated Not stated Not stated Auxiliary Feedwater Flow Control Rot stated Not stated Not stated Auxiliary Feedwater Flow Control Rot stated Not stated Not stated Auxiliary Feedwater Flow Tran	Audilary Feedwater System AC Circuit Breakers Not stated Not stated Not stated Not stated CONTAM Audilary Feedwater System AC Circuit Breakers Not stated Not stated Not stated CONTAM Audilary Feedwater System AC Circuit Breakers Not stated Not stated Not stated WEAR Audilary Feedwater System AC Circuit Breakers Not stated Not stated Not stated VIBR Audilary Feedwater System Flow Controllers Not stated Not stated Not stated Not stated CLOG Audilary Feedwater System Flow Controllers Not stated Not stated Not stated Not stated Not stated Not stated Audilary Feedwater System Flow Controllers Not stated Not stated Not stated Not stated Not stated Not stated Audilary Feedwater System Flow Control Recorders Not stated Not stated Not stated Not stated Not stated Audilary Feedwater System Flow Control Recorders Not stated Not stated Not stated Not stated Not stated Audilary Feedwater System Flow

Document: NUREG/CR-4740, Nuclear Plant-Aging Research on Reactor Protection Systems Reviewed by: L C. Meyer, INEL

Effect of Aging on Component Function	on Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Failure to protect cable insulation and conductors.	Occasional	Not discussed in report	No specific program	Further research is needed to determine if improved maintenance and new predictive techniques are needed. [4]	20, 21, & 48	15
Radiation causes embrittlement and insulation degradation, corrosion causes material degradation and material build up, leaking seal allow loss of fill gas and then moisture intrusion resulting in failure to accurately transmit voltage and current.	Rare	Not discussed in report	No specific program	Further research is needed to determine if improved maintenance and new predictive techniques are needed. [2]	20 & 23	16
See components	Rare	Not discussed in report	IEE 338-1987, RG 1.118, ISA 67.06, Tech. Spec	Further research is needed to determine if improved maintenance and new predictive techniques are needed. [2]	IV, 69, & A-16	17

Document: NUREG/CR-4747 V1, An Aging Failure Survey of LWR Safety Systems and Components Reviewed by: L.C. Meyer, INEL

Effect of Aging on Component Function		Reported progs	Rel.progs	Report Recommendations	Page No.	ltern
The aging information in Volume 1 is the	Not stated	Not discussed in	N/A	Not stated		1
same as that covered in the Volume 2		report				
teveiw.						1

Effect of Aging on Component Function			Rel.progs	Report Recommendations	Page No.	Iten
Fails to close	Rare	Not discussed in report	IEE 741-1986 Section 7	Not stated	F-20	Γ
Failure to operate - the circuit breaker does not function property, either fails to open or fails to close on demand.	Occasional	Not discussed in report	IEE 741-1986 Section 7	Not stated	F-20	
Failure to operate - the circuit breaker does not function properly, either fails to open or fails to close on demand.	Rare	Not discussed in report	IEE 741-1986 Section 7	Not stated	F-20	
Erroneous or erraric signals - erroneous or erraric signals are produced by the instrument because of foreign material intrusion.	Rare	Not discussed in report	IEEE 338- 1987, Tech. Spec. requirements	Not stated	F-21	ŕ
Erroneous or erratic signals - erroneous or erratic signals are produced by the instrument due to faulty module or loss of calibration.	Rare	Not discussed in report	IEEE 338- 1987, Tech. Spec. requirements	Not stated	F-21	
Failure to operate	Rare	Not discussed in report	IEEE 338- 1987, Tech. Spec. requirements	Not stated	F-21	e
Erroneous/erratic signals - erroneous erratic signals are produced by the instrument.	Rare	Not discussed in report	IEEE 338- 1987, Tech. Spec. requirements	Not stated	F-22	7
Erroneous/erratic signals - erroneous erratic signals are produced by the instrument being out of calibration.	Rare	Not discussed in report	IEEE 338- 1987, Tech. Spec. requirements	Not stated	F-22	8
Eroneous or erratic signals are produced by the instrument	Rare	Not discussed in report	IEEE 338- 1987, RG 1.118, ISA 67.06, Tech Spec	Not stated	F-23	9
Loss of performance	Occasional	Not discussed in report	IEEE 338- 1987, RG 1.118, ISA 67.06, Tech Spec	Not stated	F-23	10

	System 1 Auxiliary Feedwater	Structure/Comp Flow Transmitters	Subcomponent		Manufacturer	ARD mechanis	
1	System	Flow Transmitters	Not stated	Not stated	Not stated	WEAR	Attrition
12	2 Auxiliary Feedwater System	Level Control Indicators	Not stated	Not stated	Not stated	Not stated	Erroneous/erratic signals
13	Auxiliary Feedwater System	Level Control Indicators	Not stated	Not stated	Not stated	FAT	Cumulative fatigue damage
14	Auxiliary Feedwater System	Level Control Indicators	Not stated	Not stated	Not stated	WEAR	Attrition
15	Auxiliary Feedwater System	Level Control Indicators	Not stated	Not stated	Not stated	Not stated	Loss of performanc or end of life
16	Auxiliary Feedwater System	Level Controllers	Not stated	Not stated	Not stated	Not stated	Erroneous/erratic signals
17	Auxiliary Feedwater System	Level Controllers	Not stated	Not stated	Not stated	FAT	Cumulative fatigue damage
18	Auxiliary Feedwater System	Level Controllers	Not stated	Not stated	Not stated	Not stated	Loss of performanc
19	Auxiliary Feedwater System	Pressure Switch	Not stated	Not stated	Not stated	CONTAM	Buildup of deposits
20	Auxiliary Feedwater System	Pressure Switch	Not stated	Not stated	Not stated	Not stated	Loss of performance
21	Auxiliary Feedwater System	Pressure Switch	Not stated	Not stated	Not stated	WEAR	Attrition
22	Auxiliary Feedwater System	Pressure Switch	Not stated	Not stated	Not stated	CORR	Loss of material
	Auxiliary Feedwater System	Pressure Switch	Not stated	Not stated	Not stated	CURSTR	Arcing, material attrition, and carbon deposits
	Auxiliary Feedwater System	Pressure Transmitter	Not stated	Not stated	Not stated	Not stated	Loss of performance

Effect of Aging on Component Funct Failure to operate	Rare	Not discussed in	Rel.progs	Report Recommenda		-
				NOT STATED	F-23	1
		report	1987, RG			
			1.118, ISA			
			67.06, Tech			1
			Spec			
Out of calibration or faulty module related	Rare	Not discussed in	IEEE 338-	Not stated	F-27	12
to aging.		report	1987, RG			
		1.	1.118, ISA			
			67.06 Tech	1		1
		1	Spec			
Failure to operate	Rare	Not discussed in	IEEE 338-	Not stated	F-27	1:
		report	1987, RG	inor stated	1-2/	1
		report	1.118, ISA			
		1	67.06, Tech			1
Failure to operate	Bare		Spec			L
	Rare	Not discussed in	IEEE 338-	Not stated	F-27	14
		report	1987, RG			
			1.118, ISA			1
			67.06, Tech			1
			Spec			
Failure to operate because of end of life o	r Rare	Not discussed in	IEEE 338-	Not stated	F-27	15
faulty module related to aging.		report	1987, RG			1
		1	1.118, ISA	Í		1
			67.06, Tech			
					i i i i i i i i i i i i i i i i i i i	
Loss of performance due to out of	Rare	Not discussed in	Spec	Not abota d		<u> </u>
calibration or faulty module			IEEE 338-	Not stated	F-28	16
calibration of faulty module		report	1987, RG			
	1		1.118, ISA			
	ľ		67.06, Tech			
			Spec			
ailure to operate	Rare	Not discussed in	IEEE 338-	Not stated	F-28	17
		report	1987, RG		1.22	
			1.118, ISA			
			67.06, Tech			
			Spec			
alure to operate due to faulty module	Rare	Not discussed in				
			IEEE 338-	Not stated	F-28	18
elated to aging.		report	1987, RG		i i	
			1.118, ISA			
			67.06, Tech			
			Spec	-		
rroneous or erratic signals are produced	Rare	Not discussed in	IEEE 338-	Not stated	F-38	19
by the instrument.		report	1987, RG			
		1	1.118, ISA			
			67.06, Tech			
				l l		
rroneous signals are produced by the	Casasianal	Alex allo aver a set in	Spec			
	Occasional	Not discussed in	IEEE 338-	Not stated	F-38	20
nstrument because of out of calibration		report ,	1987, RG	1		
			1.118, ISA	1		
	1		67.06, Tech			
			Spec			
ailure to operate	Rare	Not discussed in	IEEE 338-	Not stated	F-38	21
	-	report	1987, RG		1-50	2'
			1.118, ISA			
			67.06, Tech			1
			Spec			
ailure to operate	Rare	Alet discussed in				_
	nare	Not discussed in	IEEE 338-	Not stated	F-38	- 22
		report	1987, RG			
			1.118, ISA			
			67.06, Tech			
······································			Spec	· ·	1 1	ł
ailure to operate	Rare	Not discussed in	IEEE 338-	Not stated	F-38	23
		report	1987, RG		30	23
			1.118, ISA			
				1		
			67.06, Tech	1		
	Dere	Ales discuss of t	Spec			
roneous signals are produced by the	Rare	Not discussed in	IEEE 338-	Not stated	F-39	24
strument due to out of calibration or		report	1987, RG	1		
ulty module.		1	1.118, ISA			
			67.06, Tech	1		1

Auxiliary Feedwater	Pressure	Not stated	high states	L blat state of		A as1s1
System	Transmitter	NOT STATED	Not stated	Not stated	WEAR	Attrition
Auxiliary Feedwater System	Pressure Transmitter	Not stated	Not stated	Not stated	Not stated	Open circuit
Auxiliary Feedwater System	Relays	Not stated	Not stated	Not stated	WEAR	Attrition
Auxiliary Feedwater System	Relays	Not stated	Not stated	Not stated	Not stated	Loss of function
Auxiliary Feedwater System	Relays	Not stated	Not stated	Not stated	WEAR	Attrition
Chemical and Volume Control System	AC Circuit Breakers	Not stated	Not stated	Not stated	FAT	Cumulative fatigue damage
Chemical and Volume Control System	Heat Tracing Heaters	Not stated	Not stated	Not stated	CORR	Loss of material
Chemical and Volume Control	Heat Tracing Heaters	Not stated	Not stated	Not stated	Not stated	Abnormal resistance or aging related set
Chemical and Volume Control System	Level Controllers	Not stated	Not stated	Not stated	FAT	point drift. Cumulative fatigue damage
Chemical and Volume Control System	Level Controllers	Not stated	Not stated	Not stated	Not stated	Loss of performanc
Chemical and Volume Control System	Level Transmitters	Not stated	Not stated	Not stated	Not stated	Loss of performanc
Class 1E DC Power Supply System	Batteries	Not stated	Not stated	Not stated	Not stated	Cause accelerated aging, not hold charge, or end of life
Class 1E DC Power Supply System	Battery	Not stated	Not stated	Not stated	WEAR	Attrition
Class 1E DC Power Supply System	Battery	Not stated	Not stated	Not stated	CONTAM	Buildup of deposits
Class 1E DC Power Supply System	Battery	Not stated	Not stated	Not stated	Not stated	Loss of performanc
Class 1E DC Power Supply System	AC Circuit Breaker	Not stated	Not stated	Not stated	WEAR	Attrition
Emergency On-Site Power Supply System	Diesel Generator	Not stated	Not stated	Not stated	Not stated	Loss of performance
	System Auxiliary Feedwater System Auxiliary Feedwater System Auxiliary Feedwater System Auxiliary Feedwater System Chemical and Volume Control System Chemical and Volume Control System Class 1E DC Power Supply System Class 1E DC Power Supply System	SystemTransmitterAuxiliary Feedwater SystemPressure TransmitterAuxiliary Feedwater SystemRelaysAuxiliary Feedwater SystemRelaysAuxiliary Feedwater SystemRelaysAuxiliary Feedwater SystemRelaysAuxiliary Feedwater SystemRelaysChemical and Volume Control SystemAC Circuit BreakersChemical and Volume Control SystemHeat Tracing HeatersChemical and Volume Control SystemLevel ControllersChemical and Volume Control SystemLevel ControllersChemical and Volume Control SystemLevel ControllersChemical and Volume Control SystemLevel ControllersChemical and Volume Control SystemLevel TransmittersChemical and Volume Control SystemLevel TransmittersClass 1E DC Power Supply SystemBatteriesClass 1E DC Power Supply SystemBatteryClass 1E DC Power Supply SystemBatteryClass 1E DC Power Supply SystemBatteryClass 1E DC Power Supply SystemBatteryClass 1E DC Power Supply SystemAC Circuit BreakerClass 1E DC Power Supply SystemAC Circuit BreakerClass 1E DC Power Supply SystemDiesel GeneratorClass 1E DC Power Supply SystemDiesel Generator	SystemTransmitterAuxiliary Feedwater SystemPressure TransmitterNot statedAuxiliary Feedwater SystemRelaysNot statedAuxiliary Feedwater SystemRelaysNot statedAuxiliary Feedwater SystemRelaysNot statedAuxiliary Feedwater SystemRelaysNot statedChemical and Volume Control SystemAC Circuit BreakersNot statedChemical and Volume Control SystemHeat Tracing HeatersNot statedChemical and Volume Control SystemLevel ControllersNot statedChemical and Volume Control SystemLevel TransmittersNot statedChemical and Volume Control SystemLevel TransmittersNot statedClass 1E DC Power Supply SystemBatteriesNot statedClass 1E DC Power Supply SystemBatteryNot statedClass 1E DC Power Supply SystemBatteryNot statedClass 1E DC Power Supply SystemAC Circuit Breaker AC Circuit BreakerNot statedClass 1E DC Power Supply SystemAC Circuit Breaker Ac Circuit BreakerNot statedClass 1E DC Power Supply SystemDiesel GeneratorNot stated <td>System Transmitter Not stated Not stated Auxiliary Feedwater System Pressure Transmitter Not stated Not stated Auxiliary Feedwater System Relays Not stated Not stated Chemical and Volume Control System AC Circuit Breakers Not stated Not stated Chemical and Volume Control System Heat Tracing Heaters Not stated Not stated Chemical and Volume Control System Level Controllers Not stated Not stated Chemical and Volume Control System Level Controllers Not stated Not stated Chemical and Volume Control System Level Transmitters Not stated Not stated Chemical and Volume Control System Level Transmitters Not stated Not stated Chemical and Volume Control System Level Transmitters Not stated Not stated Chemical and Volume Control System Level Transmitters Not stated Not stated Chemical and Volume Cont</td> <td>System Transmitter Not stated Not stated Auxiliary Feedwater System Pressure Transmitter Not stated Not stated Auxiliary Feedwater System Relays Not stated Not stated Chemical and Volume Control System Ac Circuit Breakers Not stated Not stated Chemical and Volume Control System Heat Tracing Not stated Not stated Chemical and Volume Control System Heat Tracing Not stated Not stated Chemical and Volume Control System Level Controllers Not stated Not stated Chemical and Volume Control System Level Controllers Not stated Not stated Chemical and Volume Control System Level Transmitters Not stated Not stated Chemical and Volume Control System Level Transmitters Not stated Not stated Chemical and Volume Control Level Transmitter</br></br></br></br></br></br></br></td> <td>System Transmitter Introduct Not stated Not stated Not stated Audiary Feedwater System Pressure Transmitter Not stated Not stated Not stated Not stated Not stated Audiary Feedwater System Relays Not stated Not stated Not stated Not stated WEAR Audiary Feedwater System Relays Not stated Not stated Not stated Not stated Not stated Audiary Feedwater System Relays Not stated Not stated Not stated Not stated Not stated Audiary Feedwater System Relays Not stated Not stated Not stated Not stated Audiary Feedwater System Relays Not stated Not stated Not stated Not stated Chemical and Volume Control System Heat Tracing Heaters Not stated Not stated Not stated Not stated Not stated Chemical and Volume Control Level Controllers Not stated Not stated Not stated Not stated Chemical and Volume Control Level Controllers <t< td=""></t<></td>	System Transmitter Not stated Not stated Auxiliary Feedwater System Pressure Transmitter Not stated Not stated Auxiliary Feedwater System Relays Not stated Not stated Chemical and Volume Control System AC Circuit Breakers Not stated Not stated Chemical and Volume Control System Heat Tracing Heaters Not stated Not stated Chemical and Volume Control System Level Controllers Not stated Not stated Chemical and Volume Control System Level Controllers Not stated Not stated Chemical and Volume Control System Level Transmitters Not stated Not stated Chemical and Volume Control System Level Transmitters Not stated Not stated Chemical and Volume Control System Level Transmitters Not stated Not stated Chemical and Volume Control System Level Transmitters Not stated Not stated Chemical and Volume Cont	System Transmitter Not stated Not stated Auxiliary Feedwater System Pressure Transmitter Not stated Not stated Auxiliary Feedwater System Relays Not stated Not stated Chemical and Volume Control System Ac Circuit Breakers Not stated Not stated Chemical and Volume Control System Heat Tracing Not stated Not stated Chemical and Volume Control System Heat Tracing Not stated Not stated Chemical and Volume Control System Level Controllers Not stated Not stated Chemical and 	System Transmitter Introduct Not stated Not stated Not stated Audiary Feedwater System Pressure Transmitter Not stated Not stated Not stated Not stated Not stated Audiary Feedwater System Relays Not stated Not stated Not stated Not stated WEAR Audiary Feedwater System Relays Not stated Not stated Not stated Not stated Not stated Audiary Feedwater System Relays Not stated Not stated Not stated Not stated Not stated Audiary Feedwater System Relays Not stated Not stated Not stated Not stated Audiary Feedwater System Relays Not stated Not stated Not stated Not stated Chemical and Volume Control System Heat Tracing Heaters Not stated Not stated Not stated Not stated Not stated Chemical and Volume Control Level Controllers Not stated Not stated Not stated Not stated Chemical and Volume Control Level Controllers <t< td=""></t<>

_ _

Effect of Aging on Component Function			Rel.progs	Report Recommendations	Page No	_
Failure to open - failure to operate	Rare	Not discussed in report	IEEE 338- 1987, RG 1.118, ISA	Not stated	F-39	25
			67.06, Tech Spec			
Failure to operate	Rare	Not discussed in	IEEE 338-	Not stated	F-39	26
		report	1987, RG 1.118, ISA 67.06, Tech			
	Rare	Not discussed in	Spec Vendor	Not stated	F-40	27
Fails to open - failure of a normally closed relay to open upon demand because of binding, or wear	nare	report	specific, NEMA PE 5, IEC 146-			
Failure to operate because of dritt or insulation breakdown related to aging.	Rare	Not discussed in report	Vendor specific, NEMA PE 5, IEC 146- 2	Not stated	F-40	28
Failure to operate	Rare	Not discussed in report	Vendor specific, NEMA PE 5, IEC 146- 2	Not stated	F-41	29
Failure to operate - the circuit breaker	Rare	Not discussed in	ANSI/IEEE	Not stated	F-47	30
does not function properly, either fails to open or fails to close on demand.		report	741-1986 Section 7			
Loss of function	Rare	Not discussed in report	No specific program	Not stated	F-48	31
Loss of function	Rare	Not discussed in report	No specific program	Not stated	F-48	32
Erroneous or erratic signals are produced	Rare	Not discussed in	IEEE 338-	Not stated	F-49	33
by the instrument.		report	1987, RG 1.118, ISA 67.06			
Erroneous or erratic signals are produced by the instrument because of being out of calibration.	Occasional	Not discussed in report	IEEE 338- 1987, RG 1.118, ISA 67.06	Not stated	F-49	34
Erroneous or erratic signals are produced by the instrument because of being out of calibration or faulty module.	Occasional	Not discussed in report	IEEE 338- 1987, RG 1.118, ISA 67.06	Not stated	F-50	35
Loss of function - lack of specified output from batteries	Occasional	Not discussed in report	IEEE 450- 1987, RG 1.129, Tech Spec Surveil.	Not stated	F-56	36
Loss of function - inability of the charging unit to perform its function to specifications.	Rare	Not discussed in report	Vendor specific, NEMA PE 5, IEC 146- 2	Not stated	F-57	37
Loss of function - inability of the charging unit to perform its function to specifications.	Rare	Not discussed in report	Vendor specific, NEMA PE 5, IEC 146- 2	Not stated	F-57	38
Loss of function - inability of the charging unit to perform its function to specifications because of set point drift or faulty module.	Frequent	Not discussed in report	Vendor specific, NEMA PE 5, IEC 146- 2	Not stated	F-57	39
Failure to operate - the circuit breaker does not function property, either fails to	Occasional	Not discussed in report		Not stated	F-58	40
open or fails to close on demand. Failure to perform as expected because of aging related component drift or out of calibration.	Rare	Not discussed in report	Vendor specific, RG 1.108, Tech. Specs.	Not stated	F-61	41

Page 18A

Document: NUREG/CR-4747 V2, An Aging Failure Survey of Light Water Reactor Safety Systems and Components (Electrical) Reviewed by: L. C. Meyer, INEL Item System Structure/Comp. Subcomponents at the date

	n System	Structure/Comp	Subcomponent	Materials	Manufactures		
4	2 Emergency On-Site	e Diesel Generator	Not stated	Not stated	Manufacturer	ARD mechanism Not stated	ARD effects
	Power Supply System					NUTSTALLED	Loss of function
4	3 CLASS 1E Instrumentation, Uninterruptable Power Supply System	AC Circuit Breaker	Not stated	Not stated	Not stated	WEAR	Attrition
4	CLASS 1E Instrumentation, Uninterruptable Power Supply System	Inverter	Not stated	Not stated	Not stated	WEAR	Attrition
45	CLASS 1E Instrumentation, Uninterruptable Power Supply System	Invertor	Not stated	Not stated	Not stated	Not stated	Loss of function
46	CLASS 1E Instrumentation, Uninterruptable Power Supply System	Inverter	Not stated	Not stated	Not stated	Not stated	Loss of performanc
	High Pressure Injection System	AC Circuit Breakers	Not stated	Not stated	Not stated	FAT	Cumulative fatigue damage
48	High Pressure Injection System	AC Circuit Breakers	Not stated	Not stated	Not stated	WEAR	Attrition
49	High Pressure Injection System	AC Circuit Breakers	Not stated	Not stated	Not stated	Not stated	Los of performance
	High Pressure Injection System	Flow Transmitter	Not stated	Not stated	Not stated	Not stated	Cause accelerated aging
	High Pressure Injection System	Flow Transmitter	Not stated	Not stated	Not stated	Not stated	Loss of performance
	High Pressure Injection System	Flow Transmitter	Not stated	Not stated	Not stated	FAT	Cumulative fatigue damage
	High Pressure Injection System	Flow Transmitter	Not stated	Not stated	Not stated	WEAR	Attrition
	High Pressure njection System High Pressure	Heat Tracing Heaters	Not stated	Not stated	Not stated	CORR	Loss of material
ľ	njection System	Heat Tracing Heaters	Not stated	Not stated	Not stated	Not stated	Winding failure, open, short, or high resistance
ľ	njection System	Load Sequence Controliers	Not stated	Not stated	Not stated	Not stated	End of life
		Load Sequence Controllers	Not stated	Not stated	Not stated	CONTAM	Builup of deposits
		Load Sequence Controllers	Not stated	Not stated	Not stated	Not stated	Loss of performance
	ligh Pressure njection System	Level Transmitters	Not stated	Not stated	Not stated	Not stated	Loss of performance
	I	Pressure Transmitter	Not stated	Not stated	Not stated	Not stated	Loss of performance
	ervice Water ystem	AC Breakers	Not stated	Not stated	Not stated		Fatigue accumulative damaces

Document: NUREG/CR-4747 V2, An Aging Failure Survey of Light Water Reactor Safety Systems and Components (Electrical) Reviewed by: L C. Meyer, INEL Effect of Aging on Component Function Contrib to Failure Reported progs. Rel progs. Report Research and Component Function Contribution Contributication C

Failure due to open circuit.	Rare	Not discussed in	Rei.progs	Report Recommenda	tions Page N	II
		report	specific, RG 1.108, Tech. Specs.		F-61	
Failure to operate - the circuit breaker	Rare	Not discussed in		86 Not stated		
does not function properly, either fails to open or fails to close on demand.		report	Section 7		F-63	
Loss of function - the inverter fails to	Occasional	Not discussed in	Vondor an or	fic Not stated		
perform its intended function to specifie requirements.	a	report	programs. Tech. Specs.		F-64	
The inverter fails to perform its intended	Occasional					
function to specified requirements due to electrical failure, insulation breakdown, open or short circuit related to aging.		Not discussed in report	Vendor speci programs. Tech. Specs.	fic Not stated	F-64	
The inverter has degraded operation	Occasional	Not discussed in	Vendor specif	ic Not stated		+-
because of aging related drift or faulty nodules.		report	programs. Tech. Specs.		F-64	
ailure to operate - the circuit breaker	Occasional	Not discussed in	IEEE 741-198	6 Not stated		1
loes not function property, either fails to pen or fails to close on demand.		report	Section 7		F-66	
ailure to operate - the circuit breaker loes not function property, either fails to pen or fails to close on demand.	Occasional	Not discussed in report	IEEE 741-198 Section 7	6 Not stated	F-66	+-
ailure to operate - the circuit breaker	Rare	Not discussed in	IEEE 741-198	5 Not stated	F-66	⊢
oes not function properly, either fails to pen or fails to close on demand because f a faulty module.		report	Section 7		00	
rroneous or erratic signals are produced y the instrument	Rare	Not discussed in report	IEEE 338- 1987, RG	Not stated	F-67	-
rroneous or erratic signals are produced			1.118			
/ the instrument because out of Nibration.	Occasional	Not discussed in report	IEEE 338- 1987, RG 1.118	Not stated	F-67	5
ailure to operate	Rare	Not discussed in report	IEEE 338- 1987, RG	Not stated	F-67	5
ulure to operate	Rare	Not discussed in	1.118 IEEE 338-			
		report	1987, RG	Not stated	F-67	5
ss of function	Rare	Not discussed in	No specific	Not stated	F-71	5
ss of function	Occasional	Not discussed in	program			5
		report	No specific program	Not stated	F-71	5
roneous or erratic signals	Rare	Not discussed in	IEEE 338-	Not stated		
		report	1987, RG	NOT STATED	F-72	56
ilure to operate	Occasional	Not discussed in	IEEE 338-	Not stated	F-72	57
		report	1987, RG 1.118			5/
lure to operate because of faulty dule	Occasional	Not discussed in report	IEEE 338- 1987, RG	Not stated	F-72	58
oneous or erratic signals because unit	Occasional	Not discussed in	1.118			
of calibration.		report	IEEE 338- 1987, RG	Not stated	F-73	59
oneous or erratic signals are produced	Occasional	Not discussed in	1.118 IEEE 338-	Not stated		
the instrument because of set point due to aging.		report	1987, RG 1.118		F-82	60
ure to operate - the circuit breaker is not function property, either fails to	Rare	Not discussed in		Not stated	F-88	
in or fails to close on demand.		report	Section 7		00	61

Page 18B

Page 19A

Document: NUREG/CR-4747 V2. An Aging Failure Survey of Light Water Reactor Safety Systems and Components (Electrical) Reviewed by: L. C. Meyer, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
62	Service Water System	AC Breakers	Not stated	Not stated	Not stated	WEAR	Attrition
63	Service Water System	AC Breakers	Not stated	Not stated	Not stated	Not stated	Binding or out of adjustment
64	Service Water System	AC Breakers	Not stated	Not stated	Not stated	CONTAM	Buildup of deposits
65	Service Water System	AC Breakers	Not stated	Not stated	Not stated	Not stated	Coil failure
66	Service Water System	Flow Indicators	Not stated	Not stated	Not stated	Not stated	Loss of performance
67	Service Water System	Flow Swicthes	Not stated	Not stated	Not stated	CONTAM	Buildup of deposits
68	Service Water System	Flow Swicthes	Not stated	Not stated	Not stated	Not stated	Loss of performance
69	Service Water System	Pressure Indicators	Not stated	Not stated	Not stated	CLOG	Buildup
70	Service Water System	Pressure Indicators	Not stated	Not stated	Not stated	Not stated	Loss of performance

Document: NUREG/CR-4819 V1, Aging and Service Wear of Solenoid-Operated Valves Used in Safety Systems of Nuclear Power Plants Reviewed by: E. W. Roberts, INEL

SOV ASCO 3-Way	Coil	Class H insulation	ASCO	ELETEMP.	Loss of dieletric
Direct Acting				CURSTR, & VOLSTR	strength and conductor short/open
SOV	Core	Stainless steel	ASCO	CONTAM	Friction between core and guide
SOV	Disk Holder Assy Seat	EPDRM OR Vitron	ASCO	ELETEMP	Degradation of elastomers
sov	Disc Holder Spring	Steel	ASCO	CORR	Spring relaxation of failure
sov	Core Spring	Stainless steel	ASCO	CORR	Spring failure
sov	Disc Holder Assembly Seat	EPDM OR Viton	ASCO	CONTAM & ELETEMP	Seat degradation
SOV 3-Way Pilot Operated	Coil	Not stated	ASCO	ELETEMP, CURSTR, & VOLSTR	Insulation failure an conductor open/short
sov	Core	Not stated	ASCO	CONTAM	Binding between core and guide
sov	Disc Holder Assy Seat	Elastomers ,	ASCO	CORR ELETEMP	Valve disc adheres to oriface
	SOV SOV SOV SOV SOV SOV SOV SOV SOV	SOV Disk Holder Assy Seat SOV Disc Holder Spring SOV Core Spring SOV Disc Holder Assy SOV Disc Holder Assy SOV Disc Holder Assy SOV Disc Holder Assembly Seat SOV 3-Way Pilot Coil SOV Core SOV Core SOV Disc Holder Assy	SOV Disk Holder Assy Seat EPDRM OR Vitron SOV Disc Holder Assy EPDRM OR Vitron SOV Disc Holder Spring Steel SOV Core Spring Stainless steel SOV Disc Holder Assembly Seat EPDM OR Viton SOV Disc Holder Assembly Seat EPDM OR Viton SOV Coil Not stated SOV Core Not stated SOV Disc Holder Assy Elastomers	SOV Disk Holder Assy Seat EPDRM OR Vitron ASCO SOV Disc Holder Spring Steel ASCO SOV Core Spring Stainless steel ASCO SOV Core Spring Stainless steel ASCO SOV Disc Holder Assembly Seat EPDM OR Viton ASCO SOV Disc Holder Assembly Seat EPDM OR Viton ASCO SOV 3-Way Pilot Operated Coil Not stated ASCO SOV Core Not stated ASCO SOV Disc Holder Assy Elastomers ASCO	SOV Disk Holder Assy Seat EPDRM OR Vitron ASCO ELETEMP SOV Disc Holder Spring Steel ASCO CORR SOV Core Spring Steel ASCO CORR SOV Core Spring Steel ASCO CORR SOV Disc Holder Steel ASCO CORR SOV Disc Holder EPDM OR Viton ASCO CORR SOV Disc Holder EPDM OR Viton ASCO CONTAM & ELETEMP SOV 3-Way Pilot Coil Not stated ASCO ELETEMP, CURSTR, & VOLSTR SOV Core Not stated ASCO CONTAM SOV Disc Holder Assy Elastomers ASCO CORR ELETEMP

Document: NUREG/CR-4747 V2, An Aging Failure Survey of Light Water Reactor Safety Systems and Components (Electrical) Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Failure to operate - the circuit breaker does not function properly, either fails to open or fails to close on demand.	Rare	Not discussed in report	IEEE 741-1986 Section 7	Not stated	F-88	62
Failure to operate - the circuit breaker does not function property, either fails to open or fails to close on demand.	Rare	Not discussed in report	IEEE 741-1986 Section 7	Not stated	F-88	63
Failure to operate - the circuit breaker does not function property, either fails to open or fails to close on demand.	Occasional	Not discussed in report	IEEE 741-1986 Section 7	Not stated	F-88	64
Premature open - the opening of the circuit breaker prior to demand.	Rare	Not discussed in report	IEEE 741-1986 Section 7	Not stated	F-88	65
Failure to operate due to being out of calibration (aging related).	Occasional	Not discussed in report	IEEE 338- 1987, RG 1.118	Not stated	F-89	66
Erroneous or erratic signals	Rare	Not discussed in report	IEEE 338- 1987, RG 1.118	Not stated	F-89	67
Erroneous or erratic signals due to set point drift, insulation breakdown or out of calibration.	Frequent	Not discussed in report	IEEE 338- 1987, RG 1.118	Not stated	F-90	68
Erroneous or erratic signals	Rare	Not discussed in report	IEEE 338- 1987, RG 1.118	Not stated	F-104	69
Erroneous or erratic signals because of being out of calibraton.	Rare	Not discussed in report	IEEE 338- 1987, RG 1.118	Not stated	F-104	70

.

Document: NUREG/CR-4819 V1, Aging and Service Wear of Solenoid-Operated Valves Used in Safety Systems of Nuclear Power Plants Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Fund			Rel.progs	Report Recommendations	Page No.	
Valve does not operate	Occasional	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	25-26. 34- 35. 41-43. 54	
Partial/full failure of valve to change position	Occasional	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	25-26. 34- 35. 41-43. 54	
Valve fails to operate	Not stated	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	25-26. 34- 35. 41-43. 54	
Valve fails to operate as required	Not stated	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	25-26. 34- 35. 41-43. 54	
Seat leakage	Not stated	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	25-26. 34- 35. 41-43. 54	
Seat leakage	Not stated	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	25-26. 34- 35. 41-43. 54	
/alve fails to operate	Not stated	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	25-26. 34. 36. 41-43. 54	
/alve fails to operate	Not stated	Not discussed in report	programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	25-26. 34. 36. 41-43. 54	
Alve fails to operate as required	Not stated	Not discussed in report	programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	25-26. 34. 36. 41-43. 54	

Page 19B

Document: NUREG/CR-4819 V1, Aging and Service Wear of Solenoid-Operated Valves Used in Safety Systems of Nuclear Power Plants Reviewed by: E. W. Roberts, INEL E. W. Roberts, INEL

Item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
10	SOV	Disc Holder Spring	Steel	ASCO	CORR	Spring relaxation or failure
11	sov	Pressure Diaphragn Bleed Hole	n	ASCO	CONTAM	Blocked bleeder ho
12	sov	Exhaust Diaphragm Bleed Hold		ASCO	CONTAM	Blocked bleeder hol
13	sov	Core Spring	Stainless steel	ASCO	CORR	Spring failure
14	sov	Disc Holder Assy Seat	EPDM	ASCO	CONTAM ELETEMP	Seat degradation
15	SOV	Pressure Diaphragm	EPDM OR Nomex fabric	ASCO	CONTAM ELETEMP	Continuous exhaust
16	sov	Exhaust Diaphragm	EPDM OR Nomex fabric	ASCO	CONTAM ELETEMP	Leakage through exhaust port
17	SOV 2-Way Direct Operating	Coil	Class H insulation	Valcore	ELETEMP CURSTR VOLSTR	Insulation failure short/open conductors
18	SOV 2-Way Direct Operating	Coil	Not stated	Valcore	ELETEMP CURSTR VOLSTR	Insulation failure short/open conductors
19	SOV 2-Way Direct Operating	Plunger Spring	Stainless steel	Vaicore	CONTAM CORR	Binding in guide. spring breakage
20	SOV 2-Way Direct Operating	Plunger Spring	Stainless steel	Valcore	CONTAM CORR	Binding in guide. spring breakage
21	SOV 2-Way Direct Operating	Pilot Spring	Not stated	Valcore	CORR	Spring failure
22	SOV 2-Way Direct Operating	Plunger	Stainless steel	Valcore	CONTAM	Binding in guide tube
23	SOV 2-Way Direct Operating	Plunger	Stainless steel	Valcore	CONTAM	Binding in guide tube
24	SOV 2-Way Direct Operating	Pilot Spring	Stainless steel	Valcore	CORR	Spring failure
25	SOV 2-Way Direct Operating	Position Reed	Not stated	Valcore	Not stated	Contact failure
26	SOV 2-Way Direct Operating	Poppet Seat	Elastomers	Valcore	ELETEMP CONTAM	Eroded seat

Page 20B

Document: NUREG/CR-4819 V1, Aging and Service Wear of Solenoid-Operated Valves Used in Safety Systems of Nuclear Power Plants Reviewed by: E. W. Roberts, INEL Effect of Anima Provide A

Effect of Aging on Component Functi Valve fails to operate as required	Not stated	Not discussed in	Rel.progs Vendor specif	Report Recommendations ic R&D to develope test methods.	25-26. 34.	_
		report	programs	Testing of proposed monitoring techniques. Develope baseline data Evaluation of failures [4]	36. 41-43.	
Valve slow to respond	Not stated	Not discussed in report	Vendor specif programs		25-26. 34. 36. 41-43. 54	
Valve fails to operate as required	Not stated	Not discussed in report	Vendor specifi programs		25-26. 34. 36. 41-43. 54	
Valve leakage	Not stated	Not discussed in report	Vendor specifi programs		25-26. 34. 36. 41-43. 54	13
Valve leakage	Not stated	Not discussed in report	Vendor specifi programs	c R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data Evaluation of failures [4]	25-26. 34. 36. 41-43. 54	14
Valve leakage - valve failure to operate as required	Not stated	Not discussed in report	Vendor specific programs	C R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data Evaluation of failures [4]	25-26. 34. 36. 41-43. 54	15
Valve leakage - valve failure to operate as required	Not stated	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	25-26. 34. 36. 41-43. 54	16
Valve fails to operate	Not stated	Not discussed in report	Vendor specific programs		16. 25-28. 34. 37. 41-43. 54	17
Valve fails to operate	Not stated	Not discussed in report	Vendor specific programs		19. 25-28. 34. 38. 41-43. 54	18
Valve fails to operate	Not stated	Not discussed in report	Vendor specific programs		16. 25-28. 34. 37. 41-43. 54	19
alve fails to operate	Not stated	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	19. 25-28. 34. 38. 41-43. 54	20
/alve fails to operate	Not stated	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	19. 25-28. 34. 38. 41-43. 54	21
alve sluggish or not operational	Not stated	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	16. 25-28. 34. 37. 41-43. 54	22
alve sluggish or no operation	Not stated	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	19. 25-28. 34. 38. 41-43. 54	23
low valve closure	Not stated	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	19. 25-28. 34. 38. 41-43. 54	24
	Not stated	Not discussed in report	Vendor specific programs	R&D to develope test methods. Testing of proposed monitoring techniques. Develope baseline data. Evaluation of failures [4]	19. 25-28. 34. 38. 41-43. 54	25
alve leakage	Not stated	Not discussed in report	programs	R&D to develope test methods. Testing of proposed monitoring	16. 25-28. 34. 37. 41-43. 54	26

Page 21A

Document: NUREG/CR-4819 V1, Aging and Service Wear of Solenoid-Operated Valves Used in Safety Systems of Nuclear Power Plants Reviewed by: E. W. Roberts, INEL

		Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
27		SOV 2-Way Direct Operating	Poppet Seat	EPDM	Valcore		Eroded seat
28		SOV 2-Way Direct Operating	Pilot Seat Seal	EPDM	Valcore	ELETEMP CONTAM	Eroded seat
29		SOV 2-Way Direct Operating	Coil	Class H insulation	TRC	ELETEMP CURSTR VOLSTR	Insulation failure and short/open conductor
30		SOV	Coil Diode	Not stated	TRC	Not stated	Open diode
31		sov	Core	Not stated	TRC	CONTAM	Binding in core tube
32		SOV	Pilot Disc Seat	Stainless steel	TRC	ELETEMP CONTAM	Degradation of elastomers
33	<u> </u>	SOV	Main Disc	Stainless steel	TRC	CONTAM	Jammed disc
34		sov	Position Switch	Not stated	TRC	WEAR	Contact failure
35		SOV	Position Relay	Not stated	TRC	Not stated	Coil conductor short/open
36		sov	Return Spring	Stainless steel	TRC	CORR	Spring breakage
37		sov	Main Disc Seat	Stainless steel	TRC	WEAR	Seat degradation

Document: NUREG/CR-4819 V2, Aging and Service Wear of Solenoid-Operated Valves Used in Safety Systems of Nuclear Power Plants, Vol. 2 Reviewed by: L.C. Meyer, INEL Item System Structure/Comp Subcomponent Materials

	Succurecomp	_Subcomponent_	<u>Materials</u>	Manufacturer	ARD mechanism	ARD effects
	Solenoid-Operated Valves	Core Seat & Seals (Elastomeric Components)	Not stated	ASCO AND Skinner		Prolonged temperatures degrades seals, chem attack by oils
2	Solenoid-Operated Valves	Solenoid Coil Insulation	Not stated	Not stated	THERM	Degraded insulation
3	Solenoid-Operated Valves	Core Spring	Not stated	Not stated	WEAR & CORR	Changes in mechanical propeties, binding, or
4	Solenoid-Operated Valves	Sliding Surfaces	Not stated	Not stated	WEAR & CORR	corrsion contar Loss of materiau , crud buidup

Page 21B

 Document:
 NUREG/CR-4819 V1, Aging and Service Wear of Solenoid-Operated Valves Used in Safety Systems of Nuclear Power Plants

 Reviewed by:
 E. W. Roberts, INEL

 Effect of Aging on Component Function Contrib to Failure
 Reported proces

Valve leakage	Not stated	Not discussed in		Report Recommendations	Page No.	. Ite
		report		c R&D to develope test methods.	19. 25-28	
		- opon	programs	Testing of proposed monitoring	34. 38.	
Mahara ta at		1		techniques. Develope baseline data	41-43, 54	
Valve leakage	Not stated	Not discussed in		Evaluation of failures [4]		
				c R&D to develope test methods	19. 25-28.	<u>_</u>
		report	programs	Testing of proposed monitoring	24 20	·
				techniques. Develope baseline data	41-43.54	1
Valve fails to operate	Not stated			Evaluation of failures [4]	41-43. 54	1
	NOL STATED	Not discussed in	Vendor specific	R&D to develope test methods.		┢
		report	programs	Testing of proposed monitoring	21. 25-28.	
			1 3	techniques Developmentoring	34. 39.	
/alve fails closed				techniques. Develope baseline data.	41-43. 54	1
	Not stated	Not discussed in	Vendor specific	Evaluation of failures [4]		
		report			21.25-28.	3
			programs	Testing of proposed monitoring	34, 39	
				techniques. Develope baseline data.	41-43.54	
alve fails to operate	Not stated	Not discussed in		Evaluation of failures [4]		
			Vendor specific	R&D to develope test methods	21.25-28	3
		report	programs	Testing of proposed monitoring	34. 39.	3
				techniques. Develope baseline data.		
alve fails to operate	Not state of			Evaluation of failures [4]	41-43. 54	
·	Not stated	Not discussed in	Vendor specific	R&D to develope test methods.		
		report	programs	Testing of proposed in the hous	21. 25-28	3
		1		Testing of proposed monitoring	34.39.	
alve fails to operate				techniques. Develope baseline data.	41-43.54	
	Not stated	Not discussed in	Vendor specific	Evaluation of failures [4]		
		report		R&D to develope test methods.	21. 25-28.	3
			programs	lesting of proposed monitoring	34, 39	
				techniques. Develope baseline data	41-43.54	
ss of position indication	Not stated	Not discussed in		Evaluation of failures [4]		
			Vendor specific		21. 25-28	
		report	programs			34
			1		34. 39.	
sition indication does not change	Not stated			Evaluation of failures [4]	41-43. 54	
	NOTSIZIED	Not discussed in	Vendor specific	28D to dovelope test		
		report		Testing of proposed as the inodes.	21. 25-28.	35
	1				34. 39.	
ve remains open		_1		echniques. Develope baseline data	1-43. 54	1
te remains upon	Not stated	Not discussed in	Vendor specific F	valuation of failures [4]	1	
		report		&D to develope test methods.	1. 25-28	36
		lispont	piograms	esting of proposed monitoring	4 39	~
			1	chniques. Develope baseline data	1-43.54	
ve does not have a tight shutoff	Not stated	Not discussed		valuation of failures [4]		
		Not discussed in	Vendor specific R	&D to douglass that it is	1 05 00	<u> </u>
		report		Acting of propagate		37
			te		4. 39.	- 1
			E E	valuation of tributos (4)	1-43. 54	
cument: NUREG/CR-4819.V2 Agin			E	valuation of failures [4]	1-43. 34	

Document: NUREG/CR-4819 V2, Aging and Service Wear of Solenoid-Operated Valves Used in Safety Systems of Nuclear Power Plants, Vol. 2 Reviewed by: L. C. Meyer, INEL Effect of Aging on Component Function Contrib to Failure Reported procession Pail Proce

Chemical attack of elastomers by oil and degradation of elastomers resulting from prolonged operation at excessively high temperatures resulting in failure to operate.	Rare	Not discussed in report	Rel.progs Vendor specific programs	Report Recommendations Determine the sensitivity with which degraded elestomeric valve seats can be determined from electrical measurements [2]	Page No. 5, 7, 8, 11, & 44	Item
Electrical failure of solenoid coil, caused by high-voltage turn-off transients in combination with insulation weakened by prolonged operation at high temperatures, electrical failure due to short circuit, conductor burnout.	Occasional	Not discussed in report	Vendor specific programs		5, 7, 8, 11, & 44	2
Changes in mechanical properties of materials, binding in operation, hum or chatter, worn spring, & wear, change in valve operating time or in rush current. Mechanical binding and sluggish shifting	Rare	Not discussed in report	Vendor specific programs	Visual inspections and electrical characterization of inrush currents [2]	5, 7, 8, 11, & 44	3
aused by worn or improper parts or the presence of foreign materials inside the valve, increase in frictional force	Occasional	Not discussed in report	programs	Visual inspections and electrical characterization of inrush currents and valve actuation times. [2]	5, 7, 8, 11, & 44	-4

Document: NUREG/CR-4928, Degradation of Nuclear Plant Temperature Sensors Reviewed by: L. C. Meyer, INEL

	ewed by: L.C. System	Meyer, INEL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Temperature Sensors	RTD Sensing Wire or Film	Platinum	Not stated	OXIDAT, VIB, CONTAM, & ELE- TEMP	Platininum oxide build up, fat, ion migration, & strain
2		Temperature Sensors	RTD Insulation	Powder or cement (material not identified in report)	Not stated	MOIST-EL	Moisture decreases resistance
3		Temperature Sensors	RTD Sheath	Stainless steel	Not stated	VIB	Cold working in metals

Document: NUREG/CR-4939 V1, Improving Motor Reliability in Nuclear Power Plants - Performance Evaluation and Maintenance Practices Reviewed by: Jerry Edson, INEL

Reviewed by: Item System	Jerry Edson, INEL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	Electric Motors	Dielectric, Rotational, Mechanical	Not stated	Not stated	Not stated	Insulation is most affected by aging mechanisms

Document: NUREG/CR-4939 V2, Improving Motor Reliability in Nuclear Power Plants Reviewed by: F W Roberts INEL

	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
System	Motor	Insulation	Glass, mylar, dacron w/poly binder, epoxy, poly fibers & poly varnish		ELETEMP	Slot wedge developed hole(s), arcing to ground
	Motor	Bearing	Not stated	Westinghouse	ELETEMP WEAR	Bearing failure

Document: NUREG/CR-4939 V3, Failure Analysis and Diagnostic Tests on A Naturally Aged Large Electric Motor Reviewed by: E. W. Roberts, INEL

Review		E. W. Roberts, INEL Structure/Comp	Subcomponent_	Materials	Manufacturer	ARD mechanism	ARD effects
	<u> </u>		400HP, 2400 V Motor	Not stated	Not stated	VOLSTR .	Insulation breakdown
1 1							

Document: NUREG/CR-4967, Nuclear Plant Aging Research on High Pressure Injection Systems

		yer, INEL Structure/Comp	Subcomponent	Materiais	Manufacturer	ARD mechanism	ARD effects
	System PWR high pressure injection system	Air Operated Valves		Not stated	Not stated	CONTAM	Parts degrade from oil in air supply
16	PWR high pressure injection system	HPI Nozzles and Thermal Sleeve		Stainless steel	Not stated	THERM FAT	Crack initiation and propagation
17	PWR high pressure	I & C Electronics	Small Electronic Components	Not stated	Not stated	CORR	Opens, shorts, and loose connections
18	injection system PWR high pressure injection system	PIPING	Components	Stainless steel	Not stated	THERM FAT, WEAR, VIB, & MECHSTR	Cracking & abrasiv wear
19	9 PWR high pressure Valve injection system	Valve		Stainless steel	Not stated	WEAR & CONTAM	Leakage, blockage & mechanical linkage faults
20	PWR high pressure	Pump		Stainless steel	Not stated	THERM-CY, WEAR, VIB, & FAT	Wear on parts and seal leaks
21	injection system PWR high pressure injection system	Pipe Supports		Not stated	Not stated	VIB AND FAT	Loosening of connections or breaking loose
22	PWR high pressure injection system	Motor Operated Valve		Stainless steel	Not stated	WEAR AND VOLSTR	Loose connections wear on moving parts, motor failure

Document: NUREG/CR-4928, Degradation of Nuclear Plant Temperature Sensors Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Changes in resistance causes calibration changes		Not discussed in report	IEEE 338-1987	Burn-in program for new sensors, develop a data base for degradation mechanisms, and simple tests to check sensor prob. [2]	A-9, and A-31 to A- 36	1
Shunting of sensing element occurs when insulating powder gets wet, moisture intrusion occurs when the seals dry out, shrink, crack, or leak resulting in calibration shift or failure to function.	Not stated	Not discussed in report	program	Burn-in program for new sensors, develop a data base for degradation mechanisms, and simple tests to check sensor prob. [2]	A-9, and A-31 to A- 36	2
Mechanical shock and vibration can cause cold working in metal that leads to failure of the sheath and moisture intrusion.	Not stated	Not discussed in report	program	Burn-in program for new sensors, develop a data base for degradation mechanisms, and simple tests to check sensor prob. [2]	A-9, and A-31 to A- 36	3

Document: NUREG/CR-4939 V1, Improving Motor Reliability in Nuclear Power Plants - Performance Evaluation and Maintenance Practices **Reviewed by:** Jerry Edson, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
		EPRI; IEEE		Motors important to safety should	1-6; 2-7;	1
that investigated aging effects. This				undergo cost-effective PM programs		
report only addresses motor evaluation		286,429,432,522	117, 286, 429,	[2]	9,10,11,&	
and maintenance practices					12; 7-1	

Document: NUREG/CR-4939 V2, Improving Motor Reliability in Nuclear Power Plants Reviewed by: E. W. Roberts, INEL

Effect of Aging on Compos	nent Function Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Motor failure	Not stated	Not discussed in report	Section 14.2.3	The "plug reversal life test" is recommended for motor qualification. [2]	2-1, 6-1	1
Motor failure	Not stated	Not discussed in report	IEEE 334-1974 Section 14.2.3	Not stated	4-1, 5-1, 6-1	2

Document: NUREG/CR-4939 V3, Failure Analysis and Diagnostic Tests on A Naturally Aged Large Electric Motor Reviewed by: E. W. Roberts, INEL

unction Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	item
		IEEE 334-1974	Install effective grnd or grnd	3-4	1
1 '	polarization tests	Section 14.2.3	detectors on 3 Ph "capacitance"	. 1	
	1		grnded (delta) PWR syst [2]		
		Frequent DC insulation &/or	Frequent DC insulation &/or IEEE 334-1974 polarization tests Section 14.2.3	Frequent DC insulation &/or IEEE 334-1974 Install effective grnd or grnd	Frequent DC insulation &/or IEEE 334-1974 Install effective grnd or grnd 3-4 polarization tests Section 14.2.3 detectors on 3 Ph "capacitance" 3-4

Document: NUREG/CR-4967, Nuclear Plant Aging Research on High Pressure Injection Systems Reviewed by: L. C. Meyer, INEL

n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	
Rare	Not discussed in report	Vendor specific program. Tech Spec surveill.	Not stated	36	15
Rare	Not discussed in report	Dye penetrant, ultrasonic, radiography	Not stated	36 & 53	16
Occasional	Not discussed in report	IEEE 338-1987	Not stated	36	17
Rare	Not discussed in report	Dye penentant, ultrasonic, radiography	Not stated	36 & 53	18
Rare	Not discussed in report	Vendor specific programs	Not stated	36 & 53	19
Rare	Not discussed in report	Vendor specific programs	Not stated	36	20
Rare	Not discussed in report	Plant specific program	Not stated	36	2
Rare	Not discussed in report	Vendor specific programs	Not stated	36	2
	Rare Coccasional Rare Rare Rare Rare	reportRareNot discussed in reportOccasionalNot discussed in reportRareNot discussed in report	RareNot discussed in reportVendor specific program. Tech Spec surveill.RareNot discussed in reportDye penetrant, ultrasonic, radiographyOccasionalNot discussed in reportIEEE 338-1987RareNot discussed in reportDye penetrant, ultrasonic, radiographyRareNot discussed in reportDye penetrant, ultrasonic, radiographyRareNot discussed in reportDye penetrant, ultrasonic, radiographyRareNot discussed in reportDye penetrant, ultrasonic, 	RareNot discussed in reportVendor specific program. Tech Spec surveill.Not statedRareNot discussed in reportDye penetrant, uttrasonic, ractiographyNot statedOccasionalNot discussed in reportIEEE 338-1987Not statedRareNot discussed in reportIEEE 338-1987Not statedRareNot discussed in reportUtrasonic, radiographyNot statedRareNot discussed in reportDye penentant, ultrasonic, radiographyNot statedRareNot discussed in reportVendor specific programsNot statedRareNot discussed in reportVendor specific programsNot statedRareNot discussed in reportPlant specific programNot statedRareNot discussed in reportPlant specific programNot statedRareNot discussed in reportPlant specific programNot stated	RareNot discussed in reportVendor specific program. Tech Spec surveill.Not stated36RareNot discussed in reportDye penetrant, ultrasonic, radiographyNot stated36 & 53OccasionalNot discussed in reportIEEE 338-1987Not stated36RareNot discussed in reportIEEE 338-1987Not stated36RareNot discussed in reportDye penentant, ultrasonic, radiographyNot stated36 & 53RareNot discussed in reportDye penentant, ultrasonic, radiographyNot stated36 & 53RareNot discussed in reportVendor specific programsNot stated36 & 53RareNot discussed in reportVendor specific programsNot stated36 & 53RareNot discussed in reportVendor specific programsNot stated36RareNot discussed in reportPlant specific programNot stated36RareNot discussed in reportPlant specific programNot stated36RareNot discussed in reportPlant specific programNot stated36RareNot discussed in reportVendor specific programNot stated36

Page 23A

 Document:
 NUREG/CR-4992 V1, Aging and Servcie Wear of Multistage Switches Used in Safety Systems of Nuclear Power Plants

 Reviewed by:
 Jerry Edson, INEL

 Item System
 Structure/Comp

 Subcomponent
 Materials

 Manufacturer
 ARD mechanism

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	400	
'		Multistage Switch	es General		GE, Westinghous	ARD mechanism	ARD effects
					Electro., Micro	-,]	
		_					
2		Multistage Switche	s Cam Shaft	Steel, Al, brass	GE, Westinghouse	EVE PART	
					Electro., Micro	EXFORCE, WEA	Bent or twisted sh
3		Multistage Switche	os Cam Shaft	Steel, Al, brass	GE, Westinghouse Electro., Micro	MECHSTR, WEA	R Broken camshaft
4		Multistage Switche					
				Silver or silver allo	y GE, Westinghouse Electro., Micro	FAT/THERM, VIBP CONTAM,	loose contact
5		Multistage Switche	s Contacts	Silver or silver alloy	GE, Westinghouse,	ELETEMP, WEAR	
					Electro., Micro	CURSTR, VOLST	Pitted, worn, or R, welded contact
6		Multistage Switches	Contact Block	Phenolic	GE, Westinghouse,	VIDD	
					Electro., Micro	VIBR	Loose contact bank
7		Multistage Switches	Moving Contact	Steel, AJ, brass			
			Spring	Cloel, Al, Diass	GE, Westinghouse, Electro., Micro	FAT	Spring breaks
8		Multistage Switches	Moving contact	Not stated	GE, Westinghouse.		
			Assembly		Electro., Micro	FAT	Gear breaks
9		Multistage Switches	Moving Contact Pin	Not stated			
					GE, Westinghouse, Electro., Micro	ELETEMP, FAT, THERM-CY	Pin breaks
10		Multistage Switches	Cams	Polyphenylene oxide	GE Wester		
				acetal, phenolic	, GE, Westinghouse, Electro., Micro	ELETEMP, RAD, THERM-CY, WEAR	Closing or opening cam failure
1		Multistage Switches	Cam Follower	Polycarbonate	GE Westerste		
					GE, Westinghouse, Electro., Micro	ELETEMP, RAD, VIBR	Broken or warped follower
2		Multistage Switches	Cam Follower	Polycarbonate	GE Weeks at		
					GE, Westinghouse, Electro., Micro	WEAR	Slipping of carn follower
3		Multistage Switches	Switch Handle	Polycarbonate	GE, Westinghouse,	VIBR	
				,	Electro., Micro	VIBH	Broken or loose set screws
		Multistage Switches	Shaft Bearings	Not stated	GE, Westinghouse, Electro., Micro	LOSLUB, WEAR, CONTAM	Bearing freezes up
5		Multistage Switches					
			Gear	Not stated	GE, Westinghouse, I Electro., Micro	AT, WEAR	Gear failure
		Multistage Switches	Detent Mechanism	Stool AL h			
					GE, Westinghouse, F Electro., Micro	r	Vom detent nechanism, loose letent roller pin
/		Multistage Switches	Detent Stop Arm	Steel, Al, brass	GE, Westinghouse, E Electro., Micro		ent stop arm

Document: NUREG/CR-5008, Development of A Testing and Analysis Methodology to Determine the Functional Condition of Solenoid Operated Valves Reviewed by: Jerry Edson, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
		Solenoid Valves	General		Not stated		
2		Solenoid Valves	Spring	Not stated	Not stated	Not stated	Weakened spring
3		Solenoid Valves	Valve Seat	Not stated	Not stated	CONTAM	Not stated
4		Solenoid Valves	Plunger	Not stated	Not stated	Not stated	Sticking plunger

.

Document: NUREG/CR-5051, Detecting and Mitigating Battery Charger and Inverter Aging Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
		Inverter	Automatic Transfer Switch (Two Pairs of SCR's)	Not stated	Not stated	ELETEMP & CURSTR	Degraded component or burn out
2		Battery	Electrolytic Capacitors	Not stated	Not stated	ELETEMP	Reduced capacitor life
3		Battery	Semi-Conductors		Not stated	VIB, THERM, & CURSTR	Vibration loosens connections & heat degrades operation
4		Battery	Magnetics - Transformers	High permeability alloys, copper windings, & insulation	Not stated	ELETEMP AND CURSTR	Aging degradation resulting from over heating & elec. stress
5		Battery	Complete Assembly	Enclosures and electrical components	Seven listed	ELETEMP & CURSTR,	Overheating & electrical transients from stresses

Document: NUREG/CR-5053, Operating Experience and Aging Assessment of Motor Control Centers Reviewed by: Jerry Edson, INEL

em	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Motor Control Center	General				
2		Motor Control Center	Molded Case Circuit Breakers	neoprene, silicone, polyester, phenolic, rubber, silver alloy,	Not stated	FAT, WEAR, CONTAM, CORR, CORR/PIT,	Mech. stress, sticking, surface deterioration, low torque
3				copper, stainless steel			
3		Motor Control Center	Breakers	Lubr., adhes., neoprene, silicone, polyester, phenolic, rubber, silver alloy, copper, stainless steel	Not stated	WEAR,	Out of adjustment, defective latch, short/ground, stresses
4		Motor Control Center	Relay	Phenolic, vulcanized rubber, silver alloy, copper, steel	Not stated	ELETEMP, CORR, CORR/PIT	Breakdown of insulation, contact surface degradation
5		Motor Control Center		Phenolic, vulcanized rubber, silver alloy, copper, steel	Not stated	CONTAM, CORR, CORR/PIT, VIBR, FAT	Foreign mat'l accumulation, surface degradation misalign.
6	,	Motor Control Center	Relay	Phenolic, vulcanized rubber, silver alloy, copper, steel	Not stated	WEAR	Out of calibration
7		Motor Control Center	Transformer	Phenolic, fiberglass, copper wire, teflon	Not stated	ELETEMP, CURSTR, VOLSTR	Overheating, deterioration and breakdown of insulation

Page 23B

Document: NUREG/CR-4992 V1, Aging and Servcie Wear of Multistage Switches Used in Safety Systems of Nuclear Power Plants Reviewed by: Jerry Edson, INEL

Effect of Aging on Component Function			Rel.progs	Report Recommendations	Page No.	Item
	Not stated	Not discussed in report	No specific/vendor specific programs	Operators provide feedback on problems, failures should be analyzed,no further consideraton by NPAR [2]	2, 10, 52	
Bent or twisted shaft causes incorrect contact alignment and failure to operate as required	Not stated	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	2
Switch will not change state resulting in failure to operate	Not stated	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	3
Contacts do not close or change state, open or short circuit, high electrical resistnace resulting in failure to operate	Frequent	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	4
High contact resistance resulting in failure to operate as required	Frequent	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	5
Contacts do not mate properly resulting in failure to operate	Not stated	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	6
No positive return of cam followers, contacts may open or close randomly resulting in failure to operate	Not stated	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	7
Contacts to not change state resulting in failure to operate	Not stated	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	8
Contacts will tend to remain closed during opening cam action resulting in failure to operate	Not stated	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	9
Contacts to not change state resulting in failure to operate	Not stated	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	10
Contacts do not change state resulting in failure to operate	Not stated	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	11
Incomplete contact closure resulting in failure to operate as required	Not stated	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	12
Switch will not change state resulting in failure to operate	Not stated	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	13
Switch will not change state resulting in failure to operate	Not stated	General - none specifically for switches	No specific/vendor specific programs	Not stated	2, 10, 31- 37, 41-44, 52	14
Switch will not maintain position resulting in failure to operate	Not stated	General - none specifically for switches		Not stated	2, 10, 31'- 37, 41-44, 52	15
False indication of position change, contacts do no property line up resulting in failure to operate as required	Frequent	General - none specifically for switches	No specific/vendor specific programs		2, 10, 31- 37, 41-44, 52	16
Overtravel of cams at end stop resulting in failure to operate as required	Not stated	General - none specifically for switches	No specific/vendor specific programs		2, 10, 31- 37, 41-44, 52	17

Document: NUREG/CR-5008, Development of A Testing and Analysis Methodology to Determine the Functional Condition of Solenoid Operated Valves Reviewed by: Jerry Edson, INEL Effect of Aging on Compared Valves

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
This report is not an aging assessment of sovs. The report investigates testing and analysis methodologies. Not stated		Not discussed in report	programs	Explore alternative analytical techniques. Further develop and validate coherency model [2]	23	
	Not stated	Not discussed in report	Vendor specific programs	Not stated	13	2
Not stated	Not stated	Not discussed in report	Vendor specific programs	Not stated	13	3
		Not discussed in report	Vendor specific programs	Not stated	13	4

Document: NUREG/CR-5051, Detecting and Mitigating Battery Charger and Inverter Aging Reviewed by: L. C. Meyer, INEL Effect of Aging on Compared Function Control on Compared Function

Effect of Aging on Component Function	on Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltom
Inverter fails and vital bus loads are automatically transferred to alternate source if failure occurs.	Not stated	Not discussed in report	Vendor specific programs	Not stated	3-15 TO 3-22	1
Aging due to high temperature leads to capacitor failure resulting in improper output.	Frequent	Not discussed in report	Vendor specific programs	Improve thermal efficiency by using forced air cooling. Manufacture improvements such as adding a fuse module. [2]	3-4 TO 3- 6	2
Aging due to local heat buildup results in short circuit of the SCR and an inverter failure.	Occasional	Not discussed in report	Vendor specific programs		3- 7, 4- 13, & 5- 7	3
Transformer aging caused by over heating, electrical transients, and personnel error results in charger/invertor failure.	Not stated	Not discussed in report	Vendor specific programs	Improved maintenance and testing done more often. [2]	XIII, 1-6, 3-9, & 5-6	4
Electrolytic capacitors, fuses, magnetics (inductors and transformers) and semiconductors failure results in charger/invertor failure.	Not stated	Plant maintenance	programs	Establish a comprehensive maintenance program that addresses inspection, testing, predictive and corrective maintenance [2]	XIII, 4-15, & 7-4	5

Document: NUREG/CR-5053, Operating Experience and Aging Assessment of Motor Control Centers Reviewed by: Jerry Edson, INEL

Effect of Aging on Component Fur	Net state d	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Follow to a contract to the second second	Not stated	IEEE 308,279,317; RG 1.106,1.63; NEMA; UL	IEEE 308, 279, 317; RG 1.106, 1.63; NEMA; UL	Detailed survey of PM, surveillance techniques, and oper. exp. review maintenance data. PRA to determine importance [2]	5-1 thru 5- 13, 6-5 thru 6-7	
Failure to open or failure to close	Frequent	IEEE 308,279,317; RG 1.106,1.63; NEMA; UL	IEEE 308, 279, 317; RG 1.106, 1.63; NEMA; UL	Not stated	3-4, 4-6, 4-20, 4- 21, 5-1 thru 5-13	2
Inadvertent trip, failure to trip	Occasional to Frequent	IEEE 308,279,317; RG 1.106,1.63; NEMA; UL	IEEE 308, 279, 317; RG 1.106, 1.63; NEMA; UL	Not stated	3-4, 4-6, 4-20, 4- 21, 5-1 thru 5-13	3
Open circuits	Frequent	IEEE 308,279,317; RG 1.106,1.63; NEMA; UL	IEEE 308, 279, 317; RG 1.106, 1.63; NEMA; UL	Not stated	3-4, 4-6, 4-20, 4- 21, 5-1	- 4
Failure to open or failure to close	Occasional	IEEE 308,279,317; RG 1.106,1.63; NEMA; UL	IEEE 308, 279, 317; RG 1.106, 1.63; NEMA; UL		thru 5-13 3-4, 4-6, 4-20, 4- 21, 5-1 thru 5-13	5
Dpen or short circuits		IEEE 308,279,317; RG 1.106,1.63; NEMA; UL	IEEE 308, 279, 317; RG 1.106, 1.63; NEMA; UL		3-4, 4-6, 4-20, 4- 21, 5-1 thru 5-13	6
		IEEE 308,279,317; RG 1.106,1.63; NEMA; UL	IEEE 308, 279, 317; RG 1.106, 1.63; NEMA; UL	Not stated	3-4, 4-6, 4-22, 5-1 thru 5-13	7

Document: NUREG/CR-5053, Operating Experience and Aging Assessment of Motor Control Centers Reviewed by: Jerry Edson, INEL

Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
Motor Control Center	TERMINAL BLOCK	Phenolic	Not stated	VIBR, WEAR	Mechanical stresses
Motor Control Center	Terminal Block	Phenolic	Not stated	ELETEMP	Conduction paths are formed
Motor Control Center	Thermal Overloads	Phenolic, silver plating, copper, vulcanized rubber	Not stated	ELETEMP, FAT	Overheating
Motor Control Center	Thermal Overloads	Phenolic, silver plating, copper, vulcanized rubber	Not stated	CORR, CORR/PIT	Surface degradation
Motor Control Center	Thermal Overloads	Phenolic, silver plating, copper, vulcanized rubber	Not stated	WEAR, CONTAM	Out of calibration, sticking
Motor Control Center	Starter/Contactor	Lubricant, adhesive, neoprene, silicone, polyester, phenolic, rubber, silver alloy, coppper, stainless steel	Not stated	FAT, CORR, CORR/PIT, CONTAM	Mech. stresses, surface degradation, foreign substance
Motor Control Center	Fuse	Not stated	Not stated	Not stated	Material degradation causes open circuits
Motor Control Center	Coils	Phenolic, fiberglass, copper wire, teflon	Not stated	CURSTR	Overcurrent causes overheating and insulation breakdown
Motor Control Center	Trip and Control	Not stated	Not stated	Not stated	Drifting of setpoint, out of calibration
Motor Control Center	Trip and Control	Not stated	Not stated	CONTAM	Degradation of contact surfaces, buildup of grease and dirt
Motor Control Center	Cabinets	Steel	Not stated	Not stated	Not stated
	Motor Control Center		Motor Control Center TERMINAL BLOCK Phenolic Motor Control Center Terminal Block Phenolic Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Motor Control Center Starter/Contactor Lubricant, adhesive, neoprene, silicone, polyester, phenolic, rubber, silver alloy, copper, stainless steel Motor Control Center Fuse Not stated Motor Control Center Coils Phenolic, fiberglass, copper wire, teflon Motor Control Center Trip and Control Not stated Motor Control Center Trip and Control Not stated	Motor Control Center TERMINAL BLOCK Phenolic Not stated Motor Control Center Terminal Block Phenolic Not stated Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Not stated Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Not stated Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Not stated Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Not stated Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Not stated Motor Control Center Starter/Contactor Lubricant, adhesive, neoprene, silicone, polyester, phenolic, rubber, silver alloy, copper, stainless Not stated Motor Control Center Fuse Not stated Not stated Motor Control Center Coils Phenolic, fiberglass, copper wire, telfon Not stated Motor Control Center Trip and Control Not stated Not stated	Motor Control Center TERMINAL BLOCK Phenolic Not stated VIBR, WEAR Motor Control Center Terminal Block Phenolic Not stated ELETEMP Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Not stated ELETEMP, FAT Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Not stated CORR, CORR/PIT Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Not stated CORR, CONTAM Motor Control Center Thermal Overloads Phenolic, silver plating, copper, vulcanized rubber Not stated WEAR, CONTAM Motor Control Center Starter/Contactor Lubricant, adhesive, neoprene, silicone, polyester, phenolic, rubber, silver aloy, copper, stainless stere Not stated Not stated Not stated Motor Control Center Fuse Not stated Not stated Not stated CURSTR Motor Control Center Coits Phenolic, fiberglass, copper wire, teffon Not stated Not stated Not stated Motor Control Center Trip and Control Not stated

Document: NUREG/CR-5141, Aging and Qualification Research on Solenoid Operated Valves Reviewed by: Jerry Edson, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		SOV - ÁSCO	Coils	Elastomers	ASCO	MOIST-EL, ELETEMP	Decreased insulation and coil resistance
2		SOV - ASCO	Core Disc	Buna-N, EPDM	ASCO	ELETEMP, RAD	Hardening, decreased elongation
3	1	SOV - ASCO	Seat	Buna-N and nylon metal and EP	ASCO	ELETEMP, RAD	Hardening, decreased elongation
4		SOV - ASCO	Booty O-Rings	Buna-N, EPDM	ASCO	ELETEMP, RAD	Hardening, decreased elongation

Document: NUREG/CR-5053, Operating Experience and Aging Assessment of Motor Control Centers Reviewed by: Jerry Edson, INEL

Effect of Aging on Component Functi			Rel.progs	Report Recommendations	Page No.	Item
Poor connection/open circuit	Occasional	IEEE 308,279,317;			3-4, 4-6,	6
		RG 1.106,1.63;	317; RG 1.106,	,	4-22, 5-1	
		NEMA; UL	1.63; NEMA;		thru 5-13	
			UL			1
Ground/short	Occasional	IEEE 308,279,317;	IEEE 308, 279,	Not stated	3-4, 4-6,	S
		RG 1.106,1.63;	317; RG 1.106,		4-22, 5-1	
		NEMA; UL	1.63 NEMA		thru 5-13	
			UL			
Open circuit	Frequent	IEEE 308,279,317;	IEEE 308, 279,	Not stated	3-4, 4-6,	10
		RG 1.106,1.63;	317; RG 1.106,		4-23, 4-	``
		NEMA; UL	1.63; NEMA;		24, 5-1	
			UL		thru 5-13	
Would not operate	Occasional	IEEE 308,279,317;	IEEE 308, 279,	Not stated		
		RG 1.106,1.63;	317; RG 1.106		3-4, 4-6,	11
		NEMA: UL			4-23, 4-	
		INEMA, UL	1.63; NEMA;		24, 5-1	
Tripped and response on incorrect signal	Oreasianal		UL		thru 5-13	
ripped and response on incorrect signal	Occasional	IEEE 308,279,317;	IEEE 308, 279,		3-4, 4-6,	12
		RG 1.106,1.63;	317; RG 1.106,	1	4-23, 4-	
		NEMA; UL	1.63; NEMA;		24, 5-1	
			UL		thru 5-13	
Failure to open or close	Frequent	IEEE 308,279,317;	IEEE 308, 279,	Not stated	3-4, 4-6,	13
		RG 1.106,1.63;	317; RG 1.106,		4-23.4-	
		NEMA; UL	1.63; NEMA;		24, 5-1	
			UL		thru 5-13	
					0111-0-10	
Premature operation	Frequent	IEEE 308,279,317;	IEEE 308, 279,	Not stated	4-6, 4-23,	14
		RG 1.106,1.63;	317; RG 1.106,		5-1 thru 5-	
		NEMA; UL	1.63; NEMA;		13	
					13	
Open circuit, short/ground	Occasional	IEEE 308,279,317;	IEEE 308, 279,	Not stated		45
, , 		RG 1.106,1.63;		NOTSTATED	3-4, 4-6,	15
		NEMA: UL	317; RG 1.106,		4-24, 5-1	
		NEMA, OL	1.63; NEMA;		thru 5-13	
Response on incorrect signal	Occasional		UL			
is opened on moon out signed	Occasional	IEEE 308,279,317;	IEEE 308, 279,	Not stated	4-6, 4-24,	16
		RG 1.106,1.63;	317; RG 1.106,		5-1 thru 5-	
		NEMA; UL	1.63; NEMA;		13	
			UL			
Sticking and material degradation result in	Hare	IEEE 308,279,317;	IEEE 308, 279,	Not stated	4-6, 4-24,	17
aiure to operate		RG 1.106,1.63;	317; RG 1.106,		5-1 thru 5-	-
		NEMA; UL	1.63; NEMA;		13	
			UL			
lot stated	Not stated	IEEE 308,279,317;	IEEE 308, 279,	Not stated	3-4, 5-1	18
		RG 1.106,1.63;	317; RG 1.106		thru 5-13	
		NEMA; UL	1.63; NEMA;			
			UL			

Effect of Aging on Component Function		Reported progs	Rel.progs	Report Recommendations	Page No.	item
Water enters during MSLB/LOCA conditions. Failure to operate	Frequent	Not discussed in report	10 CFR 50.49 if EQ'd, plant specific programs	Not stated	6-7, 9, 28- 31, 41-48, 75-78	1
Leakage	Frequent	Not discussed in report	10 CFR 50.49 if EQ'd, plant specific programs	Not stated	6-7, 9, 28- 31, 73, 75-78	2
Leakage. Laquer like organic deposits surrounding the metal to metal seats caused failure to transfer.	Frequent	Not discussed in report	10 CFR 50.49 if EQ'd, plant specific programs	Not stated	6-7, 9, 28- 31, 75-78	3
Failure to transfer	Frequent	Not discussed in report	10 CFR 50.49 if EQ'd, plant specific programs	Not stated	6-7, 9, 28- 31, 74, 75-78	4

Page 25B

Document: NUI	REG/CR-5141, Aging and Qualification Research on Solenoid Operated Valves	
	Jerry Edson, INEL	
·· · · ·	·	

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
5		SOV - ASCO	Housings, Washers, Core Spring, Gaskets	Not stated	ASCO	Not stated	Not stated
6		SOV - VALCOR	Coils	Elastomers	Valcor	MOIST-EL, ELETEMP	Decreased coil and insulation resistance
7		SOV - VALCOR	Seats	EPR	Valcor	ELETEMP, RAD	Hardening and decreased elongation
8		SOV - VALCOR	Shaft Seal O-Ring	EPR	Valcor	ELETEMP, RAD	Hardening and decreased elongation
9		SOV - VALCOR	Upper Assembly Seal O-Ring	EPR	Valcor	ELETEMP, RAD	Hardening and decreased elongation
10		SOV - VALCOR	Shaft, Cage, Ports	Not stated	Valcor	Not stated	Not stated

Document: NUREG/CR-5181, Nuclear Plant Aging Research: The 1E Power System Reviewed by: Jerry Edson, INEL

tem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	1E Power	General					
2	1E Power	Transformer	General				
3	1E Power	Transformer	Insulating Oil	Mineral oil, systhetic chlorinated aromatic hydrocarbon	Not stated	MOIST-EL, ELETEMP	Degraded insulation value
4	1E Power	Transformer	Core (Magnetic Circuit and Windings)	Copper, aluminum, silicon steel, cellulose, phenolics, fiberglass, varnish, epoxy	Not stated	FAT, ELETEMP	Magnetic core deformation
5	1E Power	Transformer	Core (Magnetic Circuit and Windings)	Copper, aluminum, silicon steel, , cellulose, phenolics, fiberglass, varnish, epoxy	Not stated	ELETEMP, VIBR, MOIST-EL, VOLSTR, CURSTR, CORR/OX	Arcing, hot spots, winding insulation degradation
6	1E Power	Transformer	Case (Tank)	Structural steel, paints	Not stated	FAT	Failure of tank welds, moisture sea cracking
7	1E Power	Transformer	Insulating Gas	Nitrogen, air, flourocarbon	Not stated	MOIST-EL	Insulation breakdown
	1E Power	Transformer	Core (Magnetic Circuit and Windings)	Copper, aluminum, silicon steel, cellulose, phenolics, figerglass, varnish, epoxy	Not stated	FAT, ELETEMP	Magnetic core deformation
	1E Power	Transformer	Core (Magnetic Circuit and Windings)	Copper, aluminum, silicon steel, cellulose, phenolics, figerglass, varnish, epoxy	Not stated	MOIST-EL, ELETEMP, CORR/OX, CURSTR, VIBR, VOLSTR	Arcing, hot spots, winding insulation degradation
10	1E Power	Transformer	Case (Tank)	Structural steel, paint	Not stated	FAT	Failure of tank welds, moisture sea cracking

 Document:
 NUREG/CR-5141, Aging and Qualification Research on Solenoid Operated Valves

 Reviewed by:
 Jerry Edson, INEL

 Effect of Aging on Component Function Contrib to Failure
 Reported progs
 Rel.prog

Not stated			Rel.progs	Report Recommendations	Page No.	ltem
	Not stated	Not discussed in report	10 CFR 50.49 if EQ'd, plant specific	Not stated	9	5
Water enters during MSLB/LOCA conditions. Failure to operate Not stated	Frequent	Not discussed in report	programs 10 CFR 50.49 if EQ'd, plant specific programs	Not stated	6-7, 11, 20-28, 41- 48, 75-78	6
	Frequent	Not discussed in report	10 CFR 50.49 if EQ'd, plant specific programs	Not stated	6-7, 11, 20-28, 41- 48, 75-78	7
O-rings adhered to the guide tube - caused sticking and failure to transfer	Frequent	Not discussed in report	10 CFR 50.49 if EQ'd, plant specific programs	Not stated	6-7, 11, 20-28, 41- 48, 73-78	8
D-rings adhered to seat - caused sticking and failure to transfer Not stated	Frequent	Not discussed in report	1	Not stated	6-7, 11, 20-28, 41- 48, 73-78	9
	Not stated	Not discussed in report		Not stated	11	10

Document: NUREG/CR-5181, Nuclear Plant Aging Research: The 1E Power System Reviewed by: Jerry Edson, INEL

Effect of Aging on Component Funct	Not stated	The ported progs	Rel.progs	Report Recommendations	Page No	. Iten
	NULSIAUNG	RG 1.118, IEEE-	RG 1.108,	Eval. surveillance & monitoring	49, 51,	
		338, IEEE,943	1.118, 1.129;	practices. Determine which		
			IEEE 338, 387	components contribute most to		1
	Not stated		450	ISVS iem unavailability [4]		
	NOT STATED	Representative plant	Vendor specific	Industry continue developing	66 70	┿┯
			programs	monitoring techniques. Transf. and		·
				surge suppressor aging studies		
Reduction in dielectric strength resulting	Alex states at			should be performed [4]		[
in internal shorts and winding failures	Not stated	Not discussed in	Vendor specific	Not stated	20 21 22	<u> </u>
and which is and which is land to		report	programs		20, 21, 22	3
Vibration and excessive temperature			-			
cause the magnetic core circuit to	Not stated	Not discussed in	Vendor specific	Not stated	00 01 00	
become deformed and loosen and can		report	programs		20, 21, 22	4
result in failure of the windings			-			
search faile of the windings					1	
Winding-to-winding short circuit, winding-						
to-case short circuit	Not stated	Not discussed in	Vendor specific	ndor specific Not stated	20 21 20	
		report	programs		20, 21, 22	5
eakage, moisture instrusion resulting in	Alex states i					
legradation of the insulating oil	Not stated	Not discussed in	Vendor specific	Not stated	21 22	
		report	programs		21.22	<u>٩</u>
Reduction in dielectric strength resulting	Not stated					
n internal shorts and winding failures		Not discussed in	Vendor specific	Not stated	21 22	
Deformation and loosening of the		report	programs		21, 22	- 4
nagnetic core resulting in winding failures		Not discussed in	Vendor specific	Not stated	21.00	
agrices core resciting in whiching failures		report	programs		21,22	8
Vinding-to-winding short circuit, winding-	N					
-case short circuits		Not discussed in	Vendor specific	Not stated		
	1		orograms		e which 54, 71 bute most to ty [4] eveloping 66, 70 2 lies. Transf. and ging studies	
			-			
oisuture intrusion and leakage of the	Net state of				1	
as coolant/insulation resulting in failure	Not stated	Not discussed in	/endor specific [Not stated		
the winding insulation	r		orograms		21,22	10
sto thinding insulation		ľ	-		1	
f the winding insulation	ľ		vograms			

Page 26B

_

Document: !	NUREG/CR-5181, Nuclear Plant Aging Research: The 1E Power System
Reviewed by	: Jerry Edson, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
11	1E Power	Cable	Insulation	XLPE, EPR, silicon or butyl rubber, Kapton, PE, PVC, teflon, CSP	Not stated	ELETEMP, RAD, MOIST-EL, AGRCHEM	Embrittlement of insulation, treeing
12	1E Power	Cable	Jacket	CSP	Not stated	ELETEMP, RAD, MOIST-EL, AGRCHEM	Embrittlement of insulation
13	1E Power	Connections and Terminations	Not stated	Not stated	Not stated	FAT	Cracking
14	1E Power	Electrical Cable	Cable Clamp	Stainless steel	Not stated	Not stated	Not stated
15	1E Power	Electrical Cable	Terminal Strip Assembly	Glass filled phenolic	Not stated	Not stated	Not stated
16	1E Power	Electrical Cable	Shrink Tubing	Polyolefin	Not stated	Not stated	Not stated
17	1E Power	Electrical Cable	Plug Sleeve and Coupling Ring	Bronze	Not stated	Not stated	Not stated
18	1E Power	Electrical Cable	O-Ring Seal	Elastomer	Not stated	Not stated	Not stated
19	1E Power	Electrical Cable	Contact Socket	Copper	Not stated	Not stated	Not stated
20	1E Power	Electrical Cable	Interfacial Seal	Dow Corning Sylgard	Not stated	Not stated	Cracking
21	1E Power	Electrical Cable	Insulator, Plug Skirt	Polysulfone	Not stated	Not stated	Cracking
22	1E Power	Electrical Cable	Washer	Stainless steel	Not stated	Not stated	Not stated
23	1E Power	Electrical Cable	Module Assembly	Brass	Not stated	Not stated	Not stated
24	1E Power	Circuit Breaker	Insulation	Polyester, glassfiber- filled epoxy resins, phenolic	Not stated	ELETEMP	Reduced insulation value
25	1E Power	Circuit Breaker	Contacts	Silver alloy in copper base	Not stated	CURSTR, VOLSTR	Poor electrical contact
26	1E Power	Circuit Breaker	Arc Chutes	Not stated	Not stated	ELETEMP	Structural damage the arc chutes
27	1E Power	Circuit Breaker	Overload Mechanism	Not stated	Not stated	ELETEMP	Reduced overload rating
28	1E Power	Circuit Breaker	Connections	Not stated	Not stated	VIBR	Loose connections
29	1E Power	Circuit Breaker	Lubricant	Not stated	Not stated	ELETEMP, AGRCHEM, CONTAM	Hardening of the lubricant
30	1E Power	Circuit Breaker	Frame	Painted or electroplated steel	Not stated	Not stated	Not stated

Page 27B

Document: NUREG/CR-5181, Nuclear Plant Aging Research: The 1E Power System Reviewed by: Jerry Edson, INEL Effect of Aging on Component Exerction Contribute Events

Effect of Aging on Component Functi			Rel.progs	Report Recommendations	Page No.	iten
Embrittlement results in cracking which permits moisture to enter and result in conductor-to-conductor and conductor-to-	Occasional	Not discussed in report	No specific program	Not stated	22, 23, 25, 41	1
ground shorts. Treeing results in conductor-to-conductor and conductor-to ground shorts						
Embrittlement results in cracking and	Occasional	Not discussed in	No. of the local distance of the local dista			
moisture instrusion	Occasional	report	No specific program	Not stated	22, 23, 25, 41	12
Not stated	Not stated	Not discussed in	Plant specific	Not stated	23,24	- 1:
Not stated	Not stated	RG 1.63, IEEE-317	progarms 10 CFR 50.49.	Not stated		
			Vendor specific programs		22, 25, 49, 56	14
Not stated	Not stated	RG 1.63, IEEE-317	10 CFR 50.49.	Not stated	24, 25,	15
			Vendor specific programs		49, 56	
Not stated	Not stated	RG 1.63, IEEE-317	10 CFR 50.49,	Not stated	24, 25,	16
			Vendor specific		49, 56	
Not stated	Not stated	RG 1.63, IEEE-317	10 CFR 50.49	Not stated		
		10 1.00, IEEE-017	Vendor specific		24, 25, 49, 56	17
			programs			
Pressure leak	Not stated	RG 1.63, IEEE-317	10 CFR 50.49	Not stated	24, 25,	18
			Vendor specific programs		49, 56	
Not stated	Not stated	RG 1.63, IEEE-317	10 CFR 50.49.	Not stated	24, 25,	19
			Vendor specific		49, 56	13
Not stated			programs			
NOT STATED	Not stated	RG 1.63, IEEE-317	10 CFR 50.49, Vendor specific	Not stated	24, 25,	20
	1		programs		49, 56	
Not stated	Not stated	RG 1.63, IEEE-317		Not stated	24, 25,	21
			Vendor specific		49, 56	
Not stated	Not stated	RG 1.63, IEEE-317	programs 10 CFR 50,49			
•		110 1.03, IEEE-317	Vendor specific	Not stated	24, 25, 49, 56	22
			programs		45, 50	
Not stated	Not stated	RG 1.63, IEEE-317		Not stated	24, 25,	23
			Vendor specific programs		49, 56	
Excessive temperature caused by poor	Not stated	Not discussed in	ANSI/IEEE	Not stated	25, 26, 27	24
contact, large currents, or elevated		report	741-1986		20, 20, 27	24
environment degrades the insulation esulting in shorts and arcing			Section 7,			
Degraded/poor contacts result in	Not stated	Not discussed in	vendor specific ANSI/IEEE	Not stated		
legraded or open circuits		report	741-1986	NOT STATED	25, 26, 27	25
			Section 7			
Rashover/arcing, failure to extinguish the	Not stated	Not discuss at in	vendor specific			
Instruction of the stanguist file	Not stated	Not discussed in report	ANSI/IEEE 741-1986	Not stated	25, 26, 27	26
			Section 7,			
	.		vendor specific			
Premature trip at low current	Not stated	Not discussed in report		Not stated	25, 26, 27	27
		report	741-1986 Section 7,			
			vendor specific			
mproper operation and open circuits	Not stated	Not discussed in		Not stated	25, 26, 27	28
		report	741-1986			
			Section 7, vendor specific			
nproper operation, failure to open or	Not stated	Not discussed in		Not stated	25, 26, 27	29
lose		report	741-1986		, -, -, -, -, -, -, -, -, -, -, -, -,	23
			Section 7,			
lot stated	Not stated	Not discussed in	vendor specific ANSI/IEEE	Not stated	25 25 07	
		report	741-1986		25, 26, 27	30
			Section 7,			
1		•	vendor specific		- I - I	1

Document: NUF	REG/CR-5181, Nuclear Plant Aging Research: The 1E Power System
Reviewed by:	Jerry Edson, INEL

<u>Item</u>	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
31	1E Power	Circuit Breaker	Housing, Doors	Painted sheet steel	Not stated	Not stated	Not stated
32	1E Power	Circuit Breaker	Mechanisms	Cast bronze and steel, stamped steel	Not stated	CORR, AGRCHEM, WEAR, VIBR, FAT, CONTAM	Reduced force, increased friction, embrittled mat.
33	1E Power	Relays	Coil Insulation	Not stated	Not stated	VOLSTR, ELETEMP	Reduced insulation value
34	1E Power	Relays	Moving Parts	Not stated	Not stated	WEAR, FAT	Increased friction, binding
35	1E Power	Relays	Contacts	Not stated	Not stated	WEAR, CORR, VIBR, CONTAM	Poor electrical contact
36	1E Power	Relays	Connections	Not stated	Not stated	VIBR, ELETEMP	Loose or poor electrical connections
37	1E Power	Relays	Coil Bobbin	Not stated	Not stated	ELETEMP	Accelerate aging
38	1E Power	Chargers and Inverters	Circuit Breaker	Not stated	Not stated	CONTAM, LOSLUB, WEAR, CORR/PIT	Increased friction, binding, loss of continuity
39	1E Power	Chargers and Inverters	Fuse	Not stated	Not stated	THERM-CY, FAT	Metal fatigue, melting of link
40	1E Power	Chargers and Inverters	Relay	Not stated	Not stated	CORR/PIT, CORR/OX	Loss of continuity
41	1E Power	Chargers and Inverters	Electrolytic Capacitors	Not stated	Not stated	ELETEMP, VIBR	Loss of electrolyte, tailure of leads
42	1E Power	Chargers and Inverters	Oil Filled Capacitors	Not stated	Not stated	ELETEMP, VIBR	Dielectric breakdown, failure o leads
43	1E Power	Chargers and Inverters	Magnetics (Transformer, Inductor)	Not stated	Not stated	ELETEMP, LÓW TEMP, VOLSTR, VIBR	Degraded insulation cracked moisture seals, broken wires
44	1E Power	Chargers and inverters	Silicon Controlled Rectifiers	Not stated	Not stated	ELETEMP	Over voltage or over current caused by transients
45	1E Power	Chargers and inverters	Resistor	Not stated	Not stated	VIBR, ELETEMP	Decrease in resistance, lead fails
46	1E Power	Chargers and Inverters	Printed Circuit Boards	Not stated	Not stated	TEMP, THERM-CY, CORR, VIBR	Cracking of circuit lines, open circuits, loose connections

Document: NUREG/CR-5181, Nuclear Plant Aging Research: The 1E Power System Reviewed by: Jerry Edson, INEL Effect of Aging on Component Function Contribute Failure Description descent

Effect of Aging on Component Func Not stated	Not stated	Not discussed in	Rel.progs ANSI/IEEE	Report Recommendations	Page No.	
		report	741-1986	NUL SIZIOU	25, 26, 27	7
			Section 7			
			vendor specific			1
Improper operation, failure to oper or close	Not stated	Not discussed in	ANSI/IEEE	Not stated	25, 26, 27	
		report	741-1986			
			Section 7,		ł	
Excessive temperture from ohmic heatin	Not stated	Not discussed in	vendor specific			
or the environment causes insulation	- 1	report	RG 1.118, IEEE 338-1987	Not stated	25, 26,	3
failure and results in failure of the relay to					27, 28	
operate						
Misopertion, failure to operte, slow or sluggish operation, inadvertant contact	Not stated	Not discussed in	RG 1.118,	Not stated	25, 26,	3
closure		report	IEEE 338-1987	'	27, 28	
Open circuit, failure to close, arcing,	Not stated	Not discussed in				L
increased temperature due to ohmic	NOT STRIED	report	RG 1.118,	Not stated	25, 26,	3
heating		Teport	IEEE 338-1987		27, 28	
Open circuit, heating at the socket/pin	Not stated	Not discussed in	RG 1.118	Not stated		
interface	1	report	IEEE 338-1987		25, 26, 27, 28	3
0-14-1					21,20	
Coil failure	Not stated	Not discussed in	RG 1.118,	Not stated	25, 26,	3
Failure to operate, failure to open	0.000	report	IEEE 338-1987		27, 28	
and to operate, railure to open	Occasional	IEEE-446, NEMA	IEEE 446,	Not stated	29-36, 55,	3
		PE5, IEC 146-2,	NEMA PE5,	Î	60-64	
	1	ANSI/IEEE-944	IEC 146-2, ANSI/IEEE	1		
			944.			
ails open (opens prematurely)	Occasional	IEEE-446, NEMA	IEEE 446,	Not stated	00.06.55	
		PE5, IEC 146-2,	NEMA PE5		29-36, 55, 60-64	39
		ANSI/IEEE-944	IEC 146-2.	1	00-04	
			ANSI/IEEE	1		
Open circuit or coil, contacts open	Occasional		944,			
	Occasional	IEEE-446, NEMA PE5, IEC 146-2,	IEEE 446,	Not stated	29-36, 55,	40
		ANSI/IEEE-944	NEMA PE5, IEC 146-2,		60-64	
	}		ANSI/IEEE			
			944.			
oss of capacitance or open circuit	Frequent	IEEE-446, NEMA	IEEE 446	Not stated	29-36, 55,	41
auses the charger/inverter to have		PE5, IEC 146-2,	NEMA PE5,		60-64	41
nproper output		ANSI/IEEE-944	IEC 146-2,		~~~~	
			ANSI/IEEE			
oss of capacitance or open circuit	Frequent	IEEE-446, NEMA	944, IEEE 446.			
auses the charger/inverter to have	, requert	PE5, IEC 146-2,	NEMA PE5,	Not stated	29-36, 55,	42
nproper output		ANSI/IEEE-944	IEC 146-2,		60-64	ļ
			ANSI/IEEE			
			944,			
ailure of device due to short circuit (turn-	Occasional	IEEE-446, NEMA	IEEE 446,	Not stated	29-36, 55,	43
-turn or turn-to-ground) or change in ductance		PE5, IEC 146-2,	NEMA PE5,		60-64	
		ANSI/IEEE-944	IEC 146-2,			
			ANSI/IEEE 944			ļ
ailure of device due to open or short	Occasional	IEEE-446, NEMA		Not stated		
cuits		PE5, IEC 146-2,	NEMA PES.	TV SKUBU	29-36, 55,	- 44
		ANSI/IEEE-944	IEC 146-2,		60-64	
			ANSI/IEEE			
ilure of device due to open circuit or	Rare		944,			1
ange in value of resistor		IEEE-446, NEMA		Not stated	29-36, 55,	45
		PE5, IEC 146-2, ANSI/IEEE-944	NEMA PE5, IEC 146-2,		60-64	
		A14001666-344	ANSI/IEEE			
			944.			
tput changes from desired value	Frequent	IEEE-446, NEMA		lot stated		
		PE5, IEC 146-2,	NEMA PE5		29-36, 55, 60-64	46
		ANSI/IEEE-944	IEC 146-2,		00-04	
			ANSI/IEEE 944.			

Page 28B

.

Document: NU	REG/CR-5181, Nuclear Plant A	ging Research: The 1	E Power System
Reviewed by:	Jerry Edson, INEL	•••	
Item System	Christian / Comm	Out	NO 11 1

Item	System	Structure/Comp	Subcomponent	Matériais	Manufacturer	ARD mechanism	ARD effects
47	1E Power	Chargers and Inverters	Surge Suppressor	Not stated	Not stated	VOLSTR, CURSTR	
48	1E Power	Chargers and Inverters	Connections	Not stated	Not stated	MECHSTR	Fatigue failure of wire at terminals
49	1E Power	Chargers and Inverters	Meters	Not stated	Not stated	CONTAM	Increase in bearing friction
50	1E Power	Chargers and Inverters	Switch	Not stated	Not stated	CORR, CORR/PIT	Loss of continuity across contacts
51	1E Power	Chargers and Inverters	Potentiometer	Not stated	Not stated	ELETEMP	Loss of continuity
52	1E Power	Batteries	Grids/Plates	Lead-calcium alloy	Not stated	OVERCHG, ELETEMP, CONTAM	Accelerates corrosion and oxidation
53	1E Power	Batteries	Active Material	Lead dioxide and lead sulfate	Not stated	GAS	Dislodges active material
54	1E Power	Batteries	Separator	Rubber/glass matt	Not stated	ELETEMP	Accelerates deterioration of electrical insulation
55	1E Power	Batteries	Electrolyte	Sulfuric acid and water	Not stated	CONTAM	Hydrolysis of the water and loss of electrolyte
56	1E Power	Batteries	Vent	Fused alumina	Not stated	MECHSTR	Vent breaks allowing contamination to enter
57	1E Power	Batteries	Top Connectors	Lead-calcium alloy	Not stated	ELETEMP, CORR, EMBR	Low electrolyte level causes corrosion and embrittlement
58	1E Power	Batteries	Terminals ·	Lead-calcium alloy	Not stated	CORR/OX, CORR	Poor electrical contact with external busses
59	1E Power	Batteries	Container and Top Cover	Polycarbonate, styrene acryolonitrile, acrylo-butadiene styrene	Not stated	MECHSTR, CORR/OX	Oxidation of lead causes plate growth

.

Document: NUREG/CR-5192, Testing of A Naturally Aged Nuclear Power Plant Inverter and Battery Charger Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Inverter	Resistors	Carbon conposition	Not stated	ELETEMP & MOIST	
2		Inverter	Wire	Not stated	Not stated	Not stated	Turns contact

Document: NUREG/CR-5181, Nuclear Plant Aging Research: The 1E Power System Reviewed by: Jerry Edson, INEL Effect of Aging on Component Fun

Effect of Aging on Component Funct Semiconductor breakdown due to	Rare	IEEE-446, NEMA	Rel.progs	Report Recommendations	Page No.	
overheating causes short circuits and	1.000	DEE-446, NEMA	IEEE 446	Not stated	29-36, 55	
improper output		PE5, IEC 146-2,	NEMA PE5,		60-64	
		ANSI/IEEE-944	IEC 146-2,			
			ANSI/IEEE			
Improper output due to open or short	Occurring		944,			
circuits	Occasional	IEEE-446, NEMA	IEEE 446,	Not stated	29-36, 55,	4
		PE5, IEC 146-2,	NEMA PE5,		60-64	1
		ANSI/IEEE-944	IEC 146-2			
		1	ANSI/IEEE	4		
			944.			
Improper indication	Occasional	IEEE-446, NEMA	IEEE 446.	Not stated	29-36, 55,	<u> </u>
		PE5, IEC 146-2,	NEMA PE5		· · · · ·	49
		ANSI/IEEE-944	IEC 146-2,		60-64	
			ANSI/IEEE 944			
Improper output due to switch failing oper	Occasional	IEEE-446, NEMA	IEEE 446	Not stated		
or closed		PE5, IEC 146-2,	NEMA PES	NOT STATED	29-36, 55,	50
	1	ANSI/IEEE-944			60-64	
	1		IEC 146-2, ANSI/IEEE 944	1		
mproper output due to open or short	Occasional	IEEE-446, NEMA	IEEE 446.			
circuit		PE5, IEC 146-2,		Not stated	29-36, 55,	51
		ANSIAEST 044	NEMA PES,		60-64	
		ANSI/IEEE-944	IEC 146-2,	1		
Corrosion/oxidation causes plate growth	Frequent		ANSI/IEEE 944		1 1	
esulting in reduced capacity and stresses	Frequent	RG 1.129, IEEE-450		Not stated	30, 31,	52
he container			IEEE 450-		36, 37	
	1		1987, Tech		38, 50,	
Dislodging active material from the plates			Spec Surveil.		54, 62-65	
auses loss of capacity	Not stated	RG 1.129, IEEE-450	RG 1.129,	Not stated	30, 31,	53
auses loss of capacity			IEEE 450-			53
•			1987, Tech		36, 37	
			Spec Surveil		38, 50,	
oss of electrical insulation between	Not stated	RG 1.129, IEEE-450		Not stated	54, 62-65	
lates causes short circuits and loss of			IEEE 450-		30, 31	54
apacity			1987, Tech		36, 37,	
		1	Spec Surveil.		38, 50,	
oss of electrolyte results in loss of	Not stated	RG 1.129, IEEE-450	BG 1 120		54, 62-65	
apacity				Not stated	30, 31,	55
		1	IEEE 450-		36, 37,	
			1987, Tech		38, 50,	- 1
ontaminates in the electrolyte result in	Not stated	PO 1 100 JEEE 111	Spec Surveil.		54, 62-65	
duced capacity		RG 1.129, IEEE-450	HG 1.129,	Not stated	30, 31,	56
			IEEE 450-		36, 37,	
			1987, Tech		38, 50,	
nbrittled top conductors are susceptible	Engenerat		Spec Surveil.		54, 62-65	
breaking and causes loss of capacity	Frequent	RG 1.129, IEEE-450	RG 1.129,	Not stated	30, 31	57
and causes loss of capacity			IEEE 450-		36, 37,	J'
			1987, Tech		38, 50	
			Spec Surveil		54, 62-65	
or electrical contact results in loss of	Not stated	RG 1.129, IEEE-450		lot stated		
pacity and may result in total battery			EEE 450-		30, 31,	58
lure			1987, Tech		36, 37,	
			Spec Surveil.		38, 50,	
ate growth and handling stresses	requent	RG 1.129, IEEE-450			54, 62-65	
sults in cracked containers which allow				lot stated	30, 31,	59
ctrolyte to escape resulting in reduced			EEE 450-		36, 37,	
pacity or total failure			1987, Tech Spec Surveil.		38, 50,	
		1 19			54, 62-65	1

Document: NUREG/CR-5192, Testing of A Naturally Aged Nuclear Power Plant Inverter and Battery Charger Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function Contrib to Failure Reported progs Rel.progs

Effect of Aging on Component Functi Resistance change causes improper			Rel.progs	Report Recommendations	Page No.	Item
output.	Not stated	Not discussed in report	specific, Tech.	Individual fusing of filter capacitors to preclude a capacitor failure in the short circuit mode [2]	3-23	1
When turns of wire in resisor make contact it decreases total resistance of resistor resulting in improper output.	Not stated	Not discussed in report		Not stated	3-23	2

Page 29B

Document: NUREG/CR-5192, Testing of A Naturally Aged Nuclear Power Plant Inverter and Battery Charger Reviewed by: L. C. Meyer, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
3		Inverter	Electrolytic Capacitors	Not stated	Not stated	Not stated	Capacitance decreases with age
4	,	Inverter	Ceramic Capacitor	Not stated	Not stated	Not stated	Unstable capacita nce value
5		Inverter	Silicon Controlled Rectifiers	Silicon	Not stated	ELETEMP	Deterioration of the thermal joint compound
6	· · · · · · · · · · · · · · · · · · ·	Inverter	Various Electrical Components	Not stated	Not stated	Not stated	No aging effects noted for 12 year old equipment
7		Battery	Various Electrical Components	Not stated	Not stated	Not stated	No aging effects noted for 12 year old equipment

Document: NUREG/CR-5280 V1, Age-Related Degradation of Westinghouse 480-Volt Circuit Breakers Reviewed by: L. C. Meyer, INEL

tem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		DS-206/DS-416 Circuit Breakers	Power Operated Mechanisms	Spring steel	Westinghouse	WEAR, LOSLUB, CORR/UA	Wear out, loss of material, friction, & corr product buildup
2		DS-206/DS-416 Circuit Breakers	Contacts	Contacts mounted on high strenght insulating base and steel arm	Westinghouse	WEAR, CURSTR, & CORR/UA	Wear from operation, pitting, & erosion from arcs
3		DS-206/DS-416 Circuit Breakers	Arc Chutes	Steel and arc resisting plastic plates	Westinghouse	WEAR, & CURSTR	Erosion & burned splitter plates
4		DS-206/DS-416 Circuit Breakers	Amptector Trip Unit (Électronic Components)	Not stated	Westinghouse	VIB, CURSTR, & VOLSTR	Loose parts, component burn out or degraded operation
5		DS-206/DS-416 Circuit Breakers	Current Magnitude and Direction Sensors	Current transformers	Westinghouse	CURSTR, & VOLSTR	Dielectric properties degraded from electrical stresses
6		DS-206/DS-416 Circuit Breakers	Optional Accessories	Electro-mechanical devices, switch, and solid state device	Westinghouse	VIB, CURSTR, & VOLSTR	Not stated
7		DS-206/DS-416 Circuit Breakers	Electrical and Mechanical Components in General	Not stated	Westinghouse	VIB, CURSTR, VOLSTR, LOSLUB, & WEAR	Coil burnings, binding of linkage, wear, overheating, & dust

Document: NUREG/CR-5280 V2, Age-Related Degradation of Westinghouse 480-Volt Circuit Breakers (Mechanical Cycling) Reviewed by: L. C. Meyer, INEL

.

Item	System	Structure/Comp	Subcomponent	<u>Materials</u>	Manufacturer	ARD mechanism	ARD effects
1		DS-416 Breaker/480	Structural	Steel	Westinghouse	VIB & CORR	Vibration will loosen
		V	Components				parts, corrosion
							degrades metals
2		DS-416 Breaker/480	Contact Assembly	Insulating material	Westinghouse	WEAR & CURSTR	Wear & loss of
		V		and stainless steel			material from arcing.
				•			
1							
I I	•	l '	1	I	1	ł	

Page 30A

Document: NUREG/CR-5192, Testing of A Naturally Aged Nuclear Power Plant Inverter and Battery Charger Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	on Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Distortion of signals to SCRs may result in improper putput.	Not stated	Not discussed in report	Vendor specific, Tech. Spec., IEEE 446, NEMA	Not stated	3-23	3
Not stated	Not stated	Not discussed in report	Vendor specific, Tech. Spec., IEEE 446, NEMA	Not stated	3-23	4
Over heating of SCRs may result in SCR failure and loss of output.	Not stated	Not discussed in report	Vendor specific, Tech. Spec., IEEE 446, NEMA	Not stated	4-1	5
None	Not stated	Not discussed in report	Vendor specific, Tech. Spec., IEEE 446, NEMA	Not stated	4-3	6
None.	Not stated	Not discussed in report	Vendor specific progarm, Tech. Spec. Surveil.	Not stated	3-1, 4-1, & 4-3	7

Document: NUREG/CR-5280 V1, Age-Related Degradation of Westinghouse 480-Volt Circuit Breakers Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function		Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Excessive force or rubbing causes distortion & wear out, rust on pivotal parts & thp gears can cause hang up, hardened or improper lubricants or lubricant application can cause sluggish operation.		Not discussed in report	Vendor specific , IEEE 741- 1986 Section 7	Twelve recommendations given relating to three separate issues covering reliability, pole shaft welds, and maintenance. [2]	2-7, 6- 2, & 7-4	1
Contacts wear from repeated operations, arcing causes pitting, contacts become mottled, dirty, and eroded due to arc burning. Contacts over heat from resistance due to weak springs.	Occasional	Maintenance per owner's group MPM WORGTSDS416	Vendor specific , IEEE 741- 1986 Section 7	Filing or dressing with abrasive cloth is not recommended [2]	2-9, 6-2, & 7-6	2
Slots in arc chute gradually erode with arc interruptions, fault currents cause heavy erosion, and throat of the arc chute enclosure becomes burned and coated with soot from arc interruptions.	Frequent	Maintenance per owner's group MPM WORGTSDS416	Vendor specific , IEEE 741- 1986 Section 7	Life of the DS-16 breaker should be 5000 cycles or 20 years. [2]	2-9, 6-3, & 7-6	3
Vibration may loosen parts, voltage and current stress may cause part burn out or insulation damage. Electrical stress reduces dielectric properties	Occasional	Maintenance per owner's group MPM WORGTSDS416	Vendor specific , IEEE 741- 1986 Section 7	Life of the DS-16 breaker should be 5000 cycles or 20 years. [2]	2-9, 6-3, & 7-6	4
Not stated	Not stated	Maintenance per owner's group MPM WORGTSDS416	Vendor specific , IEEE 741- 1986 Section 7	Not stated	2-12	5
Not stated	Not stated	Maintenance per owner's group MPM WORGTSDS416	Vendor specific , IEEE 741- 1986 Section 7	Not stated	2-12 & 2- 13	6
Most breaker problems result from control problems involving contacts, coil burnings, and trip device bindings, followed by operating mechanism problems. Loss of lubrication, erosion of contacts, burning of arc chutes, & loss of adjustment are from aging	Occasional	Owner's group recommended maintenance	Vendor specific , IEEE 741- 1986 Section 7	Twelve recommendations given related to reliability, weld failures, and maintenance [2]	.2-1, 7-1, & 7-4.	7

Document: NUREG/CR-5280 V2, Age-Related Degradation of Westinghouse 480-Volt Circuit Breakers (Mechanical Cycling) Reviewed by: L. C. Meyer, INEL Effect of Arring an Company Equation Control to Soliton, Denut the Soliton of Soliton, Soli

Effect of Aging on Component	Function Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Failure to operate	Rare	Not discussed in report	Vendor specific , IEEE 741- 1986 Section 7	Not stated	3-2 & 6-2	
Unreliable contact	Not stated	Not discussed in report	Vendor specific , IEEE 741- 1986 Section 7	Not stated	3-2 & 6-2	2

Page 30B

Page 31A

Document: NUREG/CR-5280 V2, Age-Related Degradation of Westinghouse 480-Volt Circuit Breakers (Mechanical Cycling) Reviewed by: L C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
3		DS-416 Breaker/480 V	Power Operated Mechanism	Steel	Westinghouse	WEAR, FAT, & EX FORCE	Wear, fracture, and distortion.
4		DS-416 Breaker/480 V	Pole Shaft	Steel	Westinghouse	FAT. & EX FORCE	Cracking, misalignment, & binding due to poor welds
5		DS-416 Breaker/480 V	Charging System (Rachet, Motor, Brushes, Oscillator., Spring)	Steel, carbon brush in motor, insulation varnish on motor windings	Westinghouse	WEAR, FAT, & CURSTR	Wear on moving parts & electric motor burn out
6		DS-416 Breaker/480 V	Electrical Coils (UVTA, STA, AND Closing Coil)	Not stated	Westinghouse	CURSTR	Extended duration of current flow caused burn out
7		DS-416 Breaker/480 V	Sensors, Amptector Trip Unit, & Arc Chutes	Not stated	Westinghouse	Not stated	Extended energization of coils.

Document: NUREG/CR-5334, Severe Accident Testing of Electrical Penetration Assemblies Reviewed by: L. C. Meyer, INEL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		D. G. O'Brien Electrical Penetration	SEALS	Silicon O-ring	D. G. O'Brien	ELETEMP, MOIST- EL, AND RAD	Seal cracks and moisture intrusion.
2		D. G. O'Brien Electrical Penetration	Electrical Components (Wire, Insulation, and Connectors)	Not stated	Not stated	ELETEMP. MOIST- EL, AND RAD	Moisture or contaminants caused electrical shorts to ground
3		Westinghouse Electrical Penetration	Seals	Silcion O-ring	Westinghouse	ELETEMP, MOIST- EL, AND RAD	Seal cracks and moisture intrusion
4		Westinghouse Electrical Penetration	Electrical Components (Wire, Insulation, and Connectors)	Not stated	Westinghouse	ELETEMP, MOIST- EL, AND RAD	Insulation degradation
5		CONAX Electrical Penetration	Seals	Viton O-rings	Conax	ELETEMP, MOIST- EL, AND RAD	Seal cracks and moisture intrusion
6		CONAX Electrical Penetration	Electrical Components (Wire, Insulation, and Connectors)	Not stated	Conax	THERM, MOIST- EL, AND RAD	Embrittlement and cracking

Document: NUREG/CR-5383, Effect of Aging on Response Time of Nuclear Plant Pressure Sensors Reviewed by: E. W. Roberts, INEL

tem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Pressure Transmitter	Diaphragm	Not stated	Not stated	VIBR FAT PRESS	Deformation, cracking, and hysteresis of diaphragm
2		Pressure Transmitter	Mechanical Linkages	Not stated	Not stated	PRESS CORR CORR/OX	Changes in system restoration ability
3		Pressure Transmitter Electronics	Seals	Not stated	Not stated	EMBR	Moisture on electronics

Document: NUREG/CR-5280 V2, Age-Related Degradation of Westinghouse 480-Volt Circuit Breakers (Mechanical Cycling) Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	on Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Aging degradation in parts between the motor and the poles redistributes the force transmitted from the charging motor causing large unbalanced stresses in subcomponents & wear	Occasional	Not discussed in report	Vendor specific , IEEE 741- 1986 Section 7	Monthly inspection and every 50 to 100 cycles inspect parts vulnerable to aging, maintenance & lubrication at 250 cycles [2]	6-2 & 6-5	
Once cracks grow to a quarter the size of an effective weld the five levers connecting the pole contacts become misaligned and caused excesssive movement leading to fracture, binding and other problems.	Not stated	Not discussed in report	Vendor specific , IEEE 741- 1986 Section 7	Monthly inspection and every 50 to 100 cycles inspect parts vulnerable to aging, maintenance & lubrication at 250 cycles [2]	6-2 & 6-5	4
Wear of ratchet wheel, holding pauls, motor crank, and handle dominated the aging of the charging system. Carbon brushes needed frequent maintenance.	Not stated	Not discussed in report	, IEEE 741- 1986 Section 7	Assure design adequacy by inspection, enhanced inspections and maintenance & install cycle counter. [2]	6-2, 6-4	5
Sluggish operation, binding, failure to operate.	Freq when mechanism binding	Not discussed in report	Vendor specific , IEEE 741- 1986 Section 7	Assure design adequacy by inspection, enhanced inspections and maintenance & install cycle counter. [2]	4-18	6
Not stated	Not stated	Not discussed in report	Vendor specific , IEEE 741- 1986 Section 7		3-2	7

Document: NUREG/CR-5334, Severe Accident Testing of Electrical Penetration Assemblies Reviewed by: L C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure		Rel.progs	Report Recommendations	Page No.	item
Cracks in the seals from high temperature and radiation allows moisture to leak into penetration resulting in electrical faults.		IEEE 317-1976 AND IEEE 323-1974 DESIGN STD	vendor specific	Each design should be tested. The leak potential is highly dependent on the temperatures to which the EPA is subject. [2]	4-1, 4-16,	
Short to ground and electrical faults due to moisture intrusion.	Not stated	IEEE 317-1976 AND IEEE 323-1974 DESIGN STD	10 CFR 50.49, vendor specific	Not stated	C-1, 4-16, and 7-1	2
Seal cracks allow moisture intrusion into penetration resulting in electrical faults.		IEEE 317-1976 AND IEEE 323-1974 DESIGN STD	10 CFR 50.49, vendor specific	Each design should be tested. The leak potential is highly dependent on the temperatures to which the EPA is subject. [2]	1-3, 5-1, 5-15, and 7-1	3
Decreased insulation resistance results in excessive leakage currents.			10 CFR 50.49, vendor specific	Not stated	4-1, 4-16, and 7-1	4
Seal cracks allow moisture intrusion resulting in electrical faults.		IEEE 317-1976 AND IEEE 323-1974 DESIGN STD	vendor specific	Each design should be tested. The leak potential is highly dependent on the temperatures to which the EPA is subject. [2]	6-1, 6-13, and 7-1	
Electrical faults due to moisture intrusion through connectors.		Internet and the second second	10 CFR 50.49, vendor specific	Look at types of cables and	6-1, 6-13, and 7-1	6

Document: NUREG/CR-5383, Effect of Aging on Response Time of Nuclear Plant Pressure Sensors Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	item
Response time degradation for pressure transmitter	Not stated	RG 1.118, IEEE 338, & ISA Standard 67.06	RG 1.118, IEEE 338, Tech Spec surveillance	Revise RG and standards to take into account recent advances in testing technology and other available information. [2]	23, 115	
Response time degradation for pressure transmitter	Not stated	RG 1.118, IEEE 338, & ISA Standard 67.06	RG 1.118, IEEE 338, Tech Spec surveillance	Revise RG and standards to take into account recent advances in testing technology and other available information. [2]	23, 115	2
Response time degradation for pressure transmitter	Not stated	338, & ISA Standard	RG 1.118, IEEE 338, 10 CFR 50.49, Tech Specs	Revise RG and standards to take into account recent advances in testing technology and other available information. [2]	23, 115	3

Page 31B

Page 32A

Document: NUREG/CR-5383, Effect of Aging on Response Time of Nuclear Plant Pressure Sensors Reviewed by: E. W. Roberts, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
4		Pressure	Electronic	Not stated	Not stated	ELETEMP RAD	Changes in value of
		Transmitter	Components			MOIST-EL	electronic
		Electronics					components
1							

Document: NUREG/CR-5448, AGING EVALUATION OF CLASS 1E BATTERIES: SEISMIC TESTING Reviewed by: E. W. Roberts, INEL

ltern	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1			Batteries	Not stated	Not stated	SEISMIC	Plate movement or
							breakup
							1
<u> </u>	L	· · · · · · · · · · · · · · · · · · ·		L	· · · · · · · · · · · · · · · · · · ·		d

Document: NUREG/CR-5461, Aging of Cables, Connections, and Electrical Penetration Assemblies Used in Nuclear Power Plants Reviewed by: L. C. Meyer, INEL Unit Content of Comparison of Cables, Connections, and Electrical Penetration Assemblies Used in Nuclear Power Plants

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Cable	Insulation	EPR. CSPE, EPDM, XLPE, silicon rubber, butyl rubber, polyethylene, and 13 others used less often	Ten manufactures listed	MOIST-EL, ELETEMP, AND RAD	Insulation degradation, short and open circuits
2		Cable	Jacket	Neoprene, hypalon, XLPO, CSPE, & CPE,	Ten manufactures listed	MOIST-EL, ELETEMP, AND RAD	Jacket degradation, cracks, and discoloration
3		Connections	Terminal Blocks	Phenolic with glass or cellulose filler with metal terminals	Seven listed	ELETEMP, RAD, & VIB	Loose connections, cracks and short circuits
4		Connections	Splices	Crimp type ring lugs, copper conductor, nylon or kynar insulation, and Raychem heat shrink tubing	Raychem	ELETEMP, VIB, AND RAD	Loose connections and loss of dielectric isolation
5		Connections	Coax Connectors	Metal with organic insulation such as teflon	Not stated	ELETEMP AND RAD	Insulation degradation
6		Electrical Penetrations	Seal Material	Steel tubes, seal materials are polysulfone, metal- glass, and epoxy	Conax, O'Brien, and Westinghouse	ELTEMP & RAD	Seal leaks and cracking
7		Electrical Penetrations	Electrical Wire or Cable	Insulations (XLPE, EPR, EPDM & Polymide) and jacket(CSPE, SPE, Hypalon, FR, and fiberglass)	Ten manufacturers listed	ELETEMP AND RAD	Change in dieletric properties, embrittlement, and cracking

Document: NUREG/CR-5546, An Investigation of The Effects of Thermal Aging on the Fire Damageability of Electric Cables Reviewed by: L.C. Meyer, INEL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Electrical Cables	Insulation	XPE, and interstitial material (Nylon & paper)	Rockbestos	ELETEMP	Not stated
2		Electrical Cables	Jacket	Neoprene	Rockbestos	ELETEMP	Embrittlement and cracking
3		Electrical Cables	Insulation	EPR, and interstitial material (Nylon & paper)	Boston Insulated Wire	ELETEMP	Not stated
4		Electrical Cables	Jacket	Hypalon	Boston Insulated Wire	ELETEMP	Embrittlement, dielectric loss and forms cracks

Page 32B

Document: NUREG/CR-5383, Effect of Aging on Response Time of Nuclear Plant Pressure Sensors Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function		Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
· · · · · · · · · · · · · · · · · · ·	Not stated	RG 1.118, IEEE	RG 1.118,	Revise RG and standards to take	23, 115	4
transmitter		338, & ISA Standard	IEEE 338,	into account recent advances in		
		67.06	Tech Spec	testing technology and other		
			surveillance	available information. [2]		

Document: NUREG/CR-5448, AGING EVALUATION OF CLASS 1E BATTERIES: SEISMIC TESTING Reviewed by: E. W. Roberts, INEL

	Effect of Aging on Component Functio		Reported progs	Rel.progs	Report Recommendations	Page No.	ltem	
	No effect on bat capability if maintained to	Not stated	IEEE STD 450, RG	RG 1.129,	Batteries not maintained per IEEE	35	1	
	EEE Std 450, RG 1.1.29 and MFG		1.129, & Mfg	IEEE 450-	450, RG1.129, & MFG rec. need		1 1	
ľ	ecommendations		recommendations	1987, Tech	adv.monitoring tech. to determine			
L				Spec Surveil.	seismic capability. [2]			

Document: NUREG/CR-5461, Aging of Cables, Connections, and Electrical Penetration Assemblies Used in Nuclear Power Plants **Reviewed by:** L.C. Meyer, INEL Effect of Aging on Component Electrical Contribute Electrical Penetration Assemblies Used in Nuclear Power Plants

Effect of Aging on Component Function		Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Thermal and radiation effects cause insulation degradation leading to cracking which allows moisture to intrude and then shorts or current leakage results. Jacket/insulation interaction effect was also noted.	Not stated	EQDB, IEEE 323- 1974 & IEEE 383- 1974 testing	No specific program	Not stated	8, 24, & 40	
Thermal and radiation effects cause jacket material degradation leading to cracking which allows moisture to intrude into the insulation, jacket/insulation interaction effect was also noted in the sandia report.	Not stated	EQDB, IEEE 323- 1974 & IEEE 383- 1974 testing	No specific program	Not stated	8, 24, & 40	2
Loss of dielectric isolation or loose connections to disrupt a circuit, leakage paths through moisture films, and insulation resistance decrease in presents of steam.	Not stated	Not discussed in report	Plant specific programs	Not stated	11, 27, & 41	3
Insulaton vulnerable to aging, loss of dielectric isolation sufficient to disrupt a circuit, or loose connections	Not stated	Not discussed in report	10 CFR 50.49	Not stated	11, 27, & 42	4
Decreased insulation resistance results in excesive leakage current.	Not stated	Not discussed in report	Plant specific programs	Not stated	27	5
Seal cracks and leaks result in moisture intrusion and electrical faults.	Not stated	Not discussed in report	10 CFR 50.49, vendor specific program	Not stated	14, 28, & 42	6
nsulation degradation and jacket cracking eading to short or open circuits and degraded signals.		Not discussed in report	10 CFR 50.49, vendor specific program	Not stated	14, 28, & 42	7

Document: NUREG/CR-5546, An Investigation of The Effects of Thermal Aging on the Fire Damageability of Electric Cables **Reviewed by:** L. C. Meyer, INEL Effect of Aging on Component Function Contrib to Failure, Reported press, Bel press, B

Effect of Aging on Component Function		Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
None	Not stated	Not discussed in report	No specific program	Not stated	10, 13, and 32	
Failure to protect conductors and insulation.	Not stated	Not discussed in report	No specific program	Not stated	21, 24, and 32	2
Reduced the thermal damage threshold.	Not stated	Not discussed in report	No specific program	Not stated	21, 24, and 32	3
Reduced thermal damage threshold.	Not stated	Not discussed in report	No specific program	Not stated	21, 24, and 32	4

Page 33A

.

Document: NUREG/CR-5560, Aging of Nuclear Plant Resistance Temperature Detectors Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
		Resistance Temperature Detector (RTD)	Seal	Not stated	Five Companies Listed	ELETEMP, MOIST- EL. VIB, & THERM- CY	Dry out, shrink, &
2		Resistance Temperature Detector (RTD)	Insulation	MgO	Five Companies Listed	MOIST-EL	Moisture degrades insulation
3		Resistance Temperature Detector (RTD)	Sensing Element	Platinum	Five Companies Listed	ELETEMP, MOIST- EL, VIB, & THERM- CY	Noisy, cal shift, & degraded element
4		Resistance Temperature Detector (RTD)	Sheath .	Stainless steel	Five Companies Listed	ELETEMP, VIB, & THERM-CY	Not stated

Document: NUREG/CR-5619, The Impact of Thermal Aging on the Flammability of Electric Cables Reviewed by: E. W. Roberts, INEL Item System Structure/Comp. Subcomponent Material

item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
		Electric Cables	Neoprene jacket, cross-linked polyethylene (XPE) insulated	Rockbestos	ELETEMP	Not stated
2		Electric Cables	Hypalon jacket, ethylene-propylene rubber (EPR) insulated	Boston Insulated Wire	ELETEMP	Not stated

Document: NUREG/CR-5643, Insights Gained From Aging Research Reviewed by: Jerry Edson, INEL

Item	System		Subcomponent	Materiais	Manufacturer	ARD mechanism	
1		Electrical				AND INCOMINSIN	ARD effects
		Components					
			· ·				
			1				

Document: NUREG/CR-5655, Submergence and High Temperature Steam Testing of Class 1E Electrical Cables Reviewed by: E. W. Roberts, INEL Item System - Structure Company Structure (Company) and the state of the state

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
			Electrical Cable	EPR, XLPO, silicone, kapton, kerite. coaxial	12 Mfg	ELETEMP RAD MOIST-EL	Insulation failure
2			Electrical Cable	EPR, XLPO, silicone, kapton, kerite, coaxial	12 Mfg	ELETEMP RAD MOIST-EL	Some insulation failure
3			Electrical Cable	EPR, XLPO, silicone, kapton, kerite, coaxial	12 Mfg	ELETEMP RAD MOIST-EL	Some insulation failure

Document: NUREG/CR-5700, Aging Assessment of Reactor Instrumentation and Protection System Components Reviewed by: E. W. Roberts, INEL Htm. Sustem

System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	Instrumentation System	Indicator	Not stated	Not stated	ELETEMP VIBR	Indicator failure
		Instrumentation	Instrumentation Indicator	Instrumentation Indicator Not stated	Instrumentation Indicator Not stated Not stated	Instrumentation Indicator Not stated Not stated ELETEMP VIBB

Page 33B

Document: NUREG/CR-5560, Aging of Nuclear Plant Resistance Temperature Detectors Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	on Contrib to Failure	Reported progs	Rei.progs	Report Recommendations	Page No.	item
Seal may dry out, shrink, or crack allowing moisure intrusion and degraded performance of RTD.	Occasional	Not discussed in report	IEEE 338- 1987, RG 1.118, ISA 67.06, Tech Spec	Not stated	25, & 27	1
Moisure intrusion from a leaking seal will degrade the insulation.	Occasional	Not discussed in report	IEEE 338- 1987, RG 1.118, ISA 67.06, Tech Spec	Not stated	28	2
Long term high termp exposure affects material properties, vibration may cause response time degradation, and therm-cy can cause calibration shift.	Occasional	Not discussed in report	IEEE 338- 1987, RG 1.118, ISA 67.06, Tech Spec	Calibrate RTDs and perform response time tests prior to installation in a plant. [2]	28, 167, 180, and A8	3
Sheath not normally effected by aging during qualified life of RTD.	Rare	Not discussed in report	IEEE 338- 1987, RG 1.118, ISA 67.06, Tech Spec	Not stated	15, 25 & 27	4

Document: NUREG/CR-5619, The Impact of Thermal Aging on the Flammability of Electric Cables Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	on Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Reduction in flammability	Not stated	Not discussed in report	No specific program	No further investigation needed	21	
Reduction in flammability	Not stated	Not discussed in report	No specific program	No further investigation needed	21	2

Document: NUREG/CR-5643, Insights Gained From Aging Research Reviewed by: Jerry Edson, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
For electrical components, this report contains information identical to that in other NPAR reports. See the following NUREG/CR reports: 4457, 5448, 4564, 5051, 5192, 5461, 5655, 4156, 4939, 4234 v1 & v2, 5141, 4819 v1 & v2, 5181, 4747 v1, 4967, 4740	Not stated	Not discussed in report	Component specific programs	Not stated		1

Document: NUREG/CR-5655, Submergence and High Temperature Steam Testing of Class 1E Electrical Cables Reviewed by: E. W. Roberts, INEL

	ent Function Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Not stated	Not stated	IEEE 383	No specific program	Not stated	2, 35	
Not stated	Not stated	IEEE 383	No specific program	Not stated	2, 35	2
Not stated	Not stated	IEEE 383	No specific program	Not stated	2, 35	3

Document: NUREG/CR-5700, Aging Assessment of Reactor Instrumentation and Protection System Components Reviewed by: E. W. Roberts, INEL Effect of Aging on Component Europian Contribute Earling: Reported space - Del space -

Effect of Aging on Component Fun		Reported progs	Rel.progs	Report Recommendations	Page No. Item
Not stated	Frequent	Not discussed in report	RG 1.118, IEEE 338- 1987, ISA 67.06, Tech Spec	Develop methods to prevent infant mortality. Testing for synergistic effects of aging. Develop industry wide data base [2]	11 ,24 ,38 1 ,65

Page 34A

Document: NUREG/CR-5700, Aging Assessment of Reactor Instrumentation and Protection System Components Reviewed by: E. W. Roberts, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
2		Instrumentation System	Sensor	Not stated	Not stated	ELETEMP VIBR PRESS-CY MOIST- EL	Sensor failure,
3		Instrumentation System	Controller	Not stated	Not stated	ELETEMP VIBR MOIST-EL	Failure, response time degradation, drift
4		Instrumentation System	Controller	Not stated	Not stated	ELETEMP VIBR MOIST-EL	Calibration shift slow responce time
5		Instrumentation System	Annunciators	Not stated	Not stated	ELETEMP VIBR MOIST-EL	Visual unit failure sound alarm failure
6		Instrumentation System	Recorders	Not stated	Not stated	ELETEMP VIBR MOIST-EL	Failure to record

Document: NUREG/CR-5762, Comprehensive Aging Assessment of Circuit Breakers and Relays Reviewed by: E. W. Roberts, INEL

tem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1			Protective Relay - 10, 13, & 24 Years Old(GE)	Not stated	General Electric	Not stated	Oxidation on contacts, increased operating temperatures
2			Control Relay	Not stated	Klockner Moeller	Not stated	None
3			Control Relay - 2 & 12 Years Old	Not stated	Struthers Dunn	Not stated	Slight discoloration of armature and contact conn. finger
4			Control Relay	Not stated	Westinghouse	Not stated	None
5			Electronic Relay	Not stated	Blaser Electric	Not stated	Not stated
6			Auxilliary Relay	Not stated	General Electric	Not stated	Worn contacts and dust inside case
7			Auxilliary Relay	Not stated	Westinghouse	Not stated	Contact worn, discolored and pitted with age
8			Timing Relay	Not stated	Agastat	Not stated	Increased pickup voltage and op. temp. with age
9			Molded Case Circuit Breakers	Not stated	Square D	Not stated	None - 6 year old
10			Molded Case Circuit Breakers	Not stated	Westinghouse	Not stated	None - 18 & 30 year old
11	<u> </u>		Molded Case Circuit Breakers	Not stated	Klockner Moeller	Not stated	Overheating (discoloration) of case & splitting of tubing
12			Molded Case Circuit Breakers	Not stated	ITE	Not stated	Overheating/distorati on/damage to thermal element & trip mec

Document: NUREG/CR-5700, Aging Assessment of Reactor Instrumentation and Protection System Components Reviewed by: E. W. Roberts, INEL

	onent Function Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Not stated	Occasional	Not discussed in report	RG 1.118, IEEE 338- 1987, ISA 67.06, Tech Spec	Develop methods to prevent infant mortality. Testing for synergistic effects of aging. Develop industry wide data base [2]	11, 13, 26 ,41 ,65	2
Not stated	Occasional	Not discussed in report	RG 1.118, IEEE 338- 1987, ISA 67.06	Develop methods to prevent infant mortality. Testing for synergistic effects of aging. Develop industry wide data base [2]	11, 13, 26 ,43 ,65	3
Not stated	Occasional	Not discussed in report	RG 1.118, IEEE 338- 1987, ISA 67.06, Tech Spec	Develop methods to prevent infant mortality. Testing for synergistic effects of aging. Develop industry wide data base [2]	11, 13, 26 ,47 ,65	4
Not stated	Frequent	Not discussed in report	RG 1.118, IEEE 338- 1987, ISA 67.06	Develop methods to prevent intant mortality. Testing for synergistic effects of aging. Develop industry wide data base [2]	11, 13, 26 ,48 ,65	5
Not stated	Occasional	Not discussed in report	RG 1.118, IEEE 338- 1987, ISA 67.06, Tech Spec	Develop methods to prevent infant mortality. Testing for synergistic effects of aging. Develop industry wide data base [2]	11, 13, 26 ,48 ,65	6

Document: NUREG/CR-5762, Comprehensive Aging Assessment of Circuit Breakers and Relays Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function			Rel.progs	Report Recommendations	Page No.	Iten
Higher contact resistance, differences in induction pickup, significant variation in time/current charateristic.	Frequent	Yes - not specifically identified	IEEE 741-1986 Section 7	Modify current practices to include the addition of infrared temperature measurement with cover off and relay energized. [2]	3-1 & 7-3	
None	NONE	Yes - not specifically identified	Section 7	Modify current practices to include the addition of infrared temperature and vibration measurements. [2]	3-18 & 7- 3	
Contact resistance increased with age	Rare	Yes - not specifically identified	IEEE 741-1986 Section 7	Modify current practices to include the addition of infrared temperature and vibration measurements. [2]	3-18 & 7- 3	
None	Not stated	Yes - not specifically identified	IEEE 741-1986 Section 7	Modify current practices to include the addition of infrared temperature and vibration measurements. [2]	3-18 & 7- 3	
Not stated	Not stated	Yes - not specifically identified	IEEE 741-1986 Section 7	Not stated	3-32 & 7- 3	
Pickup voltage exceeded acceptance criteria	Not stated	identified	IEEE 741-1986 Section 7	Add infrared temperature measurement and vibration testing to current plant practices. [2]	3-36 & 7- 3	e
Increased contact resistance	Not stated	Yes - not specifically identified	IEEE 741-1986 Section 7	Add infrared temperature measurement and vibration testing to current plant practices. [2]	3-36 & 7- 3	7
Tirning accuracy not within typical required accuracy	Not stated	Yes - not specifically identified	IEEE 741-1986 Section 7	Add infrared temperature measurement, inrush current and vibration testing to current plant practices. [2]	3-52 & 7- 3	8
None	Not stated	Yes - not specifically identified	IEEE 741-1986 Section 7	Add infrared temperature measurement and vibration testing to current plant practices. modify instantaneous trip test. [2]	3-65 & 7- 3	9
Exceeded typical accept. criteria for instantaneous trip (125%) time.	Rare	identified	Section 7	Add infrared temperature measurement and vibration testing to current plant practices. modity instantaneous trip test. [2]	3-65 & 7- 3	10
300% overcurrent trip delay exceeded acceptance criteria. Damaged/misaligigned trip pin caused overheating and failure to perform instantaneous trip when required.	Occasional	identified	Section 7	Add infrared temperature measurement and vibration testing to current plant practices. modify instantaneous trip test. [2]	3-65 & 7- 3	11
nstantaeous trip inoperable/out of olerance on 2 phases. 300% overcurrent rip does not meet acceptance ctiteria.	Frequent	Yes - not specifically identified	Section 7	Add infrared temperature measurement and vibration testing to current plant practices, modify instantaneous trip test. [2]	3-65 & 7- 3	12

Page 34B

Document: NUREG/CR-5762, Comprehensive Aging Assessment of Circuit Breakers and Relays Reviewed by: E. W. Roberts, INEL

-	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
13			Metal Clad Circuit Breakers	Not stated	Westinghouse	Not stated	Main/arcing contacts pitted, insulation split, damaged parts
14			Metal Clad Circuit Breakers	· · ·	General Electric	Not stated	Back connections oxidized. binding of dashpot

Document: NUREG/CR-5772 V1, Aging, Condition Monitoring, and Loss-of-Coolant Accident (LOCA) Tests of Class 1E Electrical Cables Reviewed by: L.C. Meyer, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		600 V, Single Conductor Cables	Insulation	Cross linked polyethylene and cross linked polyolefin	Four Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in electrica property - insulation resistance (IR)
2		600 V, Single Conductor Cables	Insulation	Cross linked polyethylene and cross linked polyolefin	Four Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in electrical property - capacitance & diss. factor
3		600 V, Single Conductor Cables	Insulation	Cross linked polyethylene and cross linked polyolefin	Four Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in electrical property - polarization index
4		600 V, Single Conductor Cables	Insulation	Cross linked polyethylene and cross linked polyolefin	Four Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - elongation & tens. strength
5		600 V, Single Conductor Cables	Insulation	Cross linked polyethylene and cross linked polyolefin	Four Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - hardness
6		600 V, Single Conductor Cables	Insulation	Cross linked polyethylene and cross linked polyolefin	Four Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - indenter modulus
7		600 V, Single Conductor Cables	Insulation	Cross linked polyethylene and cross linked polyolefin	Four Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - bulk density
8		600 V, Single Conductor Cables	Insulation	Cross linked polyethylene and cross linked polyolefin	Four Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - mandrel bend test
9		600 V, Single Conductor Cables	Insulation	Cross linked polyethylene and cross linked polyolefin	Four Suppliers Listed	MOIST-EL	Moisture absorbed into a cable acts as a plasticizer
10		600 V, Single Conductor Cables	Jacket	Neoprene, chlorosulfonated polyethylene (CSPE), & CPE	Four Suppliers Listed	ELETEMP, RAD, & OXIDAT	Jacket - elongation & tensil strength
11		600 V, Single Conductor Cables	Jacket	Neoprene, chlorosulfonated polyethylene (CSPE), & CPE	Four Suppliers Listed	ELETEMP, RAD, & OXIDAT	Jacket - hardness and indenter modulus

Document: NUREG/CR-5772 V2, Aging, Condition Monitoring, and Loss-of-Coolant Accident (LOCA) Tests of Class 1E Electrical Cables Reviewed by: L.C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		600 V I&C Cables	Single and Multiconductor Cable Insulation	Ethylene propylene	Five Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in electrical property - insulation resistance (IR)
2		600 V I&C Cables	Single and Multiconductor Cable Insulation	Ethylene propylene	Five Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in electrical property - polarizator index

Page 35B

Document: NUREG/CR-5762, Comprehensive Aging Assessment of Circuit Breakers and Relays Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Long time delay varied between 110% and 150% of setting			Section 7	Add infrared temperature measurement and vibration testing to current plant practices. modify instantaneous trip test. [2]	3-89 & 7- 3	13
One phase failed to trip on long time delay overcurrent. Short timedelay overcurrent trip not within acceptance criteria.	Frequent		IEEE 741-1986 Section 7		3-89 & 7- 3	14

Document: NUREG/CR-5772 V1, Aging, Condition Monitoring, and Loss-of-Coolant Accident (LOCA) Tests of Class 1E Electrical Cables Reviewed by: L. C. Meyer, INEL Effect of Aging on Component Electrical Cables Described and an and the second and t

Effect of Aging on Component Fu			Rel.progs	Report Recommendations	Page No.	iten
Not determined since report only addressed detection methods	Not stated	Not discussed in report	No specific program	Not stated	6, 27, 40, and App C	
Not determined since report only addressed detection methods	Not stated	Not discussed in report	No specific program	Not stated	6, 28, & App D.	
Not determined since report only addressed detection methods	Not stated	Not discussed in report	No specific program	Not stated	6, 28, and App C	
Not determined since report only addressed detection methods	Not stated	Not discussed in report	No specific program	Not stated	6, 30-33, 39, and App E.	4
Not determined since report only addressed detection methods	Not stated	Not discussed in report	No specific program	Not stated	6, 34, 56, and App F.	5
Not determined since report only addressed detection methods	Not stated	Not discussed in report	No specific program	Not stated	33, 38, & 39	6
Not determined since report only addressed detection methods	Not stated	Not discussed in report	No specific program	Not stated	35 & 56	7
Not determined since report only addressed detection methods	Not stated	Testing per IEEE 383-1974	No specific program	Not stated	47 TO 54. & 57.	8
Not determined since report only addressed detection methods	Not stated	Testing per IEEE 383-1974	No specific program	Not stated	54 & 57	9
Not determined since report only addressed detection methods	Not stated	Testing per IEEE 383-1974	No specific program	Not stated	33, 39, & 56	10
Not determined since report only addressed detection methods	Not stated	Not discussed in report	No specific program	Not stated	39 & 56	11

Document: NUREG/CR-5772 V2, Aging, Condition Monitoring, and Loss-of-Coolant Accident (LOCA) Tests of Class 1E Electrical Cables Reviewed by: L. C. Meyer, INEL Effect of Aging on Component Function Contrib to Failure Reported progs Rel.progs Report Recommendations

Ellect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	lte m
Not determined since report only addressed detection methods.	Not stated	Not discussed in report	No specific program	Not stated	31, 32, 52 TO 58, 73, 74, & Appendix	
Not determined since report only addressed detection methods.	Not stated	Not discussed in report	No specific program	The electrical measurements were not effective for monitoring aging	13, 32, 46, & 73	2

Document: NUREG/CR-5772 V2, Aging, Condition Monitoring, and Loss-of-Coolant Accident (LOCA) Tests of Class 1E Electrical Cables Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
3		600 V I&C Cables	Single and Multiconductor Cable Insulation	Ethylene propylene	Five Suppliers Listed		Aging effects on capacitance and dissipation factor
4		600 V I&C Cables	Insulation	Ethylene propylene	Five Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - elongation & tens. strength
5		600 V I&C Cables	Insulation	Ethylene propylene	Five Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - hardness
6		600 V I&C Cables	Insulation	Ethylene propylene	Five Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - indenter modulus
7		600 V I&C Cables	Insulation	Ethylene propylene	Five Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - bulk density
8		600 V I&C Cables	Insulation	Ethylene propylene	Five Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - cracking
9		600 V I&C Cables	Insulation	Ethylene propylene	Five Suppliers Listed	MOIST-EL	Moisture absorbed into a cable acts as a plasticizer
10	·····	600 V I&C Cables	Jacket	CSPE and CPE	Five Suppliers Listed	ELETEMP, RAD, & OXIDAT	Jacket - elongation & tensil strength
11		600 V I&C Cables	Jacket	CSPE, & CPE	Five Suppliers Listed	ELETEMP, RAD, & OXIDAT	Jacket - hardness and indenter modulus

.

Document: NUREG/CR-5772 V3, Aging, Condition Monitoring, and Loss-of-Coolant Accident (LOCA) Tests of Class 1E Electrical Cables Reviewed by: L.C. Meyer, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Miscellaneous Cable Types		FR insulation, coax, silicon rubber, & polymide (Kapton)	Three Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in electrical property - insulation resistance (IR)
2		Miscellaneous Cable Types		FR insulation, coax, silicon rubber, & polymide (Kapton)	Three Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in electrical property - capacitance & diss. factor
3		Miscellaneous Cable Types		FR insulation, coax, silicon rubber, & polymide (Kapton)	Three Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in electrical property - polarization index
4		Miscellaneous Cable Types		FR insulation, coax, silicon rubber, & polymide (Kapton)	Three Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - elongation & tens. strength
5	,	Miscellaneous Cable Types		FR insulation, coax, silicon rubber, & polymide (Kapton)	Three Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - hardness
6		Miscellaneous Cable Types	Insulation	FR insulation, coax, silicon rubber, & polymide (Kapton)	Three Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - indenter modulus
7		Miscellaneous Cable Types		FR insulation, coax, silicon rubber, & polymide (Kapton)	Three Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - bulk density
8		Miscellaneous Cable Types		FR insulation, coax, silicon rubber, & polymide (Kapton)	Three Suppliers Listed	ELETEMP, RAD, AND OXIDAT	Changes in mechanical property - brittleness
9	، 	Miscellaneous Cable Types		FR insulation, coax, silicon rubber, & polymide (Kapton)	Three Suppliers Listed	MOIST-EL	Moisture absorbe decreases insulat
10		Miscellaneous Cable Types	Jacket	FR & fiberglass braided	Three Suppliers Listed	ELETEMP, RAD, & OXIDAT	Jacket - elongation & tensil strength
11		Miscellaneous Cable Types	Jacket	FR & fiberglass braided	Three Suppliers Listed	ELETEMP, RAD, & OXIDAT	Jacket - hardness and indenter modulus

Document: NUREG/CR-5772 V2, Aging, Condition Monitoring, and Loss-of-Coolant Accident (LOCA) Tests of Class 1E Electrical Cables Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Funct	ion Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Not determined since report only addressed detection methods.	Not stated	Not discussed in	No specific	Not stated	33, 36, &	
		report	program		46	
Not determined since report only	Not stated	Not discussed in	No specific	Not stated	36 TO 41,	1 4
addressed detection methods.		report	program		& 46	
Not determined since report only	Not stated	Not discussed in	No specific	Not stated	43, 46,	
addressed detection methods.		report	program		and Appendix F	
Not determined since report only	Not stated	Not discussed in	No specific	The Franklin indenter is	17, 42, &	6
addressed detection methods.		report	program	recommended because it is a good indicator of aging for jacket and EPR materials. [4]	46	
Not determined since report only	Not stated	Not discussed in	No specific	Not stated	43, 46, &	7
addressed detection methods.		report	program		Appendix F	
Not determined since report only	Not stated	Testing per IEEE	No specific	Follow IEEE 383-1974	66, 74, &	8
addressed detection methods.		383-1974	program	requirements. [4]	75	
Not determined since report only	Not stated	Not discussed in	No specific	Not stated	58 & 74	s
addressed detection methods.		report	program			
Not determined since report only	Not stated	Not discussed in	No specific	Not stated	73 & 75	10
addressed detection methods.		report	program			
Not determined since report only	Not stated	Not discussed in	No specific	Not stated	46 & 73	11
addressed detection methods.		report	program			

Document: NUREG/CR-5772 V3, Aging, Condition Monitoring, and Loss-of-Coolant Accident (LOCA) Tests of Class 1E Electrical Cables Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Fur			Rel.progs	Report Recommendations	Page No.	ltem
Not determined since report only addressed detector methods.	Not stated	Not discussed in report	No specific program	Not stated	30, 38, 40, & 51	1
Not determined since report only addressed detector methods.	Not stated	Not discussed in report	No specific program	Not stated	32, 38, & Appendix D	2
Not determined since report only addressed detector methods.	Not stated	Not discussed in report	No specific program	Not stated	31, 38, & Appendix C.	3
Not determined since report only addressed detector methods.	Not stated	Not discussed in report	No specific program	Not stated	34, 35, & Appendix E	4
Not determined since report only addressed detector methods.	Not stated	Not discussed in report	No specific program	Not stated	36 & Appendix G	5
Not determined since report only addressed detector methods.	Not stated	Not discussed in report	No specific program	The indenter is a good indicator of aging for silicon rubber and Kerite jacket materials, but not for coax jackets [4]	36, & Appendix F	6
Not determined since report only addressed detector methods.	Not stated	Not discussed in report	No specific program	Not stated	36 & Appendix G	7
Not determined since report only addressed detector methods.	Not stated	Testing per IEEE 383-1974	No specific program	IEEE 383-1974 requirements. [4]	45 TO 48, & 52.	8
Not determined since report only addressed detector methods.	Not stated	Not discussed in report	No specific program	Not stated	52	9
Not determined since report only addressed detector methods.	Not stated	Not discussed in report	No specific program	Not stated	6, 13, & 35	10
Not determined since report only addressed detector methods.	Not stated	Not discussed in report	No specific program	Not stated	16 & 36	11

Page 37A

Document: NUREG/CR-6095, Aging, Loss-of-Coolant Accident (LOCA), and High Potential Testing of Damaged Cables Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		#12 AWG, 1C, Cables	Insulation	Ethylene propylene	Okonite	RAD. ELTEMP, & MOIST-EL, & VOLTSTR	Cracks, degraded insulation resistance for damaged cable
2		#12 AWG, 1C, Cables	Jacket	Chlorosulfonated polyethylene (CSPE)	Okonite	RAD, ELTEMP, & MOIST-EL, & VOLTSTR	Cracks
3		#12 AWG, 1C, Cables	Insulation	Silicon rubber	Rockbestos	RAD, ELTEMP, & MOIST-EL, & VOLTSTR	Fragile & cracks
4		#12 AWG, 1C, Cables	Jacket	Figerglass braid	Rockbestos	RAD, ELTEMP, & MOIST-EL, & VOLTSTR	Not stated
5		#12 AWG, 1C, Cables	Insulation	Cross linked polyethylene with no jacket	Brand Rex	RAD, ELTEMP, & MOIST-EL, & VOLTSTR	Voltage breakdown and moisture and high temp degradation

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Electrical Cable	Jacket	Neoprene	Not stated	THERM & RAD	Drop in elongation
2		Electrical Cable	Jacket	Hypalon	Not stated	THERM & RAD	Drop in elongation
3		Electrical Cable	Jacket	PVC	Not stated	THERM & RAD	Elongation reduced from initial value
4		Electrical Cable	Insulation	Low density polyethylene	Not stated	THERM & RAD	Embrittlement & discoloration
5		Electrical Cable	Insulation	Chemically Cross linked polyethylene	Not stated	THERM & RAD	Elongation decrease

Document: SAND93-7027, Aging Management Guideline for Commercial Nuclear Power Plants - Electrical Switchgear Reviewed by: K. D. McCarthy, INEL

tem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Electrical Switchgear	Metal Housing System	Not stated	GE, Westinghouse, ITE/BB	FAT, MECHSTR	Cracked welds, deformation of circu breaker rails
2		Electrical Switchgear	System	Not stated	GE, Westinghouse, ITE/BB	CONTAM, CORR	Rust, pitting, and corr of structural members and fasteners
3		Electrical Switchgear	Primary Insulating System	Not stated	GE, Westinghouse, ITE/BB	EMBR	Insulation failure
4		Electrical Switchgear	Primary Insulating System	Not stated	GE, Westinghouse, ITE/BB	CONTAM, EMBR	Decrease in surface resistance
5		Electrical Switchgear	Primary Insulating System	Not stated	GE, Westinghouse, ITE/BB	ELETEMP. CONTAM, EMBR	Decrease in volumetric and surface resistance
6		Electrical Switchgear	Horizontal Racking Mechanism	Not stated	GE, Westinghouse, ITE/BB	WEAR	Binding of drawout unit
7		Electrical Switchgear	Vertical Racking Mechanism	Not stated	GE, Westinghouse, ITE/BB	WEAR	Lifting motor failure

Document: NUREG/CR-6095, Aging, Loss-of-Coolant Accident (LOCA), and High Potential Testing of Damaged Cables Reviewed by: L.C. Meyer, INEL

Longitudinal cracks were through to			Rel.progs	Report Recommendations	Page No.	Item
conductor and adjacent to damaged area, insulaton resistance degrades until failure occurs.	Occasional	Not discussed in report	No specific program	Not stated	4, 5, 10, & 18	
Jacket cracking can propagate to the insulation	OCASSIONAL	Not discussed in report	No specific program	Not stated	4, 5, 10, & 18	2
accident tests, on one cable a crack was found adjacent to the damaged area.	Rare	Not discussed in report	No specific program	Not stated	4 & 16	3
Not stated	Rare	Not discussed in report	No specific program	Not stated	4 & 16	- 4
No high potential effects found when nsulation remaining was 7 mills, no tracks developed from aging. Failure of ables during LOCA testing were at tamaged locations	Rare	Not discussed in report	No specific program	Not stated	4	5

Document: SAND--88-0754, Time-Temperature-Dose Rate Superpositions: A Methodology for Predicting Cable Degradation Under Ambient Nuclear Power Plant / Reviewed by: L. C. Meyer, INEL Effect of Aging on Component Fur nent Eurotion Contribute Faile

Elect of Aging on Component Functio		Reported progs	Rel.progs	Report Recommendations	Page No.	1 tea
Jacket failed to provide protection from moisture.	Rare	Not discussed in report	No current programs	Not stated	28 to 34	
Jacket failed to provide protection from moisture.	Rare	Not discussed in report	No current programs	Not stated	34 to 38	2
Jacket failed to provide protection from moisture.	Occasional	Not discussed in report	No current programs	Not stated	43	3
Embrittlement causes cracking and allows moisture intrusion resulting in failure to accurately transmit voltage or current.	cable)	Not discussed in report	No current programs	Not stated	44	4
Embrittlement causes cracking and allows moisture intrusion resulting in failure to accurately transmit voltage or current.	Rare	Not discussed in report	No current programs	Not stated	12 & 54	- 5

Document: SAND93-7027, Aging Management Guideline for Commercial Nuclear Power Plants - Electrical Switchgear Reviewed by: K. D. McCarthy, INEL Effect of Aging on Component Function **•** • • • • •

Effect of Aging on Component Function Structural degradation caused by material	on Contrib to Failure		Rel.progs	Report Recommendations	Page No.	ltem
fatigue can lead to the loss of structural integrity.		Various recommendations made for maintenance	No specific program for this subcomponent	Not stated	4-7	
Contaminants and moisture can cause corrosion/rust of the metal housing system, resulting in a loss of structural integrity. Insulation deterioration results from	Not stated	Various recommendations made for maintenance	No specific program for this subcomponent	Not stated	4-7	2
ambient temperatures with chmic heating and can result in a loss of insulating properties and flashover of insulation.	Not stated	Various recommendations made for maintenance	No specific program for this subcomponent	Not stated	4-7	3
Normal voltage in combination with humidity, dirt, and contaminants can lead to surface current tracking which can result in insulation failure and flashover	Not stated	Various recommendations made for maintenance	No specific program for this subcomponent	Not stated	4-7	4
Normal voltage in combination with thermal deterioration, humidity, dirt, and contaminants can lead to a decrease in volumetric and surface resistance which can result in bus insulation failure and fashover.		Various recommendations made for maintenance	No specific program for this subcomponent	Not stated	4-7	5
Wear from many racking cycles can lead to a binding of the drawout unit which can esult in the inability to connect the preaker for operation.		Various recommendations made for maintenance	Vendor specific programs	Not stated	4-7	6
Wear from many racking cycles can lead o a lifting motor failure which can result in he breaker not being able to be connected for operation.		Various recommendations made for maintenance	Vendor specific programs	Not stated	4-8	7

Page 37B

Document: SAND93-7027, Aging Management Guideline for Commercial Nuclear Power Plants - Electrical Switchgear Reviewed by: K. D. McCarthy, INEL

Electrical Switchgear Electrical Switchgear Electrical Switchgear Electrical Switchgear Electrical Switchgear	Main Contacts Main Contacts Stored Energy Spring and Solenoid Operated Mech	Not stated Not stated Not stated	GE, Westinghouse, ITE/BB GE, Westinghouse, ITE/BB GE, Westinghouse, ITE/BB GE, Westinghouse, ITE/BB	CURSTR CURSTR VIBR, WEAR CONTAM, ENVIR	Arcing contact burn up and vaporization Contact burning or welding Contact burning or welding Deterioration of
Electrical Switchgear Electrical Switchgear	Main Contacts Stored Energy Spring and Solenoid Operated Mech	Not stated	GE, Westinghouse, ITE/BB GE, Westinghouse,	VIBR, WEAR	welding Contact burning or welding Deterioration of
 Electrical Switchgear	Stored Energy Spring and Solenoid Operated Mech		ITE/BB GE, Westinghouse,		welding Deterioration of
	Spring and Solenoid Operated Mech	Not stated		CONTAM, ENVIR	
 Electrical Switchgear	Stored Energy				greases
	Spring and Solenoid Operated Mech	Not stated	GE; Westinghouse, ITE/BB	ENVIR, MECHSTR, WEAR	High friction betwee moving parts
Electrical Switchgear	Stored Energy Spring and Solenoid Operated Mech	Not stated	GE, Westinghouse, ITE/BB	VIBR, WEAR	Movement of components and loss of tolerances
 Electrical Switchgear	Stored Energy Spring and Solenoid Operated Mech	Not stated	GE, Westinghouse, ITE/BB	FAT, CONTAM	Broken welds
 Electrical Switchgear	Stored Energy Spring and Solenoid Operated Mech	Not stated	GE, Westinghouse, ITE/BB	WEAR	Wear of spring charging mechanist components
Electrical Switchgear	Stored Energy Spring and Solenoid Operated Mech	Not stated	GE, Westinghouse, ITE/BB	ELETEMP	Trip or close coil burn out
 Electrical Switchgear	Solenoid Operated Mechanism	Not stated	GE, Westinghouse, ITE/BB	ELETEMP	Solenoid coil burnoi
 Electrical Switchgear	Solenoid Operated Mechanism	Not stated	GE, Westinghouse, ITE/BB	CURSTR, ELETEMP	Insulation deterioration
 Electrical Switchgear	Arc-Chute	Not stated	GE, Westinghouse, ITE/BB	ELETEMP, EMBR	Material degradation
 Electrical Switchgear	Primary Disconnect	Not stated	GE, Westinghouse, ITE/BB	WEAR	Disconnect wear, spring relaxation
 Electrical Switchgear	Secondary Disconnect	Not stated	GE, Westinghouse, ITE/BB	WEAR	Spring relaxation
	Electrical Switchgear Electrical Switchgear Electrical Switchgear Electrical Switchgear	Electrical Switchgear Solenoid Operated Mechanism Electrical Switchgear Solenoid Operated Mechanism Electrical Switchgear Solenoid Operated Mechanism Electrical Switchgear Arc-Chute Electrical Switchgear Primary Disconnect Electrical Switchgear Secondary	Spring and Solenoid Operated Mech Electrical Switchgear Solenoid Operated Mechanism Not stated Electrical Switchgear Solenoid Operated Mechanism Not stated Electrical Switchgear Solenoid Operated Mechanism Not stated Electrical Switchgear Arc-Chute Electrical Switchgear Primary Disconnect Electrical Switchgear Secondary Not stated Not stated	Spring and Solenoid Operated Mech ITE/BB Electrical Switchgear Solenoid Operated Mechanism Not stated GE, Westinghouse, ITE/BB Electrical Switchgear Solenoid Operated Mechanism Not stated GE, Westinghouse, ITE/BB Electrical Switchgear Solenoid Operated Mechanism Not stated GE, Westinghouse, ITE/BB Electrical Switchgear Arc-Chute Not stated GE, Westinghouse, ITE/BB Electrical Switchgear Primary Disconnect Not stated GE, Westinghouse, ITE/BB Electrical Switchgear Primary Disconnect Not stated GE, Westinghouse, ITE/BB Electrical Switchgear Secondary Not stated GE, Westinghouse, ITE/BB	Electrical Switchgear Solenoid Operated Mech ITE/BB ITE/BB Electrical Switchgear Solenoid Operated Mech Not stated GE, Westinghouse, ITE/BB ELETEMP Electrical Switchgear Solenoid Operated Mechanism Not stated GE, Westinghouse, ITE/BB CURSTR, ELETEMP Electrical Switchgear Solenoid Operated Mechanism Not stated GE, Westinghouse, ITE/BB CURSTR, ELETEMP Electrical Switchgear Arc-Chute Not stated GE, Westinghouse, ITE/BB ELETEMP, EMBR Electrical Switchgear Arc-Chute Not stated GE, Westinghouse, ITE/BB ELETEMP, EMBR Electrical Switchgear Primary Disconnect Not stated GE, Westinghouse, ITE/BB WEAR Electrical Switchgear Primary Disconnect Not stated GE, Westinghouse, ITE/BB WEAR Electrical Switchgear Primary Disconnect Not stated GE, Westinghouse, ITE/BB WEAR

Document: SAND93-7027, Aging Management Guideline for Commercial Nuclear Power Plants - Electrical Switchgear Reviewed by: K. D. McCarthy, INEL Effect of Aging on Component Function Contribute Solitons, Depart 1

Effect of Aging on Component Func Fault current operation can cause conta	ct I Not stated	Various	Rel.progs	Report Recommend		
detenoration and lead to contact burn ur		recommendations			4-8	
and vaporization which degrades the		made for				
breaker's function.		maintenance	7.5			
Fault current operation can lead to conta	ct Not stated	Various				
deterioration which can result in the		recommendations	IEEE 308-198		4-8	
breaker's function being degraded.		made for	1000000000000000			
			7.5			
Movement of components and loss of	Not stated	maintenance				
tolerances from mechanical cycling can	Not stated	Various	IEEE 308-198	0 Not stated	4-8	
lead to high resistance at the contact		recommendations	Section 7.4 &			
interface which in turn can lead to contact		made for	7.5	1		
burning or welding. This can result in	~	maintenance		1		
degraded breaker function.						
Ambient temperatures can cause grease	A Makedatard					
to deteriorate leading to binding of latche	s Not stated	Various	Vendor specifi	c Not stated	4-8	
and high friction in mechanism. These	S	recommendations	programs			
can result in slow or no open or close		made for		1		
operation.		maintenance				
Mechanical cycling of the stored energy	Not stated	Various	Vendor specific	c Not stated	4-8	-+-
pring can cause mechanical wear of		recommendations	programs		1-0	
nechanism parts which leads to high	1	made for				
riction between moving parts. This can		maintenance				
esult in binding of mechanism and	1					
atches, slow or no open or close						
peration.				1		
lechanical cycling can cause a loss of	Not stated	Various	Vendor specific	Not stated		_
plerances and movement of components		recommendations		INVI STATED	4-8	
his can result in binding and/or failure to		made for	programs			1
perate.		maintenance				
lechanical cycling can lead to pole shaft	Not stated	Various				
eld fatigue which can lead to broken			Vendor specific	Not stated	4-9	
elds. This can result in jamming,		recommendations	programs			
owing, or failure to operate.		made for				
lechanical cycling can lead to wear of	Not stated	maintenance				
oring charging mechanism components	Not stated	Various	Vendor specific	Not stated	4-9	+
hich can result in failure to charge		recommendations	programs	1		
osing springs and failure to close.		made for		1		
olonged energization of the control coils		maintenance		ł		
	Not stated	Various	No specific	Not stated	4-9	+
in lead to elevated temperatures which		recommendations	program for	-	4-3	
in lead to trip or close coil burn out.		made for	this sub			
his can result in failure to open, failure to		maintenance	component	1		1
ose, or failure to operate.						1
olonged energization of solenoid coil	Not stated	Various	No specific	Not stated		+
n cause elevated temperatures in the		recommendations	program for	inor stated	4-9	1
il which can lead to solenoid coil		made for	this sub			1
mout. This can result in the breaker		maintenance	component			1
ling to close.				ł		1
ectrical cycling can cause insulation	Not stated	Various	No specific	Net eteter		
terioration which can lead to solenoid		recommendations	1 .	Not stated	4-9	1
il burn out. This can result in a failure		made for	program for			1
close.		maintenance	this sub			1
ult current operation can cause	Not stated	Various	component			1
vated temperatures in the arc-chute			Vendor specific	Not stated	4-9	1
ich can lead to material degradation of		recommendations	programs			1
arc-chute. This can result in		made for	j l]	
graded function of the arc-chute.		maintenance	1 [
ny racking cycles can cause	Not stated	Maniaura				
connect wear and spring relaxation	Not stated	Various	No specific	Not stated	4-9	2
ich can lead to high resistivity		recommendations	program for			
nections. This can result in degraded		made for	this mechanism			[
connect function.		maintenance				
ny racking cycles can cause spring	Not stated	Various	No specific	Not stated	4-10	-
ixation which can lead to high		recommendations	program for		4-1U	2
SIVIN CORRECTIONS This can see it in		made for	this mechanism			
stivity connections. This can result in						
raded disconnect function.		maintenance				
		maintenance				
		maintenance				

Page 38B

Document: SAND93-7027, Aging Management Guideline for Commercial Nuclear Power Plants - Electrical Switchgear Reviewed by: K. D. McCarthy, INEL

22	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
~~		Electrical Switchgear	Mechanical Interlock	Not stated	GE, Westinghouse, ITE/BB	WEAR	Wear/damage of mechanical interloc
23	·	Electrical Switchgear	Auxiliary Switch	Not stated	GE, Westinghouse, ITE/BB	WEAR, MECHSTR	Burnt contacts
24		Electrical Switchgear	Current and Potential Transformers	Not stated	GE, Westinghouse ITE/BB	EMBR, ELETEMP	Insulation deterioration
25		Electrical Switchgear	Undervoltage Trip Attachment	Not stated	GE, Westinghouse, ITE/BB	ELETEMP, EMBR	Insulation deterioration
26		Electrical Switchgear	Undervoltage Trip Attachment	Not stated	GE, Westinghouse, ITE/BB	WEAR	Wear of latch
27		Electrical Switchgear	Undervoltage Trip Attachment	Not stated	GE, Westinghouse, ITE/BB	WEAR	High friction betweek moving parts
28		Electrical Switchgear	Control Wiring	Not stated	GE, Westinghouse, ITE/BB	ELETEMP, MECHSTR, VIBR	Loss of electrical and mechanical properties
29		Electrical Switchgear	Shunt Trip Attachment	Not stated	GE, Westinghouse, ITE/BB	ELETEMP	Coil deterioration
30		Electrical Switchgear	Shunt Trip Attachment	Not stated	GE, Westinghouse, ITE/BB	VIBR, WEAR	Loss of tolerances
31			Overcurrent Trip Device (Electro- Mechanical)	Not stated	GE, Westinghouse, ITE/BB	WEAR, FAT	Spring relaxation
32			Overcurrent Trip Device (Electro- Mechanical)	Not stated	GE, Westinghouse, ITE/BB	WEAR, ENVIR	Armature mechanical wear
33		-	Overcurrent Trip Device (Electro- Mechanical)	Not stated	GE, Westinghouse, ITE/8B	CONTAM, MECHSTR	Seal degredation

Document: SAND93-7027, Aging Management Guideline for Commercial Nuclear Power Plants - Electrical Switchgear Reviewed by: K. D. McCarthy, INEL Effect of Aging on Component Supervisition Constribution Science

Effect of Aging on Component Functi Many racking cycles can cause	Not stated	Various	Rel.progs Vendor specific	Report Recommendations	Page No 4-10	· · · ·
wear/damage from friction. This can		recommendations	- Mechanism	Not Stated	4-10	
make it possible to remove or insert the cl	b	made for	not safety rel.			
into compartment with main contacts		maintenance				
closed. This could jeopardize personnel safety.						
Mechanical cycling of the auxiliary switch						
can cause contact deterioration which can	Not stated	Various	Vendor specific	Not stated	4-10	+
lead to burnt contacts. This can result in		recommendations	- Mechanism			
contact failure.		made for maintenance	not safety rel.			
Temperature and electrical cycling can	Not stated	Various				
cause insulation deterioration which can		recommendations	No specific	Not stated	4-10	Τ
lead to shorted windings. This can result		made for	program for this			
in degraded function of the transformer	1	maintenance	subcomponent	}		
which can cause failure of undervoltage			sancomponent			
and control functions.						
Constant coil energization can cause	Not stated	Various	Vendor specific	Not stated	4-10	+-
elevated temperatures which can lead to		recommendations	programs		4-10	
nsulation deterioration. This can result in		made for				i i
he breaker tripping open due to coil ailure.		maintenance				
Mechanical cycling can cause wear of						
atch which can lead to latch failure. This	Not stated	Various	Vendor specific	Not stated	4-10	
an result in a failure to trip on		recommendations	programs			
indervoltage condition.		made for				
Aechanical cycling can cause high	Not stated	maintenance				
iction between moving parts which can	NOT STATED	Various	Vendor specific	Not stated	4-10	
ad to a lack of adequate force to trip the		recommendations made for	programs			
reader in an undervoltage condition.		maintenance				
ligh resistance connections, damage due	Not stated	Various	No enerite			
maint, and vibr can cause a loss of		recommendations	No specific program for	Not stated	4-10	
lect and mech properties, leading to		made for	this			
evated temp and mech damage. This		maintenance	subcomponent			
an result in insulation deterioration and			ourseamporterit			
nort to ground resulting in failure to						
perate.						
rolonged energization can cause	Not stated	Various	Vendor specific	Not stated	4-11	2
evated temperatures in the coil which an lead to coil deterioration. This can		recommendations	programs			~
ause coil failure and result in a failure of		made for				
e shunt trip to operate.		maintenance				
	Not stated					
lerances on its mounting leading to	NOTSIALEG	Various	Vendor specific	Not stated	4-11	3
osening or misalignment. This could		recommendations	programs			
sult in the device not actuating the trip		made for				
echanism.		maintenance				
olonged spring compression can cause	Not stated	Various	Vonder			
ring relaxation leading to metal fatigue		recommendations	Vendor specific	Not stated	4-11	3
the spring. This could result in		made for	programs			
tpoint/time delay drift which could		maintenance				
use the overcurrent trip device to have						
proper operation or failure to operate.						
chanical cycling and elevated	lot stated	Various	Vendor specific N	lot stated		
nperatures can cause friction or		recommendations	programs		4-11	3
graded lubricant which can lead to		made for				
chanical wear in the armature. This		maintenance				
n result in setpoint/time delay drift with potential loss of overcurrent						
potential loss of overcurrent						
chanical cycling in conjunction with dirt						
contaminants can lead to seal	ICI STATED		IEEE 308-1980 N	ot stated	4-11	3:
radation which can result in dashpot		recommendations	Sections 7.4 &			~
kage and setpoint/time delay drift. This			7.5			
result in the potential loss of		maintenance				
recurrent protection.			1			
			1			
1						
1						

Document: SAND93-7027, Aging Management Guideline for Commercial Nuclear Power Plants - Electrical Switchgear Reviewed by: K. D. McCarthy, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
34		Electrical Switchgear		Not stated	GE, Westinghouse,	ELETEMP,	Electrical component
			Device (Solid State)		ITE/BB	CURSTR,	aging
						MECHSTR	

Document: SAND93-7046, Aging Management Guideline for Commerical Nuclear Power Plants - Battery Chargers, Inverters and Uninteruptable Power Supplies Reviewed by: Michael W. Vaughn, INEL

tem S	ystem	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Battery Chargers, Inverters, & UPS's	Circuit Breakers	Not stated	Not stated	CORR	Contact pitting
2		Battery Chargers, Inverters, & UPS's	Circuit Breakers	Not stated	Not stated	FAT	Cumulative fatigue damage
3		Battery Chargers, Inverters, & UPS's	Circuit Breakers	Not stated	Not stated	WEAR	Attrition
4		Battery Chargers, Inverters, & UPS's	Relay	Not stated	Not stated	ENVIR	Chemical or physic degradation
5		Battery Chargers, Inverters, & UPS's	Circuit Breakers	Not stated	Not stated	THERM-CY, ELETEMP,	Deterioration of insulation, chemica or physical degradatio
6		Battery Chargers, Inverters, & UPS's	Circuit Breakers	Not stated	Not stated	CURRSTR	Equip temp rise, equipment degradation,
7	-	Battery Chargers, Inverters, & UPS's	Relay	Not stated	Not stated	ELETEMP	Chemical or physic degradation
8		Battery Chargers, Inverters, & UPS's	Transformer	Not stated	Not stated	CORR	Loss of material; corrosion product buildup
9		Battery Chargers, Inverters, & UPS's	Circuit Boards	Not stated	Not stated	CORR	Loss of material; corrosion product buildup
10		Battery Chargers, Inverters, & UPS's	Switches	Not stated	Not stated	CORR	Contact pitting
11		Battery Chargers, Inverters, & UPS's	Relay	Not stated	Not stated	CORR	Contact pitting
12		Battery Chargers, Inverters, & UPS's	Potentiometer	Not stated	Not stated	CORR	Contact pitting
13		Battery Chargers, Inverters, & UPS's	Switches	Not stated	Not stated	FAT	Cumulative fatique damage

Document: SAND93-7027, Aging Management Guideline for Commercial Nuclear Power Plants - Electrical Switchgear Reviewed by: K. D. McCarthy, INEL

Effect of Aging on Component Function Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Elevated temperature, electrical transients Not stated	Various	IEEE 308-1980	Not stated	4-11	34
and mechanical shock result in material	recommendations	Sections 7.4 &			
degradation from component aging. This	made for	7.5			
can result in erroneous solid-state device	maintenance				
output/operation and potential loss of					
overcurrent protection.		ł			

Document: SAND93-7046, Aging Management Guideline for Commerical Nuclear Power Plants - Battery Chargers, Inverters and Uninteruptable Power Supplies Reviewed by: Michael W. Vaughn, INEL Effect of Aging On Commerces Equations Commercial Nuclear Power Plants - Battery Chargers, Inverters and Uninteruptable Power Supplies

Effect of Aging on Component Funct Corrosion can result in high contact impeadance, heat build-up, and signal transmission failure. Fatigue due to high cyclic operation and vibration, resulting in contact degradation loose connections, reduced force output and component failure.	Not stated	Cleaning, visual inspection, IR scanning	Rel.progs No specific program for	Report Recommendations Not stated	Page No. 4-19, 5-15	
Fatigue due to high cyclic operation and vibration, resulting in contact degradation loose connections, reduced force output and component failure.	Not stated	scanning				1
vibration, resulting in contact degradation loose connections, reduced force output and component failure.	Not stated		this mechanism			1
	1,	Tactile inspection, vibration observation IR scanning	No specific program for this mechanism	Not stated	4-20, 5-16	
Physical deterioration due to the cyclic operation caused by routine operation and periodic testing and adjustment, results in rubbing surfaces, binding of linkages, erosion of contacts and metal surfaces, burning of arc chutes, and loss of adjustment.		Tactile inspection	No specific program for this mechanism	Not stated	4-21, 5-16	3 3
Drifting of the electronic setpoint can cause misoperation or component failure.	Not stated	Calibration, operational surveillance	No specific program for this mechanism	Not stated	4-21, 5-14	4
Continuous load coupled with poor contact mating, and fault currents can cause deterioration of contact support insulation, and possible phase-to-ground faults	Not stated	Cleaning, visual inspection	Vendor specific programs	Not stated	4-22, 5-15	5
Damage to contacts and arc chutes occurs regularly due to normal fault interruption.	Not stated	Cleaning, visual inspection	Vendor specific programs	Not stated	4-22, 5-15	6
Coil heating due to continuous, long-term energizing of the coil, causing material degradation due to accelerated chemical reactions/reduced dielectric strength.	Not stated	Cleaning, visual inspection	Vendor specific programs	Not stated	4-22, 5-15	7
Temperature and moisture create environmental stresses on transformers which could result in corrosion of the windings. A reduction of the dielectric strength or insulation resilience may occur, causing the transformer to ultimately fail.	Not stated	Visual inspection	Vendor specific programs	Not stated	4-19, 5-14	8
Temp and moisture create environmental stresses, and deposited contaminants may affect electronics such as printed circuit boards, resistors, and capacitiors, resulting in corrosion of these components, which may lead to open/short circuits at the termin	Not stated	visual inspection, on- line monitoring	Vendor specific I programs	Not stated	4-19, 5-15	9
Corrosion can result in high contact impeadance, heat build-up, and signal transmission failure.	Not stated	Cleaning, visual inspection	No specific f program	Not stated	4-19, 5-16	10
Corrosion can result in high contact impeadance, heat build-up, and signal transmission failure.	Not stated		No specific N program	Not stated	4-19, 5-14	11
Corrosion can result in high contact impeadance, heat buikl-up, and signal transmission failure.	Not stated	· ·	No specific N program	Not stated	4-19, 5-16	12
Fatigue due to high cyclic operation and vibration, resulting in contact degradation, loose connections, reduced force output and component failure.	Not stated	Tactile inspection, vibration observation, IR scan	Vendor specific N surveillance	lot stated	4-20, 5-16	13

Document: SAND93-7046, Aging Management Guideline for Commerical Nuclear Power Plants - Battery Chargers, Inverters and Uninteruptable Power Supplies Reviewed by: Michael W. Vaughn, INEL

item System	Structure/Comp	Subcomponent	Materi als	Manufacturer	ARD mechan	
14	Battery Chargers,		Not stated	Not stated	FAT	
	Inverters, & UPS		Hor stated	THUI SLEED		Cumulative fatique damage
15	Battery Chargers,	Potentiometer	Not stated	hint state of		
	Inverters, & UPS'		Not stated	Not stated	FAT	Cumulative fatique damage
						Garnage
16	Battery Chargers,	Switches	Not stated	Not stated	WEAR	Attrition
	Inverters, & UPS'	s				
17	Battery Chargers,	Relay	Not stated	Not stated		
	Inverters, & UPS's				WEAR	Attrition
18	Battery Chargers,	Potentiometer	Not stated	Not stated	WEAR	Attrition
	Inverters, & UPS's					
					_	
19	Battery Chargers, Inverters, & UPS's	Potentiometer	Not stated	Not stated	ENVIRO	Chemical or physica degradation
20	Battery Chargers, Inverters, & UPS's	Surge Suppressors	Not stated	Not stated	ENVIRO	Chemical or physica degradation
21	Battery Chargers, Inverters, & UPS's	Circuit Boards	Not stated	Not stated	ENVIRO	Chemical or physica degradation
22	Battery Chargers, Inverters, & UPS's	Electronics	Not stated	Not stated	ENVIRO	Chemical or physica degradation
23	Battery Chargers, Inverters, & UPS's	Electronics	Not stated	Not stated	CORR	Loss of material; corrosion product buildup
24	Bottopi Chargers	Wire				
	Battery Chargers, Inverters, & UPS's		Not stated	Not stated	CORR	Loss of material; corrosion product buildup
25	Battery Chargers,	Cooling Fans and	Not stated	Not stated	CORR/OX	Loss of material;
	Inverters, & UPS's	Cooling Fan Motors				corrosion product buildup;internal damage
26	Battery Chargers, Inverters, & UPS's	Cabinet	Not stated	Not stated	CORR/OX	Loss of material; corrosion product buildup;internal damage

Page 41B

Document: SAND93-7046, Aging Management Guideline for Commerical Nuclear Power Plants - Battery Chargers, Inverters and Uninteruptable Power Supplies Reviewed by: Michael W. Vaughn, INEL Effect of Aging on Component Function Contrib to Failure Reported progs Rel proge Report Recommendations Page No. Item

Fatigue due to high cyclic operation and	Not stated	Tactile inspection,	Vendor ence	Report Recommendations	Page No.	_
vibration, resulting in contact degradatio loose connections, reduced force output	n,	vibration observation	on, surveillance	IIIC INOT STATED	4-20, 5-14	4
and component failure.		IR scan		1		
Fatigue due to high cyclic operation and	Not stated	Tactile inspection,	Manda			
Vibration, resulting in contact degradation		vibration observatio	Vendor speci	fic Not stated	4-20, 5-16	*
loose connections, reduced force output and component failure.		IR scan				
Physical deterioration due to the cyclic	Not stated					
operation caused by routine operation an	al i	Tactile inspection	No specific	Not stated	4-21, 5-16	1 -
periodic testing and adjustment results i	n		program			
rubbing surfaces, binding of linkages, erosion of contacts and metal surfaces,						
burning of arc chutes, and loss of						
adjustment						
Physical deterioration due to the cyclic	Not stated	Tactile inspection	No specific	Not stated		
operation caused by routine operation and periodic testing and adjustment, results in	1		program	NOTSIZIEG	4-21, 5-14	1
rubbing surfaces, binding of linkages,						
erosion of contacts and metal surfaces						
burning of arc chutes, and loss of	1					
adjustment.						
Physical deterioration due to the cyclic operation caused by routine operation and	Not stated	Not discussed in	No specific	Not stated	4-21, 5-16	- 1
periodic testing and adjustment results in		report	program		4-21, 5-16	1
rubbing surfaces, binding of linkages						
erosion of contacts and metal surfaces						
burning of arc chutes, and loss of adjustment.						
Drifting of the setpoint can cause	Not stated					
misoperation or componenet failure.	NOTSLALED	Calibration, Tech	IEEE 308-1980	Not stated	4-21, 5-16	19
		Spec, I/O logging, output	Section 7, Tech Spec surveil.			
Drifting of the electronic setpoint can	Not stated	Calibration	No specific	Not stated		_
ause misoperation or componenet			program	itor stated	4-21, 5-15	20
Drifting of the electronic setpoint can	Not stated					
ause misoperation or componenet	Not Stated	Calibration, Tech Spec, I/O logging,	Tech Spec.	Not stated	4-21, 5-15	21
ailure.		output	required surveillance			
Drifting of the electronic setpoint can	Not stated	Calibration, Tech	Tech Spec.	Not stated		
ause misoperation or componenet ailure.		Spec, I/O logging,	required		4-21, 5-15	22
emp and moisture create environmental	Not stated	output	surveillance			
tresses, and deposited contaminants	HOL SIZIES	Visual inspection, output	Vendor specific	Not stated	4-19, 5-15	23
ay affect electronics such as printed		-uqui	programs			
rcuit boards, resistors and capacitors sulting in corrosion of the components,						
hich may lead to open/short circuits at						
e terminais.			[
emp and moisture create environmental	Not stated	Visual inspection,	No specific	Not stated		
resses, and deposited contaminants ay corrode shields or conductor strands,	·	A	program	Not stated	4-19, 5-16	24
minations, etc. eventually causing			-			
lure of the circuit due to overheating or						ľ
electric insulation breakdown.						
mp and moisture create environmental	Not stated	Visual inspection	EEE 334-1974	Not stated		
esses, and deposited contaminants ay increase contact resistance.			Section 14.2.3		4-19, 5-16	25
pration can promote loosening						
nnectons resulting in localized heating						
d more oxidation. mp and moisture create environmental						
esses, and deposited contaminants	lot stated	Visual inspection N	lo specific	Not stated	4-20, 5-17	26
y over time can degrade and give way		P	rogram			- 0
oxidation corrosion.			1			
1						
•		•	1		1 F	1

.

Document: SAND93-7046, Aging Management Guideline for Commerical Nuclear Power Plants - Battery Chargers, Inverters and Uninteruptable Power Supplies Reviewed by: Michael W. Vaughn, INEL

•

m System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
27	Battery Chargers,	Transformer	Not stated	Not stated	FAT	Cumulative fatigue
1	Inverters, & UPS's					damage
28	Battery Chargers,	Inductors	Not stated	Not stated	FAT	Cumulative fatigue
	Inverters, & UPS's		1			damage
29	Battery Chargers,	Capacitor	Not stated	Not stated	FAT	Cumulative fatigue
2.0	Inverters, & UPS's					damage
1						
		SCR's	Not stated	Not stated	FAT	Cumulative fatigue
30	Battery Chargers, inverters, & UPS's	SCHS	NOUSIALIEU	NOUSLALEG		damage
	Inverters, & UPS s					ge
						1
_						
31	Battery Chargers,	Diodes	Not stated	Not stated	FAT	Cumulative fatigue
	Inverters, & UPS's		1			damage
20	Battery Chargers,	Surge Suppressors	Not stated	Not stated	FAT	Cumulative fatigue
32	inverters, & UPS's	Cuige Cuppiessolo				damage
	litverteis, a or os					
			-			
			,	Not stated	FAT	Cumulative fatigue
33	Battery Chargers,	Circuit Boards	Not stated	Not stated		damage
	inverters, & UPS's					Calificaçõe
ł						
34	Battery Chargers,	Electronics	Not stated	Not stated	FAT	Cumulative fatigu
	inverters, & UPS's					damage
	1		1			
35	Battery Chargers,	Wire	Not stated	Not stated	FAT	Cumulative fatigu
35	Inverters, & UPS's					damage
	1					· ·
l l						
			<u> </u>			Currilation fait
	Battery Chargers,	Cooling Fans and	Not stated	Not stated	FAT	Cumulative fatigu
36	Inverters, & UPS's	Cooling Fan Motors				damage
36			•		1	1
36					1	
36						
36						

Page 42B

Document: SAND93-7046, Aging Management Guideline for Commerical Nuclear Power Plants - Battery Chargers, Inverters and Uninteruptable Power Supplies Reviewed by: Michael W. Vaughn, INEL

•

Effect of Aging on Component Funct High frequency vibration caused by	Not stated	Ilure Reported progs	Rel.progs	Report Recommendations	Page No.	_
ferromagnetic resonance can cause fatigue resulting in loose parts, open circuits causing loss of signal or sporatic operation. Regular maint also moves/bends wires/connectors causing conductor or insulation failure.		inspection, vibration observation, IR scan	Vendor specific program	NOT STATED	4-20, 5-14	
High frequency vibration caused by ferromagnetic resonance can cause fatigue resulting in loose parts, open circuits causing loss of signal or sporatic operation. Regular maint also moves/bends wires/connectors causing conductor or insulation failure.	Not stated	Tactile/audible inspection, vibration observation, IR scan	Vendor specific program	Not stated	4-20, 5-14	2
High frequency vibration caused by ferromagnetic resonance can cause fatigue resulting in loose parts, open circuits causing loss of signal or sporatic operation. Regular maint also moves/bends wires/connectors causing conductor or insulation failure.	Not stated	Tactile/audible inspection, vibration observation, IR scan	Vendor specific program	Not stated	4-20, 5-14	2
High frequency vibration caused by ferromagnetic resonance can cause fatigue resulting in loose parts, open circuits causing loss of signal or sporatic operation. Regular maint also moves/bends wires/connectors causing conductor or insulation failure.	Not stated	Tactile/audible inspection, vibration observation, IR scan	No specific program	Not stated	4-20, 5-15	3
High frequency vibration caused by ferromagnetic resonance can cause fatigue resulting in loose parts, open circuits causing loss of signal or sporatic operation. Regular maint also moves/bends wires/connectors causing conductor or insulation failure.	Not stated	Tactile/audible inspection, vibration observation, IR scan	No specific program	Not stated	4-20, 5-15	3
High frequency vibration caused by erromagnetic resonance can cause atigue resulting in loose parts, open circuits causing loss of signal or sporatic operation. Regular maint also noves/bends wires/connectors causing conductor or insulation failure.	Not stated		No specific program	Not stated	4-20, 5-15	32
high frequency vibration caused by erromagnetic resonance can cause atigue resulting in loose parts, open ircuits causing loss of signal or sporatic peration. Regular maint also noves/bends wires/connectors causing onductor or insulation failure.	Not stated	Tactile/audible inspection, vibration observation, IR scan	Vendor specific program	Not stated	4-20, 5-15	33
ligh frequency vibration caused by erromagnetic resonance can cause atigue resulting in loose parts, open ircuits causing loss of signal or sporatic peration. Regular maint also noves/bends wires/connectors causing onductor or insulation failure.	Not stated		Vendor specific program	Not stated	4-20, 5-15	34
ligh frequency vibration caused by erromagnetic resonance can cause atigue resulting in loose parts, open ircuits causing loss of signal or sporatic peration. Regular maint also loves/bends wires/connectors causing onductor or insulation failure.	Not stated		No specific f program	Not stated	4-20, 5-16	35
ibration induced fatigue in motor mounts an occur due to improper sheave lignment and dynamic imbalances.	Not stated		EEE 334-1974 N Section 14.2.3	Not stated	4-20, 5-17	36

.

Document: SAND93-7046, Aging Management Guideline for Commerical Nuclear Power Plants - Battery Chargers, Inverters and Uninteruptable Power Supplies Reviewed by: Michael W. Vaughn, INEL Here, Suptom

tem Syste		Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ADD -Marta
37		Battery Chargers, Inverters, & UPS's	Cooling Fans and Cooling Fan Motors	Not stated	Not stated	WEAR	ARD effects Attrition
38		Battery Chargers, Inverters, & UPS's	Transformer	Not stated	Not stated	THERM-CY, ELETEMP, VOLSTR	Deterioration of insulation, chemica or physical change
39	· · · ·	Battery Chargers, Inverters, & UPS's	Inductors	Not stated	Not stated	THERM-CY, ELETEMP, VOLSTR, CURSTR	Deterioration of insulation, chemica or physical change
40		Battery Chargers, Inverters, & UPS's	Capacitor	Not stated	Not stated	THERM-CY, ELETEMP, VOLSTR, CURSTR	Deterioration of insulation, chemica or physical change
41		Battery Chargers, Inverters, & UPS's	Diodes	Not stated	Not stated	THERM-CY, ELETEMP, VOLSTR, CURSTR	Deterioration of insulation, chemica or physical change
42		Battery Chargers, Inverters, & UPS's	Surge Suppressors	Not stated	Not stated	THERM-CY, ELETEMP, VOLSTR, CURSTR	Deterioration of insulation, chemica or physical change
43		Battery Chargers, Inverters, & UPS's	Circuit Boards	Not stated	Not stated	THERM-CY, ELETEMP, VOLSTR, CURSTR	Deterioration of insulation, chemica or physical change
44		Battery Chargers, Inverters, & UPS's	Electronics	Not stated	Not stated	THERM-CY, ELETEMP, VOLSTR, CURSTR	Deterioration of insulation, chemica or physical change
45	- 1	Battery Chargers, Inverters, & UPS's	SCR's	Not stated	Not stated	THERM-CY, ELETEMP, VOLSTR, CURSTR	Deterioration of insulation, chemica or physical changes
46		Battery Chargers, Inverters, & UPS's	Switches	Not stated	Not stated	THERM-CY, ELETEMP, VOLSTR, CURSTR	Deterioration of insulation, chemica or physical changes
47		Battery Chargers, Inverters, & UPS's	Wire	Not stated	Not stated	THERM-CY, ELETEMP, VOLSTR, CURSTR, EMBR	Deterioration of insulation, chemical or physical changes
48		Battery Chargers, Inverters, & UPS's	Cooling Fan Motors	Not stated	Not stated	THERM-CY, ELETEMP, VOLSTR, CURSTR,	Deterioration of insulation, chemical or physical changes
9		Battery Chargers, Inverters, & UPS's	Transformer	Not stated	Not stated		Buildup of deposits; loss of desired surface properties
60		Battery Chargers, Inverters, & UPS's	Inductors	Not stated	Not stated	CONTAM	Buildup of deposits; loss of desired surface properties
1		Battery Chargers, nverters, & UPS's	SCR's	Not stated	Not stated	CONTAM	Buildup of deposits; loss of desired surface properties

Page 43B

Document: SAND93-7046, Aging Management Guideline for Commerical Nuclear Power Plants - Battery Chargers, Inverters and Uninteruptable Power Supplies Reviewed by: Michael W. Vaughn, INEL Effect of Aging on Component Evention Combined Future Device the New York Power Plants - Battery Chargers, Inverters and Uninteruptable Power Supplies

Effect of Aging on Component Function Shafts and bearings are susceptible to	Not stated	Noise observation	Rel.progs	Report Recommendations	Page No	
normal wear, and wear due to misalignment, imbalances, and inhereni eccentricity of the rotor. On dc motors, brushes and commutators are also subject to wear.		Noise observation	IEEE 334-197 Section 14.2.3		4-21, 5-1	7 :
Overvoltage or turn-to-turn shorts can cause high internal tempreratures, causing insulation to fail, causing local heating and deterioration of material resulting in dielectric failure.	Not stated	Cleaning, visual/tactile/audibl inpection	Vendor specifi e program	c Not stated	4-22, 5-14	4 :
Overvoltage or turn-to-turn shorts can cause high internal tempreratures, causing insulation to fail, causing local heating and deterioration of material resulting in dielectric failure.	Not stated	Cleaning, visual/tactile/audibl inpection	Vendor specifi e program	c Not stated	4-22, 5-14	1 3
Overvoltage can cause voltage stress causing loss of capacitance, breakdown of dielectric.	Not stated	Cleaning, visual inspection, measuement, part replacement	Vendor specific program	Not stated	4-22, 5-14	4
Heat due to overcurrent conditions and internal stresses can cause dielectric breakdown resulting in change in output signal.		Cleaning, visual inspection, temperature & input/output	Vendor specific program	Not stated	4-22, 5-15	4
Heat due to overcurrent conditions and nternal stresses can cause dielectric preakdown and misoperation or failure of the device. Heat due to overcurrent conditions and		Cleaning, visual inspection, temperature & input/output	No specific program	Not stated	4-22, 5-15	4
near due to overcurrent conditions and nternal stresses can cause dielectric oreakdown and misoperation or failure of components, open/shorts of circuits. feat due to overcurrent conditions and		Cleaning, visual inspection, temperature & input/output	Vendor specific program		4-22, 5-15	4
nternal stresses can cause dielectric reakdown and misoperation or failure of omponents, open/shorts of circuits. leat due to overcurrent conditions and	Not stated	Cleaning, visual inspection, temperature & input/output	Vendor specific program		4-22, 5-15	44
nternal stresses can cause dielectric reakdown and misoperation or failure of omponents, open/shorts of circuits. leat due to overcurrent conditions and	Not stated	Cleaning, visual inspection, temperature & input/output	Vendor specific program	Not stated	4-22, 5-15	45
ormal operations, and due to contact esistance, can cause dielectric reakdown of supports and insulation, nd misoperation or failure of omponents.	Not stated	Cleaning, visual inspection, temperature logging	No specific program	Not stated	4-23, 5-16	46
nermal effects on wire and cable leading embrittlement, and insulation failure. hmic heating and heat from surrounding wironment degrades insulation, resulting short circuits.		Cleaning, visual inspection, temperature & input/output	No specific program	Not stated	4-23	47
eat due to overcurrent conditions and rmal operations, can cause dielectric eakdown and failure.	Not stated	Cleaning, visual inspection, temperature & input/output	IEEE 334-1974 Section 14.2.3	Not stated	4-23, 5-16	48
uling due to accumulation of insects, t, and dust, can reduce heat ssipation, cause overheating, and entual failure of components.	Not stated	Cleaning, visual inspection	Vendor specific programs	Not stated	4-23, 5-14	49
uling due to accumulation of insects, t, and dust, can reduce heat sipation, cause overheating, and entual failure of components.	Not stated	Cleaning, visual inspection	Vendor specific i programs	Not stated	4-23, 5-14	50
uling due to accumulation of insects, t, and dust, can reduce heat sipation, cause overheating, and entual failure of components.	Not stated	in a second second	No specific N programs	Not stated	4-23, 5-15	51

Document: SAND93-7046, Aging Management Guideline for Commerical Nuclear Power Plants - Battery Chargers, Inverters and Uninterruptable Power Supplies Reviewed by: Michael W. Vaughn, INEL

ystem	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	Battery Chargers, Inverters, & UPS's	Diodes	Not stated	Not stated	CONTAM	Buildup of deposits loss of desired surface properties
u	Battery Chargers, Inverters, & UPS's	Capacitor	Not stated	Not stated	CONTAM	Buildup of deposits loss of desired surface properties
	Battery Chargers, Inverters, & UPS's	Surge Suppressors	Not stated	Not stated	CONTAM	Buildup of deposits loss of desired surface properties
	Battery Chargers, Inverters, & UPS's	Circuit Boards	Not stated	Not stated	CONTAM	Buildup of deposits loss of desired surface properties
	Battery Chargers, Inverters, & UPS's	Electronics	Not stated	Not stated	CONTAM	Buildup of deposits loss of desired surface properties
	Battery Chargers, Inverters, & UPS's	Wire	Not stated	Not stated	CONTAM	Buildup of deposits loss of desired surface properties
	Battery Chargers, Inverters, & UPS's	Relay	Not stated	Not stated	CONTAM	Buildup of deposits loss of desired surface properties
<u></u>	Battery Chargers, Inverters, & UPS's	Circuit Breakers	Not stated	Not stated	CONTAM	Buildup of deposits loss of desired surface properties
	Battery Chargers, Inverters, & UPS's	Switches	Not stated	Not stated	CONTAM	Buildup of deposits loss of desired surface properties
	Battery Chargers, Inverters, & UPS's	Potentiometers	Not stated	Not stated	CONTAM	Buildup of deposits loss of desired surface properties
	Battery Chargers, Inverters, & UPS's	Cooling Fan Motoers	Not stated	Not stated	CONTAM	Buildup of deposits loss of desired surface properties
	Battery Chargers, Inverters, & UPS's	Relay	Not stated	Not stated	LOSLUB	Viscosity change, loss of lubricicty
	Battery Chargers, Inverters, & UPS's	Circuit Breakers	Not stated	Not stated	LOSLUB	Viscosity change, loss of lubricicty
		Battery Chargers, Inverters, & UPS's Battery Chargers, Inverters, & UPS's	Battery Chargers, Inverters, & UPS's Diodes Battery Chargers, Inverters, & UPS's Capacitor Battery Chargers, Inverters, & UPS's Surge Suppressors Battery Chargers, Inverters, & UPS's Circuit Boards Battery Chargers, Inverters, & UPS's Circuit Boards Battery Chargers, Inverters, & UPS's Electronics Battery Chargers, Inverters, & UPS's Wire Battery Chargers, Inverters, & UPS's Relay Battery Chargers, Inverters, & UPS's Circuit Breakers Battery Chargers, Inverters, & UPS's Switches Battery Chargers, Inverters, & UPS's Switches Battery Chargers, Inverters, & UPS's Potentiometers Battery Chargers, Inverters, & UPS's Cooling Fan Motoers Battery Chargers, Inverters, & UPS's Relay Battery Chargers, Inverters, & UPS's Relay	Battery Chargers, Inverters, & UPS's Diodes Not stated Battery Chargers, Inverters, & UPS's Capacitor Not stated Battery Chargers, Inverters, & UPS's Surge Suppressors Not stated Battery Chargers, Inverters, & UPS's Circuit Boards Not stated Battery Chargers, Inverters, & UPS's Circuit Boards Not stated Battery Chargers, Inverters, & UPS's Electronics Not stated Battery Chargers, Inverters, & UPS's Wire Not stated Battery Chargers, Inverters, & UPS's Relay Not stated Battery Chargers, Inverters, & UPS's Circuit Breakers Not stated Battery Chargers, Inverters, & UPS's Switches Not stated Battery Chargers, Inverters, & UPS's Switches Not stated Battery Chargers, Inverters, & UPS's Polentiometers Not stated Battery Chargers, Inverters, & UPS's Cooling Fan Motoers Not stated Battery Chargers, Inverters, & UPS's Relay Not stated	Battery Chargers, Inverters, & UPS's Diodes Not stated Not stated Battery Chargers, Inverters, & UPS's Capacitor Not stated Not stated Battery Chargers, Inverters, & UPS's Surge Suppressors Not stated Not stated Battery Chargers, Inverters, & UPS's Circuit Boards Not stated Not stated Battery Chargers, Inverters, & UPS's Circuit Boards Not stated Not stated Battery Chargers, Inverters, & UPS's Electronics Not stated Not stated Battery Chargers, Inverters, & UPS's Electronics Not stated Not stated Battery Chargers, Inverters, & UPS's Wire Not stated Not stated Battery Chargers, Inverters, & UPS's Relay Not stated Not stated Battery Chargers, Inverters, & UPS's Circuit Breakers Not stated Not stated Battery Chargers, Inverters, & UPS's Potentometers Not stated Not stated Battery Chargers, Inverters, & UPS's Potentometers Not stated Not stated Battery Chargers, Inverters, & UPS's Cooing Fan Motoers Not stated Not stated Battery Chargers, Inverters, & UPS's Relay Not stated Not stated Battery Chargers, Inverters, & UPS's Relay Not stated No	Battery Chargers, Inverters, & UPS's Diodes Not stated Not stated CONTAM Battery Chargers, Inverters, & UPS's Capacitor Not stated Not stated CONTAM Battery Chargers, Inverters, & UPS's Surge Suppressors Not stated Not stated CONTAM Battery Chargers, Inverters, & UPS's Circuit Boards Not stated Not stated CONTAM Battery Chargers, Inverters, & UPS's Circuit Boards Not stated Not stated CONTAM Battery Chargers, Inverters, & UPS's Electronics Not stated Not stated CONTAM Battery Chargers, Inverters, & UPS's Electronics Not stated Not stated CONTAM Battery Chargers, Inverters, & UPS's Relay Not stated Not stated CONTAM Battery Chargers, Inverters, & UPS's Relay Not stated Not stated CONTAM Battery Chargers, Inverters, & UPS's Switches Not stated Not stated CONTAM Battery Chargers, Inverters, & UPS's Polenitometers Not stated Not stated CONTAM Battery Chargers, Inverters,

Document: SAND93-7068, Aging Management Guideline for Commercial Nuclear Power Plants - Power and Distribution Transformers Reviewed by: Michael W. Vaughn, INEL

Item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	Transformer	Metal Enclosure (Tank) and Cover	Low-alloy steel	Not stated	ENVIR	Chemical/physical degradation
2	Transformer	Metal Enclosure (Tank) and Cover	Low-alloy steel	Not stated .	CORR	Loss of material; corrosion product buildup

Document: SAND93-7046, Aging Management Guideline for Commerical Nuclear Power Plants - Battery Chargers, Inverters and Uninteruptable Power Supplies Reviewed by: Michael W. Vaughn, INEL

Effect of Aging on Component Funct Fouling due to accumulation of insects.			Rel.progs	Report Recommendations	Page No.	
dirt, and dust, can reduce heat dissipation, cause overheating, and eventual failure of components.	Not stated	Cleaning, visual inspection	No specific programs	Not stated	4-23, 5-15	52
Fouling due to accumulation of insects, dirt, and dust, can reduce heat dissipation, cause overheating, and eventual failure of components.	Not stated	Cleaning, visual inspection	Vendor specific programs	Not stated	4-23, 5-14	53
Fouling due to accumulation of insects, dirt, and dust, can reduce heat dissipation, cause overheating, and eventual failure of components.	Not stated	Cleaning, visual inspection	No specific programs	Not stated	4-23, 5-15	54
Fouling due to accumulation of insects, dirt, and dust, can reduce heat dissipation, cause overheating, and eventual failure of components.	Not stated	Cleaning, visual inspection	Vendor specific programs	Not stated	4-23, 5-15	55
Fouling due to accumulation of insects, dirt, and dust, can reduce heat dissipation, cause overheating, and eventual failure of components.	Not stated	Cleaning, visual inspection	No specific programs	Not stated	4-23, 5-15	56
Fouling due to accumulation of insects, dirt, and dust, can reduce heat dissipation, cause overheating, and eventual failure of components.	Not stated	Cleaning, visual inspection	No specific programs	Not stated	4-23, 5-16	57
Fouling due to accumulation of insects, dirt, and dust, can reduce heat dissipation, cause overheating, and aventual failure of components.	Not stated	Cleaning, visual inspection	Vendor specific programs	Not stated	4-23, 4- 24, 5-14	58
Fouling due to accumulation of insects, dirt, and dust, can reduce heat dissipation, cause overheating, and eventual failure of components.	Not stated	Cleaning, visual inspection	Vendor specific programs	Not stated	4-23, 4- 24, 5-15	59
Fouling due to accumulation of insects, dirt, and dust, can reduce heat dissipation, cause overheating, and aventual failure of components.	Not stated	Cleaning, visual inspection	No specific programs	Not stated	4-23, 4- 24, 5-16	60
ouling due to accumulation of insects, dirt, and dust, can reduce heat dissipation, cause overheating, and aventual failure of components.	Not stated	Cleaning, visual inspection	No specific programs	Not stated	4-23, 4- 24, 5-16	61
ouling due to accumulation of insects, lirt, and dust, can reduce heat lissipation, cause overheating, and wentual failure of components.	1 1	Cleaning, visual inspection	IEEE 334-1974 SECTION 14.2.3	Not stated	4-24, 5-17	62
Material set occurs when the organic materials used as lubricants in those ubconponents harden, gel, or adhere to djacent materials, which can cause inding of the devices, resulting in faulty peration.	1 1	Tactile inspection, operational	Vendor specific programs	Not stated	4-24, 5-14	63
Material set occurs when the organic materials used as lubricants in those ubconponents harden, gel, or adhere to djacent materials, which can cause inding of the devices, resulting in faulty peration.		Tactile inspection, operational	Vendor specific I programs	Not stated	4-24, 5-14	64

Document: SAND93-7068, Aging Management Guideline for Commercial Nuclear Power Plants - Power and Distribution Transformers **Reviewed by:** Michael W. Vaughn, INEL Effect of Aging on Component Function Contribute Education Reviewed Processor - Delayers

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Chipping, cracking, or peeling of the enclosure's protective coating	Not stated	Visual inspection, cleaning, pressure testing	Vendor specific surveillance, IEEE 308-1980	Not stated	4-7, 5-3, 5-15	
Exposed metal develops rust and corrosion	Not stated	Visual inspection, cleaning, pressure testing	Vendor specific surveillance, IEEE 308-1980		4-7, 5-3, 5-15	2

Document: SAND93-7068, Aging Management Guideline for Commercial Nuclear Power Plants - Power and Distribution Transformers Reviewed by: Michael W. Vaughn, INEL

.

tem	System	Structure/Comp	Subcomponent	Materials	Manufacturer		
3	3	Transformer	Metal Enclosure (Tank) and Cover	Low-alloy steel	Not stated	ARD mechanism ENVIR, EMBR	Deterioration of
							organic componer
4		Transformer	Metal Enclosure	Low-alloy steel	Not stated	FAT	Cumulative damag
1			(Tank) and Cover				from cyclic vibratic or thermal stress
5		Transformer	Primary and Secondary Windings, Liquid- Immersed	Not stated	Not stated	ELETEMP	Chemical or physi degradation: them distortion
6		Transformer	Primary and Secondary Windings, Liquid- Immersed	Not stated	Not stated	VIBR, VOLSTR, EXFORCE	Loosening, reduce tolerances, distorti or bending
7		Transformer	Primary and	Not stated	Not stated	ELETEMP	Chemical or physic
			Secondary Windings, Dry-Type				degradation; therm distortion
8		Transformer	Primary and Secondary Windings, Dry-Type	Not stated	Not stated	VIBR, VOLSTR, EXFORCE	Loosening, reduce tolerances, distortio or bending
9		Transformer	Magnetic Core	Not stated	Not stated	VIBR, MECHSTR, EXFORCE	Loosening, distortion, deterioration of med
							function
10		Transformer	Magnetic Core	Not stated	Not stated	EMBR/TÉ	Loss of fracture toughness
1		Transformer	Insulation	Not stated	Not stated		Chemical or physic
						VOLSTR	degradation, degradation of insulation
2	,	Transformer	Insulation	Not stated	Not stated	MOIST-EL, CONTAM	Loss of dielectric properties, buildup of deposits
3		Transformer	Insulation	Not stated	Not stated	Not stated	High acidity resulting in more water retention
4		Transformer	Insulation	Not stated	Not stated	CORR/OX	Loss of material; corrosion product buildup;internal damage

Page 45B

Document: SAND93-7068, Aging Management Guideline for Commercial Nuclear Power Plants - Power and Distribution Transformers Reviewed by: Michael W. Vaughn, INEL Effect of Asima on Commercial Nuclear Power Plants - Power and Distribution Transformers

•

.

Effect of Aging on Component Funct Gaskets and other organic seals used in	I Not stated	Visual inspection,	Rel.progs Vendor specifi	Report Recommendations	Page No.	- 10
construction of the enclosure degrade du to exposure to heat, ultraviolet radiation, moisture, or chemicals, while under mechanical stress or compression. polymeric seal materials embrittle and harden	e	cleaning	surveillance, IEEE 308-1980		4-7, 5-15	
Can affect areas of high local stress suc a welds, tank edges, etc., resulting in tan leaks (oil or gas-filled units) and potentially a loss of structural intergrity. May induce accelerated degradiation of	k	visual inspection, cleaning, pressure testing	Vendor specific surveillance, IEEE 308-1980		4-7, 4-8, 5-3, 5-15	
surrounding organic materials.	Not stated	Electrical testing, visual inspection, cleaning	Vendor specific surveillance, IEEE 308-1980		4-8, 5-4, 5-15	
Movement and vibration allow windings to change clearances/tolerances required fo maintaining satisfactory dielectric strength, which can result in dielectric breakdown and localized discharge. Can cause mechanical stress on electrical connections	or .	Electrical testing, visual inspection, cleaning	Vendor specific surveillance, IEEE 308-1980		4-9, 5-4, 5-15	
May induce accelerated degradation of surrounding organic materials. Degradation of winding conductor connections due to high resistance connections causing localized heating.	Not stated	Electrical testing, visual inspection, cleaning	Vendor specific surveillance, IEEE 308-1980	Not stated	4-9, 5-4, 5-15	
Movement and vibration allow winding to shange clearances/tolerances required for maintaining satisfactory dielectric strength, which can result in deilectric reakdown and localized discharge. Can ause mechanical stress on electrical connections.	Not stated	Electrical testing, visual inspection, cleaning	Vendor specific surveillance, IEEE 308-1980	Not stated	4-9, 5-4, 5-15	
oosining of the core due to vibration, hock, or severe electrical transients, can ause wear or deterioration of the isulation once dislocation occurs may ad to sufficient insulation damage to llow electrical failure	Not stated	Electrical testing, visual inspection	Vendor specific surveillance, IEEE 308-1980	Not stated	4-10, 5-4, 5-15	
result of relatively high thermal posure resulting from core and winding sses, causing weakening or failure of e laminations, causing increased eddy irrents and core losses.	Not stated	Electrical testing, visual inspection	Vendor specific surveillance, IEEE 308-1980	Not stated	4-10, 4- 11, 5-4, 5- 15	1
artial or localized breakdown of the electric capacity of the material, which ay in turn produce other eleterious fects such as the formation of additional aseous byproducts, decomposition of e surrounding insulating fluid.	Not stated	Sampling and analysis, cleaning, replacement	Isurveillance, Is	Recommended laboratory and/or in- situ analysis to detect impending breakdown of dielectric [2]	4-11, 5-5, 5-15, 5-22	1
ay result in blockage of passages ading to hot spots. Chemical ntaminants may have adverse effects the material properties, water reduces electric strength causing partial scharge or dielectric breakdown	Not stated	Sampling and analysis, cleaning, replacement	Surveillance, s	Recommended laboratory and/or in- itu analysis to detect impending preakdown of dielectric [2]	4-12, 5-5, 5-16, 5-22	1:
Id in solution and therefore reduced electric strength. Also affects the terioration and decomposition of solid sulating materials reducing the dielectric enth	Not stated	Sampling and analysis, cleaning, replacement	surveillance, si	Recommended laboratory and/or in- itu analysis to detect impending reakdown of dielectric [2]	4-12, 5-5, 5-16, 5- <u>22</u>	13
rmation of sludge which can impead culation creating hot spots. Dielectric perties associated with the sludge may o differ. oxygen will also increase the dity of the insulating fluid	Not stated		surveillance, Isi	ecommended laboratory and/or in- itu analysis to detect impending reakdown of dielectric [2]	4-12, 5-5, 5-16, 5-22	14

Page 46A

Document: SAND93-7068, Aging Management Guideline for Commercial Nuclear Power Plants - Power and Distribution Transformers Reviewed by: Michael W, Vaughn, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
15		Transformer	Insulation	Not stated	Not stated	ELETEMP	Chemical or physica degradation; therma distortion
16		Transformer	Bushings	Not stated	Not stated	THERM-CY	Degradation due to exposure to elements and temp cycles
17		Transformer	Bushings	Not stated	Not stated	CONTAM	Buildup of deposits:loss of desired surface properties
18		Transformer	Bushings	Not stated	Not stated	ENVIRO	Chemical or physica degradation
19		Transformer	Bushings	Not stated	Not stated	VOLSTR	Dielectric stress causing degradation of insulation
20		Transformer	Cooling System, Liquid-Immersed and Dry-Type	Not stated	Not stated	FAT. WEAR	Attrition and cumulative fatigue damage over time
21		Transformer	Cooling System, Liquid-Immersed and Dry-Type	Not stated	Not stated	CONTAM	Buildup of deposits; loss of desired surface properties
22		Transformer	Oil Preservation and Sampling System	Not stated	Not stated	ENVIRO, ELETEMP	Chemical or physica degredation
23	· · · · · · · · · · · · · · · · · · ·	Transformer	Oil Preservation and Sampling System	Not stated	Not stated	WEAR	Attrition
24		Transformer	Tap Changers	Not stated	Not stated	WEAR	Attrition
25		Transformer	Tap Changers	Not stated	Not stated	VIBR, MECHSTR	Loosening, deterioration of mechanical function
26		Transformer	Tap Changers	Not stated	Not stated	ELTEMP, THERM- CY	Chemical or physica degradation, insulation deterioration
27	··· <u>··</u>	Transformer	Protection and Monitoring Systems	Not stated	Not stated	ENVIRO, EMBR	Chemical or physica degradation, loss or fracture toughness
28		Transformer	Protection and Monitoring Systems	Not stated	Not stated	THERM-CY	Deterioration of insulation

Page 46B

Document: SAND93-7068, Aging Management Guideline for Commercial Nuclear Power Plants - Power and Distribution Transformers Reviewed by: Michael W. Vaughn, INEL

Effect of Aging on Component Function The elevated temperatures cause thermal	Not stated	Reported progs Visual inspection,	Rel.progs Vendor specific	Report Recommendations	Page No.	_
deterioration and dielectric breakdown		insulation resistance		INOT STATED	4-13, 5-7,	1
		testing, clean	· · · · · · · · · · · · · · · · · · ·		5-16	
Breakdown of gaskets and seals, and all	Not stated	Visual inspection,	IEEE 308-1980	Managa bushing Antonio t		
organic materials due to heat caused by	I TOT SIGIEG		Vendor specific	Manage bushing flashover by	4-14, 5-7,	
current in the conductor, solar radiation,		power factor testing,	surveillance, IEEE 308-1980	controling airborne dust and/or salt	5-16, 5-22	Ĩ
etc.		creating	1222 300-1980	spray accumulation in combination		
The combination of dirt, dust, salt, and	Not stated	Visual inspection,	Mandananaifa	with rain/humidity [2]		
other contaminants, alone or with water or		· · ·	Vendor specific	Not stated	4-14, 5-7,	1
other liquid can form a conductive path		power factor testing,	surveillance,		5-17	
leading to flashover of the bushing.		deaning	IEEE 308-1980			
Factors such as ultraviolet radiation,	Not stated		Manda			<u> </u>
humidity, etc. can cause degradation over		Visual inspection,	Vendor specific	Not stated	4-14, 5-7,	1
time		power factor testing.	surveillance,		5-17	
Improper storage or loss of insulating oil,	Not stated	Cleaning	IEEE 308-1980			
or voltage transients, can degrade the	INUI SIZIOU	Visual inspection,	Vendor specific	Not stated	4-14, 5-7,	1!
dielectric properties. Dielectric stress		power factor testing,	surveillance,		5-17	
from potential gradient between the		cleaning	IEEE 308-1980			
central conductor and other surfaces.						
Bearings and other parts wear over time	Not stated					
due to friction and other stresses placed	NOT STATED	Visual inspection	Vendor specific	Not stated	4-15, 5-8,	20
on them. This is accelerated by such		monitor, adjust,	surveillance,		5-17	
stresses as frequent motor starting and		lubricate, clean	IEEE 308-1980			
stopping, undue vibration or						
transverse/longitudinal load placed on the						
driven unit.						
Fouling of heat transfer surfaces such as	Not stated					
radiators due to dirt, debris, or other	Not stated	Visual inspection,	Vendor specific	Not stated	4-16, 5-8,	21
naterials		monitor, clean	surveillance,		5-17	
Elevated temperatures and exposure to	Not state of		IEEE 308-1980			
the elements can cause thermal and wear	Not stated	Visual inspection,	Vendor specific	Not stated	4-16, 5-9,	22
		adjust,	surveillance,		5-17	
degradation to components.		repair/replace, clean	IEEE 308-1980			
Wear to components such as sampling	Not stated	Visual inspection,	Vendor specific	Not stated	4-17, 5-9,	23
and isolation valves, fittings, and pressure		adjust,	surveillance,		5-18	
regulating valves, can result in leakage of		repair/replace, clean	IEEE 308-1980		[]	
fluids, binding and/or malfunctioning of						
Wear to components due to friction.	Not stated	Visual inspection,	Vendor specific	Not stated	4-18, 5-9,	24
		adjust,	surveillance,		5-18	
		repair/replace,	IEEE 308-1980		1 1	
		lubricate, clean				
libration and mencanical stresses can	Not stated	Visual inspection,	Vendor specific	Not stated	4-18, 5-	25
esult in a loss of adjustment in parts	•	adjust,	surveillance,		10, 5-18	
		repair/replace,	IEEE 308-1980			
		lubricate, clean				
Degradation of organic insulating	Not stated	Visual inspection,	Vendor specific	Not stated	4-18, 5-	26
naterials in motor windings, insulators on		adjust,	surveillance,		10, 5-18	
nain contacts, and materials used in		repair/replace, clean	IEEE 308-1980			
elated electrical components which can						
educe their dielectric as well as						
nechanical properties.						
	Not stated	Visual inspection,	Vendor specific	Not stated	4-19, 5-	27
eal the relay, can embrittle and harden		functional testing	surveillance,		11, 5-18	-'
ne gaskets allowing leakage, possibly		-	IEEE 308-1980			
ading to the component failure.						
lepeated heating and cooling of the	Not stated	Visual inspection,	No specific	Vot stated	4-20, 5-	28
emperature indicator elements due to			program		10, 5-19	20
ad variation induces thermal stresses	i	Ŭ,			10, 0-19	ļ
thich may eventually result in open-circuit					1	
ailure of the element.						

Document: SAND93-7069, Aging Management Guideline for Commercial Nuclear Power Plants - Power and Distribution Transformers Reviewed by: K. D. McCarthy, INEL

-	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Motor Control Cente	n Motor	Not stated	GE, Westinghouse, C-H, KM	THEM-CY, EMBR	Loss of electrical and mechanical properties of insulator
2		Motor Control Center	Motor	Not stated	GE, Westinghouse, C-H, KM	MOIST-EL, CONTAM, ENVIR	Loss of surface insulating propertie
3		Motor Control Center	Motor	Not stated	GE, Westinghouse, C-H, KM	MOIST-EL, CONTAM, ENVIR	Loss of volumetric insulating propertie
4		Motor Control Center	Motor	Not stated	GE, Westinghouse, C-H, KM	WEAR, CORR/OX, CONTAM	High resistance electrical connections
5		Motor Control Center	Motor	Not stated	GE, Westinghouse, C-H, KM	MECHSTR, VIBR	Loosening/loss of fasteners
6		Motor Control Center	Molded-Case Circuit Breakers	Case-phenolic or glass polyester, contact- silver or tungsten	GE, Westinghouse, C-H, KM	CURSTR	Contact surface deterioration
7		Motor Control Center	Molded-Case Circuit Breakers	Case-phenolic or glass polyester, contact- silver or tungsten	GE. Westinghouse, C-H, KM	FAT, MECHSTR	Fatigue of various circuit breaker components
8		Motor Control Center	Molded-Case Circuit Breakers	Case-phenolic or glass polyester, contact- silver or tungsten	GE, Westinghouse, С-Н, КМ	WEAR, CONTAM	Wear of internal components
9		Motor Control Center	Molded-Case Circuit Breakers	Case-phenolic or glass polyester, contact- silver or tungsten	GE, Westinghouse, С-Н, КМ	ELETEMP, CORR/OX, VIBR	Loose or high resistance elect connections or terminations
10		Motor Control Center	Molded-Case Circuit Breakers	Case-phenolic or glass polyester, contact- silver or tungsten	GE, Westinghouse, C-H, KM	CURSTR	Thermal trip setpoint variations
11		Motor Control Center	Molded-Case Circuit Breakers	Case-phenolic or glass polyester, contact- silver or tungsten	GE, Westinghouse, C-H, KM	CONTAM, ENVIR	Deterioration of lubricants
12		Motor Control Center	Molded-Case Circuit Breakers		GE, Westinghouse, C-H, KM	ENVIR	Current limiting fuse failure

Document: SAND93-7069, Aging Management Guideline for Commercial Nuclear Power Plants - Power and Distribution Transformers Reviewed by: K. D. McCarthy, INEL

Exposure to ambient temps and charie	n Contrib to Failure		Manda	Alet stated		lte
Exposure to ambient temps and ohmic neating can lead to loss of insulating	Not stated	Various	Vendor specific	Not stated	4-4, 4-5,	
properties and thermally induced		recommendations made for	programs		5-15	
acking. This has the potential of		maintenance	1			
ausing a flashover of the component		indinionalioe				[
nsulation and loss of structural integrity.						
oltage and humidity can affect energized	Not stated	Various	Vendor specific	Not stated	4-6, 4-7,	\top
nsulation that is dirty or deteriorated and		recommendations	programs		5-15	
ause surface tracking paths on the		made for				
nsulator. This can lead to flashover.		maintenance				
Simultaneous exposure of thermally	Not stated	Various	No specific	Not stated	4-6, 4-7,	Γ
leteriorated insulation to temp, voltage,		recommendations	program for		5-15	
umidity, dirt and contaminants can result		made for	this		i	
n loss of volumetric insulating properties,		maintenance	subcomponent			
eading to increased surface and obsible				1		
ashover						
oor mating surface contact or sharp	Not stated	Mariaus	Mandara		_	-
ends/current flow restrictions near	NOTSLALED	Various	Vendor specific	Not stated	4-5, 4-8,	1
rimps or terminations can cause high		recommendations	program	1	5-15	
esistance elec connections which can		made for maintenance		1		ł
esult in excessive heating and potentially						
re.		1		1		
Ver-torquing of fasteners, and fasteners	Not stated	Various	Vendor specific	Not stated	4-8, 5-15	
osened by various external stresses		recommendations	program	into statou	4-0, 5-15	
non-seismic) could cause loss of		made for	program			1
tructural integrity or affect electrical		maintenance				
onnections.						
igh temps that accompany fault currents	Not stated	Various	No specific	Not stated	4-9. 5-15	-
ay cause contact material to vaporize,		recommendations	program for			
ducing a loss of contact surface material		made for	this			
nd pitting. This could cause the		maintenance	subcomponent			
ontacts to burn or weld together and			1			
sult in breaker failure.						
yclic stress can cause fatigue failure of	Not stated	Various	No specific	Not stated	4-9, 5-15	
arious circuit breaker components such		recommendations	program for			
s contact assemblies, operating		made for	this			
echanisms, breaker housing. Fatigue		maintenance	subcomponent			
ay be evidenced by progressive						
acking and ultimate failure of the						
omponent.						
adequate or degraded lubrication,	Not stated	Various	No specific	Not stated	4-9, 5-15	
ormal component wear, or wear caused		recommendations	program for			
contaminants (from other degraded		made for	this			
aterial or from external sources) can		maintenance	subcomponent			
ause the breaker to malfunction.	Alas asst1	Maria				
peration of the breaker and non-seismic	Not stated	Various	1	Not stated	4-9, 5-15	
bration cause loose connections.		recommendations	program for			
sidation or contamination of contact		made for	this			
Infaces and sharp bends in wiring near		maintenance	subcomponent			
rminations can cause high resistance onnections. These can cause excessive						
eating or fire.			1			
posure to fault currents can cause	Not stated	Various		Nich choke al		
utations in the thermal trip setpoint of a	Not stated	Various recommendations	No specific	Not stated	4-10, 5-15	1
rcuit breaker. This can cause the CB to		recommendations made for	program for			
p at progressively lower current levels,		maintenance	this			
bat progressively lower current levels, in ptentially causing nuisance tripping.			subcomponent			
ontamination, aging, evaporation, and	Not stated	Various	No specific	Not stated	110 5 55	
nbient temperatures can cause		recommendations		Not stated	4-10, 5-15	1
bricants to deteriorate, this can slow or		made for	program for this			
mpletely prevent operation of a breaker.		maintenance	subcomponent			
ises degrade slowly over time until	Not stated	Various		Not stated	110 5 15	
rentually the current-carrying capability		recommendations	inoperative	ITUI SIGIBU	4-10, 5-15	1
the fuse is reached during		made for	* operative			
rmal/transient load operation, resulting		maintenance				
			1			
nuisance current interruptions.						

Page 48A

Document: SAND93-7069, Aging Management Guideline for Commercial Nuclear Power Plants - Notor Control Centers Reviewed by: K. D. McCarthy, INEL

13		cture/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
13	MOTO	- Control Center	Molded-Case Circuit Breakers	Case-phenolic or glass polyester, contact- silver or tungsten	GE, Westinghouse, C-H, KM	CURSTR, CONTAM	Surface current tracking/loss of insulating propertie
14	Moto	r Control Center	Molded-Case Circuit Breakers	Case-phenolic or glass polyester, contact- silver or tungsten	GE, Westinghouse, C-H, KM	CURSTR, ELETEMP	Thermally induced degradation
15	Motor	Control Center	Magnetic Contactors/Starters	Not stated	GE, Westinghouse, C-H, KM	ELETEMP	Insulation deterioration
16	Motor	Control Center	Magnetic Contactors/Starters	Not stated	GE, Westinghouse, C-H, KM	ELETEMP	Organic component breakdown
17	Motor	Control Center	Magnetic Contactors/Starters	Not stated	GE, Westinghouse, C-H, KM	VIB, WEAR	Cyclic fatigue
18	Motor	Control Center	Magnetic Contactors/Starters	Not stated	GE. Westinghouse, C-H, KM	WEAR, VIB, CONTAM	Wear of contactor and starter subcomponents
19	Motor		Magnetic Contactors/Starters	Not stated	GE, Westinghouse, C-H, KM	CONTAM	Contact surface degradation
20	Motor		Thermal Overload Relays	Not stated	GE, Westinghouse, С-Н, КМ	WEAR, CURSTR	Degradation of heater or bimetallic elements
21	Motor		Thermal Overload Relays	Not stated	GE, Westinghouse, C-H, KM	CONT, WEAR	Binding of mechanical components
22	Motor		Thermal Overload Relays	Not stated	GE, Westinghouse, C-H, KM	CONT	Contact surface degradation
23	Motor		Thermal Overload Relays	Not stated	GE, Westinghouse, C-H, KM	ELETEMP, EMBR	Thermal degradation of organic materials

Page 48B

Document: SAND93-7069, Aging Management Guideline for Commercial Nuclear Power Plants - Notor Control Centers Reviewed by: K. D. McCarthy, INEL Effect of Aging on Component Function Control to Failure, Device of Aging on Component Function

Effect of Aging on Component Funct Voltage and humidity can affect energize	d I Not stated	Various	Rel.progs No specific	Report Recommendations	Page No	_
insulation that is dirty or deteriorated and	1	recommendations	program for	I SIGLEG	4-10, 5-1	5
cause surface tracking paths on the		made for	this			
insulator. Breaker arc-chute insulation is		maintenance	subcomponent			
especially susceptible to surface current			e aboomponent			
tracking. This can lead to flashover.						
Fault currents can produce high	Not stated	Various	No specific	Not stated		
temperatures and currents that can		recommendations	program for	Not Stated	4-11, 5-1	5
rapidly damage contacts, arc-chute		made for	this			
surfaces and other organic materials.		maintenance	subcomponent		1	
Continuous load currents can produce						
ohmic heating in poor connections.		1				
These can cause cb failure.						1
During operation, the heat generated in	Not stated	Various	Vendor specific	Not stated	_	
he coil during energization could cause		recommendations	program		4-12, 5-16	
nsulation deterioration of the coil itself.		made for	program.			
his can lead to coil failure.		maintenance				
rolonged coninuous energization of the	Not stated	Various	No specific	Not stated		
ontactor coil could result in excessive		recommendations	program for	Not stated	4-12, 5-16	
emperatures that cause the organic		made for	this			1
ompounds that encapsulate the		maintenance	subcomponent			
ontactor to degrade. This could shorten			ou boomponerit			
fe and lead to coil burnout.						
yclic fatigue can occur in magnetic	Not stated	Various	Vendor specific	Not stated		
ontactors if subjected to extremely high		recommendations	program	INOT STATED	4-13, 5-16	
cle operation. This can lead to heat		made for	Program			
eneration because of higher resistivity,		maintenance				
isalignment of contact, binding of					1 1	
mature, preventing full contact mating						
nd arcing.						
inding of the contactor assembly,	Not stated	Various	Vondes en sife			
nding of contactor armature, binding of		recommendations	Vendor specific	Not stated	4-13, 5-16	1
e contactor mechanism are all caused		made for	program, replace when		1 1	
wear, vibration and contamination.		maintenance	failed			
nese can result in poor contactor/starter			ialieu		1 1	
eration and failure.						
ust, dirt, and foreign material can lead to	Not stated	Various	Vender enerite	Neterat		
Il burnout, pitting of contact surfaces		recommendations	Vendor specific	NOT STATED	4-13, 5-16	1
d breakdown of adhesives and		made for	program			
pricants. They can also prevent the		maintenance				
ntact from closing. All the above can						
use the contactor or starter to fail.						
bimetallic devices, variations in the	Not stated	Various	Vender			
rrent flowing through the heater will		recommendations	Vendor specific	Not stated	4-14, 5-16	2
ult in variations in device setpoint.		made for	program,			
ese variations may be caused by		maintenance	replace when			
anges in the characteristics of the			failed		1 1	
ater element.		ļ .			1	
chanical interference, dirt and friction	Not stated	Various				
y cause mechanical interference				iot stated	4-14, 5-17	21
ulting in binding of mechanical		recommendations	failed			
nponents.		made for				
	Not stated	maintenance				
burnout, pitting of contact surfaces,	IN STATED	Various	Vendor specific N	lot stated	4-14, 5-17	22
breakdown of adhesives and			program,		1 //	~
ricants. They can also prevent the			replace when			
tact from closing. All the above can		maintenance	failed			
se the relay to fail.		1	1		1 1	
interal terms in the		<u> </u>				
ters cause aging of the heater element	lot stated	Various	Vendor specific N	ot stated	4-14, 5-17	
port material. Failure of the support		recommendations	program,		[· ⁴ , 3 ⁻]/	23
ck results in possible failure of the		made for	replace when			
road relay to perform its required			failed		1	
tion.						
		1	1			
		1	·			
		1	1			
		1				

Document: SAND93-7069, Aging Management Guideline for Commercial Nuclear Power Plants - Notor Control Centers Reviewed by: K. D. McCarthy, INEL

em Syste		Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
24	Motor Control Center	Thermal Overload Relays	Not stated	GE, Westinghouse, C-H, KM	eletemp, Corr/OX, Vibr	Loose or high resistance elec connections or terminations
25	Motor Control Center	Miscellaneous Relays	Not stated	GE, Westinghouse, C-H, KM	ELETEMP	Thermal breakdown of organic materials
26	Motor Control Center	Miscellaneous Relays	Not stated	GE, Westinghouse, C-H, KM	CONT	Contact surface degradation
27	Motor Control Center	Miscellaneous Relays	Not stated	GE, Westinghouse, C-H, KM	WEAR, VIBR	Wear of mechanical parts
28	Motor Control Center	Miscellaneous Relays	Not stated	GE, Westinghouse, C-H, KM	ELETEMP, CORR/OX, VIBR	Loose or high resistance elect connections or terminations
29	Motor Control Center	Miscellaneous Relays	Not stated	GE, Westinghouse, C-H, KM	VOLTSTR	Coil dielectric breakdown
30	Motor Control Center	Control Transformers	Not stated	GE. Westinghouse, C-H, KM	ELETEMP	Winding insulation degradation
31	Motor Control Center	Control Transformers	Not stated	GE, Westinghouse, C-H, KM	CURSTR	Winding conductor failure
32	Motor Control Center	Control Transformers	Not stated	GE, Westinghouse, C-H, KM	ELETEMP, CORR/OX, VIBR	Loose or high resistance elect connections or terminations
33	Motor Control Center	Terminal Blocks	Not stated	GE, Westinghouse, C-H, KM	ELETEMP, CORR/OX, VIBR	Loose or high resistance elect connections or terminations
34	Motor Control Center	Terminal Blocks	Not stated	GE, Westinghouse, C-H, KM	ELETEMP, EMBR, ENVIR	Degradation or organic materials

Document: SAND93-7069, Aging Management Guideline for Commercial Nuclear Power Plants - Notor Control Centers Reviewed by: K. D. McCarthy, INEL

Effect of Aging on Component Function Operation of the relay and non-seismic	Not stated	Various	Vendor specifi	Report Recommendations	Page No.	_
vibration cause loose connections	THE STATED	recommendations		U INUL SLALOU	4-15, 5-17	2
Oxidation or contamination of contact		made for	program			
surfaces and sharp bends in wiring near		maintenance				
terminations can cause high resistance						
connections. These can cause excessive						
heating or fire.						
Prolonged continuous energization of the	Not stated	Various	No specific	Not stated	4-12, 5-17	25
relay could result in excessive		recommendations	program for	Not stated	4-12, 5-17	23
emperatures that cause the organic	1	made for	this	1		
compounds that encapsulate the		maintenance	subcomponent			
contactor to degrade. This could shorten						
ife and lead to coil burnout.	1					
Dust, dirt, and foreign material can lead to	Not stated	Various	No specific	Not stated	4-15, 5-17	26
coil burnout, pitting of contact surfaces,		recommendations	program for			
and breakdown of adhesives and		made for	this			
ubricants. They can also prevent the		maintenance	subcomponent			
contact from closing. All the above can						
cause the relay to fail.						
Near can lead to setpoint drift,	Not stated	Various	No specific	Not stated	4-17, 5-17	27
mechanical fatigue, surface burning		recommendations	program for			21
caused by arcing, and insulation	J	made for	this			
deterioration. These can result in reduced		maintenance	subcomponent	1		
mechanical tolerances, jamming and						
pinding of moving parts.	1					
Operation of the relay and non-seismic	Not stated	Various	No specific	Not stated	4-17, 5-17	28
ibration cause loose connections.		recommendations	program for		['', ³⁻ '']	20
Dxidation or contamination of contact		made for	this			
urfaces and sharp bends in wiring near		maintenance	subcomponent			
erminations can cause high resistance			Caseshipenen			
connections. These can cause excessive						
leating or fire.				1		
nductive voltage surges resulting from	Not stated	Various	No specific	Not stated	4-18, 5-17	29
current interruptions can stress the relay		recommendations	program for			29
coil. The inductive surge may cause coil		made for	this	1		
electric breakdown at the weak points in		maintenance	subcomponent			
he insulation, which can rapidly lead to						İ
sulation failure.			1			
hmic heating and breaker internal	Not stated	Various	No specific	Not stated	4-18, 5-17	30
mbient conditions cause elevated		recommendations	program for		1113 , 311	30
emperatures which lead to winding		made for	this			
sulation degradation. This can produce		maintenance	subcomponent			
horted transformer winding, resulting in			1			
aulty voltage/current transformation or				· ·		
pen circuit conditions.			1			
rimary or secondary winding failure can	Not stated	Various	No specific	Not stated	4-18, 5-17	31
sult from continuous use for extended		recommendations	program for		[^{-,} ^{-,} ^{-,} ⁻]	31
eriods or from excessive current drawn		made for	this	1		
arough the winding from attached control		maintenance	subcomponent			
ower loads.				1		
lon-seismic vibration can cause loose	Not stated	Various	No specific	Not stated	4-18, 5-17	32
onnections. oxidation or contamination of		recommendations	program for			32
ontact surfaces and sharp bends in		made for	this]		
iring near terminations can cause high		maintenance	subcomponent			
sistance connections. These can cause						
xcessive heating or fire.						
peration of motor control center	Not stated	Various	No specific	Not stated	4-19, 5-17	33
omponents and non-seismic vibration		recommendations	program for			33
ause loose connections. Oxidation or		made for	this			1
ontamination of surfaces and sharp		maintenance	subcomponent			
ends in wiring near terminations cause						
igh resistance connections. These can						ŀ
ad to heating or fire.						
erminal blocks and the organic glue or	Not stated	Various	No specific	Not stated	4-19, 5-17	34
gent used to mount them may degrade		recommendations	program for			34
ecause of ohmic heating, ambient		made for	this			
mperature, humidity and vibration. This		maintenance	subcomponent			
an result in embrittlement of the terminal						
locks and loosening from their mounting						

Document: SAND93-7069, Aging Management Guideline for Commercial Nuclear Power Plants - Notor Control Centers Reviewed by: K. D. McCarthy, INEL

Item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
35	Motor Control Center	Terminal Blocks	Not stated	GE, Westinghouse, C-H, KM	EXFORCE, MECHSTR	Degradation of terminal block hardware
36	Motor Control Center	Terminal Blocks	Not stated	GE, Westinghouse, C-H, KM	MOIST-EL, CONTAM, ENVIR	Loss of surface insulating properties
37	Motor Control Center	Terminal Blocks	Not stated	GE, Westinghouse, C-H, KM	MOIST-EL, CONTAM, ENVIR	Loss of volumetric insulating properties
38	Motor Control Center	Control Wiring	Copper wire insulated by ethylene propylene rubber or X-linked poly	GE, Westinghouse, C-H, KM	ELETEMP, EMBR	Insulation degradation
39	Motor Control Center	Control Wiring	Copper wire insulated by ethylene propylene rubber or X-linked poly	GE, Westinghouse, C-H, KM	ELETEMP	Conductor degredation
40	Motor Control Center	Control Wiring	Copper wire insulated by ethylene propylene rubber or X-linked poly	GE, Westinghouse, C-H, KM	VIBR, CORR/OX, ELETEMP, CONT, EXFORCE	Loose or high resistance elect connections or terminations
41	Motor Control Center	Fuse	Not stated	GE, Westinghouse, C-H, KM	FAT	Cyclic failure
42	Motor Control Center F	fuse	Not stated	GE, Westinghouse, C-H, KM	CORR/OX, CONT	High resistance contact surfaces
43	Motor Control Center F	use	Not stated	С-Н, КМ	ELETEMP, CORR/OX, VIBR, CONT	Loose or high resistance elect connections or terminations

 Document:
 SAND93-7071, Aging Management Guideline for Commercial Nuclear Power Plants - Stationary Batteries

 Reviewed by:
 K. D. McCarthy, INEL

 Item
 System
 Structure/Comp
 Subcomponent
 Materials

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
		Battery	Container	Polycarbonate, styrene acrylonitrile, butacliene, styrene	C&D, GNB, Exide	CORR/SCC, ELOTEMP, FAT	Cracks in container
2		Battery	Electrolyte	Sulfuric acid and water	C&D, GNB, Exide	CONTAM	Electrolyte consumed, water loss
	l		I	1		l	

Document: SAND93-7069, Aging Management Guideline for Commercial Nuclear Power Plants - Notor Control Centers Reviewed by: K. D. McCarthy, INEL Effect of Aging on Component Function

Effect of Aging on Component Func Terminal block hardware degrades		Various		Report Recommendations	Page No.	iter
primarily as a result of stresses produce during normal use. Improper maintenance techniques exacerbates the degredation.	d is	recommendations made for maintenance	No specific program for this subcomponer	Not stated	4-19, 5-17	_
Voltage and humidity can affect energize insulation that is dirty or deteriorated and cause surface tracking paths on the insulator. This can lead to flashover. Simultaneous exposure to thermally		Various recommendations made for maintenance	No specific program for this subcomponen	Not stated	4-20, 5-17	3
deteriorated insulation to temp, voltage, humidity, dirt and contaminants can resul in loss of volumetric insulating properties, leading to increased surface and volumetric leakage currents and possible flashover.		Various recommendations made for maintenance	No specific	Not stated	4-20, 5-17	3
Insulation degradation can occur with exposure to elevated ambient temperature, ohmic heating of the conductor, and excessive ohmic heating that accompanies high resistivity connections.	Not stated	Various recommendations made for maintenance	No specific program for this subcomponent	Not stated	4-20, 5-17	38
Conductor degradation may result from ending, pulling, or crimping of the conductor or from localized heating (either rom an external heat source or ohmic eating within the wire).	Not stated	Various recommendations made for maintenance	No specific program for this subcomponent	Not stated	4-20, 5-17	39
cose or high resistance connections or erminations may occur from bending or ulling on wire, vibration of components, nadequate torquing of fasteners, or xidation/corrosion/contamination of pontact surfaces.	Not stated	Various recommendations made for maintenance	No specific program for this subcomponent	Not stated	4-21, 5-17	40
yclic fatigue of the fuse holder is rimarily associated with the installation or imoval of fuse elements; usually some ort of frictional arrangement is employed keep the fuse secure and properly innected.	Not stated	Various recommendations made for maintenance	No specific program for this subcomponent	Not stated	4-21, 5-18	41
sult from corrosion, oxidation, or ntamination of the surfaces in contact th the fuse element itself. This condition ay result in a loss of continuity or reased localized heating.	Not stated	Various recommendations made for maintenance	Vendor specific programs	Not stated	4-21, 5-18	42
ose or high resistance connections or 1 minations may occur from vibration of mponents, inadequate torquing of teners, or dation/corrosion/contamination of ttact surfaces.	Vot stated	Various recommendations made for maintenance	No specific f program for this subcomponent	Not stated	4-21, 5-18	43

 Document:
 SAND93-7071, Aging Management Guideline for Commercial Nuclear Power Plants - Stationary Batteries

 Reviewed by:
 K. D. McCarthy, INEL

 Effect of Aging on Component Function Contrib to Failure
 Reported progs
 Rel.progs
 Report Reco

Cracks in container caused by mishandling during maintenance/installation, seismic events, plate growth and improper use of grease or cleaning solvents lead to electrolyte leakage resulting in reduced capacity.	Not stated	IEEE Std-450,535, 10 CFR 50.49,NMAC TR- 100248	Rel.progs Tech Spec. surveillance, RG 1.129, IEEE 450	Report Recommendations Not stated	Page No. 4-17, 21, 25, 26	
or cleaning solvents lead to electrolyte		IEEE Std-450,535, 10 CFR 50.49,NMAC TR- 100248	Tech Spec. surveillance, RG 1.129, IEEE 450	Not stated	4-23	2

Page 50B

Document: SAND93-7071, Aging Management Guideline for Commercial Nuclear Power Plants - Stationary Batteries Reviewed by: K. D. McCarthy, INEL

em :	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
3		Battery	Electrolyte	Sulturic acid and water	C&D, GNB, Exide	GAS, ELETEMP	Gassing causes water loss from electrolyte
4	<u> </u>	Battery	Plates	Lead antimony, lead calcium, lead	C&D, GNB, Exide	FAT, ELETEMP, MECHSTR	Increased mechanical stres on plates
5		Battery	Plates	Lead antimony, lead calcium, lead	C&D, GNB, Exide	GAS	Active material shedding from plat
6		Battery	Plates	Lead antimony, lead calcium, lead	C&D, GNB, Exide	CORR/OX	Increase in battery internal resistance
7		Battery	Plates	Lead antimony, lead calcium, lead	C&D, GNB, Exide	CONTAM	Local action at plat
			0.11 7	Not stated	C&D, GNB, Exide	CORR/OX	Increased battery
8		Battery	Cell Top Straps	NUTSALIG	Cab, and, Elice		internal resistance
9		Battery	Cell Top Straps	Not stated	C&D, GNB, Exide	FAT	Increased mechanical stress on cell top strage
10		Battery	Separators	Rubber/glass mat, polyethylene	C&D, GNB, Exide	Not stated	Hydration caused electrolyte low specific gravity
				Rubber/glass mat,	C&D, GNB, Exide	ELETEMP	Thermal aging
11		Battery	Separators	polyethylene	Cab, and, Elde		caused by excess electrolyte temperature
12		Battery	Terminal Posts	Lead alloy, copper inserts	C&D, GNB, Exide	CORR	High connection resistance and embrittlement of material
13		Battery	Terminal Posts	Lead alloy, copper	C&D, GNB, Exide	FAT	Cracked or broke
				inserts			terminal posts

Page 51A

Document: SAND93-7071, Aging Management Guideline for Commercial Nuclear Power Plants - Stationary Batteries Reviewed by: K. D. McCarthy, INEL

Effect of Aging on Component Function Gassing and electrolyte evaporation occur	Not stated		Rel.progs	Report Recommendations	Page No.	Iten
from overcharging and excessive	NOT STATED	IEEE Std-	Tech Spec.	Not stated	4-23	1
temperatures. Gassing and evaporation		450,535,10 CFR 50.49, NMAC TR-	surveillance,			1
main cause of water loss in electrolyte.		100248	RG 1.129, IEEE 450			1
Results in reduced capacity.	[100240				
Repeated thermal and mechanical	Not stated	IEEE Std-	Tech Spec.	Not stated	4-22	+
stresses from battery charge/discharge		450,535,10 CFR	Surveillance.			'
cycles and seismic events can cause loss		50.49, NMAC TR-	IEEE 450-1987			
of active material or loss of electrical		100248				
continuity, resulting in reduced battery						1
capacity or total loss of battery output.						
Active material shedding from plates	Not stated	IEEE Std-	Tech Spec.	Not stated	4-23	
results in sediment buildup at the bottom		450,535,10 CFR	Surveillance,			
of cell. this can cause short circuits		50.49, NMAC TR-	IEEE 450-1987			
between the positive and negative plates, resulting in reduced capacity and	Ì	100248				
eventually the inability to hold a charge.						
Corrosion caused by oxidizing	Not stated					
environment that exists at the positive	Not stated	IEEE Std-	Tech Spec.	Not stated	4-22	0
plates. Plates become brittle and break		450,535,10 CFR	Surveillance,	1		
down, decreasing their cross sectional		50.49, NMAC TR- 100248	IEEE 450-1987			
area and increasing resistance. This]	100246				
leads to seismic vulnerability and				1		Í
decreased battery capacity.			1	• • •		
Electrochemical reactions due to	Not stated	IEEE Std-	Tech Spec.	Not stated	4-21	<u> </u>
impurities in the electrolyte cause local		450,535,10 CFR	Surveillance,		4-21	'
action at the plates resulting in decreased	1	50.49, NMAC TR-	IEEE 450-1987			
battery capacity and potential		100248				ŀ
overcharging of the positive plates.						
Corrosion caused by oxidizing	Not stated	IEEE Std-	Tech Spec.	Not stated	4-22	
environment that exists at the positive		450,535,10 CFR	Surveillance,			
plates. Straps become brittle and break		50.49, NMAC TR-	IEEE 450-1987			
down, decreasing their cross sectional		100248				
area and increasing resistance. This						
leads to seismic vulnerability and						
decreased battery capacity.						
Repeated thermal and mechanical	Not stated	IEEE Std-	Tech Spec.	Not stated	4-22	9
stresses from battery charge/discharge		450,535,10 CFR	Surveillance,			
cycles and seismic events can cause		50.49, NMAC TR-	IEEE 450-1987	· · · ·		
fatigue failure. This can cause loss of		100248				
electrical continuity, resulting in reduced						
battery capacity or total loss of output.	Mad and a					
Hydration causes material chemical changes in separators. Formation of	Not stated	IEEE Std-		Not stated	4-21	10
metallic lead on surface of separators		450,535,10 CFR	specific to this			
builds numerous short circuit paths		50.49, NMAC TR- 100248	material			
between pos & neg plates, resulting in		100240				
inability to hold charge.					1	
	Not stated	IEEE Std-		Not stated	++	
overcharging or excessive ac ripple on the		450,535,10 CFR	No program specific to this	Not stated	4-23	11
charger output reduces dielectric strength		50.49, NMAC TR-	material			
of separator mat! and causes structural		100248				
deterioration, resulting in reduced battery						
capacity or inability to hold charge.					1 1	
	Not stated	IEEE Std-	Tech. Spec.	Not stated	4-22	12
embrittlement of material in terminal posts		450,535,10 CFR	surveillance.			14
results in decreased battery output and		50.49, NMAC TR-	IEEE 450-1987			
overheating of the posts.		100248				
Repeated or improper torquing of	Not stated	IEEE Std-	Tech. Spec.	Not stated	4-22	13
connections during instal/maint can result		450,535,10 CFR	surveillance,			
in cracked or broken terminal posts. This		50.49, NMAC TR-	IEEE 450-1987			
results in increased connection resistance		100248			1	
or loss of electrical continuity, resulting in						
reduced capacity or loss of battery output.			1			
			j l			
		1				

Page 52A

Document: SAND93-7071, Aging Management Guideline for Commercial Nuclear Power Plants - Stationary Batteries Reviewed by: K. D. McCarthy, INEL

Item System	Structure/Co	mp Subcomponent	Materials	Manufacturer		
14	Battery	Terminal Posts	Lead alloy, copper inserts	C&D, GNB, Exide	ARD mechanism CORR	ARD effects Fouling of terminal posts
15	Battery	Intercell Connectors	Lead plated copper bars	C&D, GNB, Exide	CORR	High connection resistance, embrittlement
16	Battery	Intercell Connectors	Lead plated copper bars	C&D, GNB, Exide	FAT	Cracked or broken intercell connectors
17	Battery	Intercell Connectors	Lead plated copper bars	C&D, GNB, Exide	CORR	Fouling of intercell connectors
18	Battery	Terminal Post Seals	Not stated	C&D, GNB, Exide	FAT	Cracking of the terminal post seals
19	Battery	Battery Racks	Steel	Not stated	CORR, FAT	Rack structure weakened
20	Battery	Container	Polypropylene	C&D, GNB, Exide	CORR/SCC, FAT	Cracks in container
21	Battery	Container	Polypropylene	C&D, GNB, Exide	FAT	Fatigue cracking of cover
22	Battery	· · · ·	Potassium Hydroxide	C&D, GNB, Exide	Not stated	Decreased conductivity of electrolyte
23	Battery		Potassium Hydroxide	C&D, GNB, Exide	GAS	Gassing causes water loss from electrolyte
24	Battery	Plates	Nickel hydroxide,	C&D, GNB, Exide	Not stated	Aging of active

.

,

Document: SAND93-7071, Aging Management Guideline for Commercial Nuclear Power Plants - Stationary Batteries Reviewed by: K. D. McCarthy, INEL

,

Effect of Aging on Component Functi Fouling of terminal posts can occur due to	Not etated	IEEE Std-	Rel.progs	Report Recommendat		o. Item
accumulation of dirt, dust, and leaked	NOT STATED		Tech. Spec.	Not stated	4-24	1
electrolyte. This can cause corrosion at		450,535,10 CFR	surveillance,	1		
the electrical connections, short circuits,		50.49, NMAC TR-	IEEE 450-1987			
and battery grounding, resulting in		100248				
degraded battery output, discharge or				1		
overheating.						
Excessive ambient humidity, external dus	Not stated		Tash Gaus			_
and dirt, electrolyte leaks and spills can	INUISIALIOU	IEEE Std-	Tech. Spec.	Not stated	4-22	15
cause corrosion of connectors. This		450,535,10 CFR	surveillance,	Í		
results in high connection resistance and		50.49, NMAC TR- 100248	IEEE 450-1987			
embritlement resulting in decreased		100246	1			
battery output and overheating of				ſ		
connectors.				1		
Repeated or improper torquing of	Not stated	IEEE Std-	Tooh Shaa			+
connections during install/maint can result			Tech. Spec.	Not stated	4-22	16
in cracked or broken intercell connectors.		450,535,10 CFR	surveillance,			
This results in increased connection		50.49, NMAC TR-	IEEE 450-1987			1
resistance or loss of elec continuity,		100248				
resulting in reduced capacity or loss of						1
battery output.						
Fouling of intercell connectors can occur	Not stated		T			
due to accumulation of dirt, dust, and	Not stated	IEEE Std-	Tech. Spec.	Not stated	4-24	17
leaked electrolyte. This can cause		450,535,10 CFR	surveillance,			
corrosion at the electrical connections,		50.49, NMAC TR-	IEEE 450-1987			
short circuits, and battery grounding,		100248				
resulting in degraded output, discharge or						
overheating.						
Fatigue failures can occur in post seals	Not stated					
due to improper handling, plate growth,	Not stated	IEEE Std-		Not stated	4-23	18
excessive corrosion which stresses the	1	450,535,10 CFR	surveillance,			
seals and covers. This can cause a loss		50.49, NMAC TR-	IEEE 450-1987			
of electrolyte and venting of gases,		100248	1 1			
resulting in reduced capacity or loss of					l l	
output.						
Electrolyte leaks or spills, humidity and	Not stated	IEEE Std-	Task Case	NI-A - A- A		
high temp can cause corrosion of battery	NOUSIALIOU			Not stated	4-22	19
rack which can weaken the structure.		450,535,10 CFR	surveillance,			
This can cause structural failure and loss		50.49, NMAC TR-	IEEE 450-1987			
of supported battery.		100248				
Damage to container is caused by	Not stated					
mproper use of greases and cleaning	NOTSTATED	IEEE Std-1106,10		Not stated	4-25	20
solvents which react with container		CFR 50.49,EPRI	surveillance,			
material or weaken the structure. This		NMAC TR-10248	IEEE 1106-			
can lead to reduced capacity.			1987			
Thermal expansion and improper handling	Not stated					
ntroduce stresses to container cover	NOLSTATED	IEEE Std-1106,10		Not stated	4-25	21
which can cause cracking. This can result		CFR 50.49,EPRI	surveillance,			
n gas release, possible air intrussion, and		NMAC TR-10248	IEEE 1106-			
oss of electrolyte which may result in			1987			
conductive paths to ground and loss of						
apacity.						
Material chemical changes occur due to	Not stated					
arbonation of potassium hydroxide	Not stated	IEEE Std-1106,10		Not stated	4-24	22
ectrolyte when exposed to carbon		CFR 50.49,EPRI	surveillance,			1 1
lioxide in air, which decreases		NMAC TR-10248	none for this			
conductivity of electrolyte. This increases			comp.			
pattery internal resistance and decreases						
-						1 1
apacity. Bassing & electrolyte evaporation is due	Not stated	IEEE ON ALON IS	Track Or I			
o overcharging and elevated temp.	Not stated	IEEE Std-1106,10		Not stated	4-26	23
hese cause electrolyte water loss, which		CFR 50.49,EPRI	surveillance,			1
vill reduce battery capacity. Evaporation		NMAC TR-10248	IEEE 1106-			1
uso contributes to water loss.			1987			
		JEEE ON LLOO LO	Track Office	· · · · · · · · · · · · · · · · · · ·		
	Not stated	IEEE Std-1106,10		Not stated	4-24	24
					1	
ne positive plates causes gradual aging		CFR 50.49,EPRI	surveillance,			
		NMAC TR-10248	none for this comp.			

Page 53A

Document: SAND93-7071, Aging Management Guideline for Commercial Nuclear Power Plants - Stationary Batteries Reviewed by: K. D. McCarthy, INEL

25	/stem Structure/Co Battery		Materials Plastic	Manufacturer	ARD mechanism	ARD effects
20		Separators	Plastc	C&D, GNB, Exide	ELÉTEMP	Reduced delectric strength of separate material
26	Battery	Terminal Posts	Not stated	C&D, GNB, Exide	CORR	
			NOTSIALBO	CaD, GINB, EXICE	CORR	Failure of terminal posts
27	Battery	Terminal Posts	Not stated	C&D, GNB, Exide	FAT	Cracked or broken terminal posts
28	Battery	Terminal Posts	Not stated	C&D, GNB, Exide	CORR	Corrosion, short ckts and grounding caused by fouling
29	Battery	Intercell Connectors	Nickel-plated copper bars with stainless	C&D, GNB, Exide	CORR	Failure of intercell
			steel hardware			connectors
30	Battery	Intercell Connectors	Nickel-plated copper bars with stainless steel hardware	C&D, GNB, Exide	FAT	Cracked or broken intercell connectors
31	Battery	Intercell Connectors	Nickel-plated copper	C&D, GNB, Exide	CORR	Ourselan shart
			bars with stainless steel hardware	Cad, GNB, Exilo		Corrosion, short ckts, grounding caused by fouling
2	Battery	Terminal Post Seals	Not stated	C&D, GNB, Exide	FAT	Fatigue cracking of post seals
13	Battery	Battery Racks	Steel	Not stated	CORR, FAT	Rack structure weakened
4	Battery	Pressure Relier Valve	Not stated	Not stated	Not stated	Malfunction of valve
5	Battery	Electrolyte	Alex and a			
	, Causiy	Lioudyte	Not stated	Not stated	Not stated	Dryout of electrolyte
6	Battery	Electrolyte	Not stated	Not stated	ELETEMP	Thermal runaway

•

Document: SAND93-7071, Aging Management Guideline for Commercial Nuclear Power Plants - Stationary Batteries Reviewed by: K. D. McCarthy, INEL

Effect of Aging on Component Function	Not stated	IEEE Std-1106.10	Rel.progs No program	Report Recommendations Not stated	Page No. 4-26	2
charger output cause excessive	NOT STATED			Not stated	4-26	2
electrolyte temp which reduces the		CFR 50.49,EPRI	specific to this			
dielectric strength of separator matil &		NMAC TR-10248	subcomponent			
deteriorates mech strength. This results						
in reduced capacity & eventual inability to						
hold charge.						
Humidity, dust, and elevated temperatures	Not stated	IEEE Std-1106,10	Tech. Spec.	Not stated	4-25	20
can lead to corrosion of the terminal		CFR 50.49,EPRI	required			
posts. This can lead to failure of terminal		NMAC TR-10248	surveillance.			
posts.		4	IEEE 1106			
Repeated or improper torquing of	Not stated	IEEE Std-1106.10	Tech. Spec.	Not stated	2-25	27
connections can result in cracked or		CFR 50,49,EPRI	required			1 -
broken terminal posts. This results in		NMAC TR-10248	surveillance.			
increased connection resistance or loss of	F	1441AC 1H-10248	IEEE 1106			
continuity. This results in reduced				1		
						1
capacity or total loss of output.						
Fouling of terminal posts caused by	Not stated	IEEE Std-1106,10	Tech. Spec.	Not stated	4-24	28
accumulation of dirt, dust, and leaked		CFR 50.49,EPRI	beriuper			
electrolyte can cause corrosion, short		NMAC TR-10248	surveillance.			
circuits between pos and neg posts, and			IEEE 1106			1
battery grounding. This results in						
degraded output, batt discharge, or						
overheating of connections.	j					
Humidity, dust, and temperature can lead	Not stated	IEEE Std-1106,10	Tech. Spec.	Not stated	4-25	29
to corrosion of intercell connectors. This	NOT STATED		1 1	Not stated	4-25	
can lead to failure of the intercell		CFR 50.49,EPRI	required			1
connectors.		NMAC TR-10248	surveillance.			
			IEEE 1106			
Repeated or improper torquing of	Not stated	IEEE Std-1106,10	Tech. Spec.	Not stated	4-25	30
connections can result in cracked or		CFR 50.49,EPRI	required			!
broken intercell connectors. This results		NMAC TR-10248	surveillance.			1
in increased connection resistance or loss			IEEE 1106	1		
of continuity which reduces battery						
capacity or results in total loss of battery						
output,						
Dirt, dust, and leaked electrolyte cause	Not stated	IEEE Std-1106,10	Tech. Spec.	Not stated	4.00	
fouling of intercell connectors, fouling	NOC STATED	· · ·	1 '	NOTSIZIEG	4-26	31
÷ •		CFR 50.49,EPRI	required			
coupled with moisture condensation leads		NMAC TR-10248	surveillance.			
to corrosion, which causes current paths			IEEE 1106			
to ground. This results in degraded batt				1		
output, discharge or overheating of						
connections.						
Excessive stresses caused by thermal	Not stated	IEEE Std-1106,10	Tech. Spec.	Not stated	4-25	32
expansion, corrosion of terminal posts,		CFR 50.49,EPRI	required			
and improper handling can lead to fatigue		NMAC TR-10248	surveillance.		1 1	
cracking of terminal post seals, leading to			IEEE 1106			
gas release, air intrusion, loss of						
electrolyte. Results in conductive paths to			1			
ground.						
Humidity, dust accumulation, and	Not stated				_	
-	Not stated	IEEE Std-1106.10	1	Not stated	4-25	33
temperature can lead to corrosion in the		CFR 50.49,EPRI	1987			
battery racks. This can cause structural		NMAC TR-10248				
failure and loss of supported battery.						
Wear occurs due to relative movement	Not stated	IEEE Std-1106,10	No program	Not stated	4-27	34
between contacting internal parts and can		CFR 50.49,EPRI	specific to this		11	
cause malfunction of valve. This can		NMAC TR-10248	subcomponent		1	
allow gases and vapors to escape.						
resulting in lowered gas recombination						
efficiency. This can lead to dryout.			1 I			
	Not atota d		Track O			
Overcharging, elevated temperatures,	Not stated	IEEE PAR 1188, 10	Tech. Spec.	Not stated	4-27	35
ailed pressure relief valve or cracked		CFR 50.49, NMAC	surveillance,			
container or seal can lead to dryout of		TR-100248	IEEE 450 &			
electrolyte. This can result in battery			1106			
failure.			j l			
Elevated temperature, improper (high)	Not stated	IEEE PAR 1188, 10	Tech. Spec.	Not stated	4-28	36
loat voltage, or excessive ac ripple from	· · · · · · · · · · · · · · · · · · ·	CFR 50.49, NMAC	surveillance,		7-20	30
battery charger can cause thermal		TR-100248	IEEE 450-1987			
		14-100248	IEEE 450-1987			

Page 54A

Document: SAND93-7071, Aging Management Guideline for Commercial Nuclear Power Plants - Stationary Batteries Reviewed by: K. D. McCarthy, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
37	1	Battery	Electrolyte	Not stated	Not stated	Not stated	Memory effect
							· ·
				Ì			
	<u> </u>	L					

Document: TIRGALEX, Plan for Integration of Aging and Life-Extension Activities Reviewed by: L.C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
		Cable	Not stated	Not stated	Not stated	ELETEMP, RAD, MOIST-EL, & VIB.	Not stated
2		Conectors	Not stated	Not stated	Not stated	ELETEMP, RAD, MOIST-EL, & VIB.	Not stated
3		Switchgear	Not stated	Not stated	Not stated	WEAR & LOSLUB	Not stated
4		Relays	Not stated	Not stated	Not stated	CORR, WEAR, & ELETEMP	Not stated

Document: WYLE 60103-1, Test Plan of Molded Case Circuit Breakers for the Comprehensive Aging Assessment of Circuit Breakers and Relays for Nuclear Plant Reviewed by: L.C. Meyer, INEL

liem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Molded Case Circuit	5 Relay Types and 3	Not stated	Three mfg. listed	Not stated	Not stated
		Breakers	Types of Circuit				NOT STATED
			Breakers				
							1

Document: WYLE 60103-2, Test Plan of Metal Clad Circuit Breakers for the Comprehensive Aging Assessment of Circuit Breakers and Relays for ----- NPAR Pro-Reviewed by: L. C. Meyer, INEL

÷	tem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects	
I	1		Metal Clad Circuit Breakers	Not stated	Not stated	GE & Westinghouse		Not stated	
									ł

Document: WYLE 60103-3, Test Plan of Auxiliary Relays for the Comprehensive Aging Assessment of Circuit Breakers and Relays for ---- (NPAR) Program Phase Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Auxiliary Relays	Not stated	Not stated	Westinghouse	Not stated	Not stated
1							
]				
L		<u> </u>					

Document: WYLE 60103-4, Test Plan of Control Relays for the Comprehensive Aging Assessment of Circuit Breakers and Relays for ----- (NPAR) Program, Phas Reviewed by: L.C. Meyer, INEL

item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	Control Relays	Not stated	Not stated	Three mfg.s listed	Not stated	Not stated
		L				

Document: WYLE 60103-5, Test Plan of Protective Relays for the Comprehensive Aging Assessment of Circuit Breakers and Relays for Nuclear Plant Aging Rese Reviewed by: L. C. Meyer, INEL

Ite	n System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects	
	1	Protective Relays	Not stated	Not stated	GE & Westinghouse		Not stated	1
L								L

Page 54B

Document: SAND93-7071, Aging Management Guideline for Commercial Nuclear Power Plants - Stationary Batteries Reviewed by: K. D. McCarthy, INEL Effect of Aging on Component Function Contribute Failure, Departed sector and Polymer Plants - Stationary Batteries

Ouccessive small discharge cycles can Not stated			14	
lead to a memory effect in a sintered plate nickel-cadmium battery. This can result in reduced capacity.	pec. Not stated 4-2 ince, 4-2	age No. 28	37	

Document: TIRGALEX, Plan for Integration of Aging and Life-Extension Activities Reviewed by: L.C. Meyer, INEL Effect of Aging on Component Extension Octavity of The State

Not stated			Rel.progs	Report Recommendations	Page No.	14
Not stated	Not stated	IBE79-01, NUREG- 0588, 10CFR 50.49, & RG 1.89	No specific program	Five recommendations are given for resolving aging and life extension issues [4]	A31-A36	
Not stated		0588, 10CFR 50.49, & RG 1.89	program	Five recommendations are given for resolving aging and life extension lissues [1]	A31-A36	2
Not stated		Specs	Section 7	TTL	A51 & A53	3
		Specs	upon type and function of the	Followup on calibration frequency for protective relays, seismic fragility, and effect of common mode failure on safety [1]	A52 & A53	4

Document: WYLE 60103-1, Test Plan of Molded Case Circuit Breakers for the Comprehensive Aging Assessment of Circuit Breakers and Relays for Nuclear Plan: Reviewed by: L. C. Meyer, INEL Effect of Aging on Component Function Contrib to Esilvers, Paperted and Plance, Planc

Not stated	ponent Function Contrib to Failure		Rel.progs	Report Recommendations	Page No.	ltem
Not stated	Not stated	Not discussed in		Not stated	1.4.4	nem
		report	program.		11-1	1
		ł	application			
			dependent			

Document: WYLE 60103-2, Test Plan of Metal Clad Circuit Breakers for the Comprehensive Aging Assessment of Circuit Breakers and Relays for ----- NPAR Pro Effect of Aging on Component Europian Contains to Column and the Column and
Not stated		Reported progs	Rel.progs	Report Recommendations		IA
	Not stated	Not discussed in		Not stated	Page No. 4-1	Item
		report	IEEE 338-			'
			1987, TECH.			
1			SPEC. MAINT.			
			&			

Document: WYLE 60103-3, Test Plan of Auxiliary Relays for the Comprehensive Aging Assessment of Circuit Breakers and Relays for ---- (NPAR) Program Phase Effect of Aging Assessment of Circuit Breakers and Relays for ---- (NPAR) Program Phase

Lifet of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	D	••	
Not stated	Not stated	Not discussed in report	Dependent upon application, Tech. Spec. maint	Not stated	Page No. 1-1, 1-2, & 4-1	Item 1	

Not stated	Not discussed in		Report Recommendations Not stated	Page No. 3-1	Item	
	 report	program		· ·	1	

Document: WYLE 60103-5, Test Plan of Protective Relays for the Comprehensive Aging Assessment of Circuit Breakers and Relays for Nuclear Plant Aging Rese Effect of Aging on Component Function Contribute Entering Reserved at a second
Not stated	n Contrib to Failure Not stated	 Rel.progs Tech Spec surveillance	Report Recommendations Not stated	Page No. 4-1	ltem 1	ſ
	······	Cal Venial 108		1 1		

Page 55A

Document: WYLE 60103-6, Test Plan of Timing Relays for the Comprehensive Aging Assessment of Circuit Breakers and Relays for Nuclear Plant Aging Researc Reviewed by: L.C. Meyer, INEL

Item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	Timing Relays	Not stated	Not stated	Agastat	OXIDAT	Degradation caused
	3			-		by oxidation surfaces
						1
	1					1 1
1 1						the second s

Document: WYLE 60103-7, Test Plan of Electronic Relays for the Comprehensive Aging Assessment of Circuit Breakers and Relays for Nuclear Plant Aging Rese Reviewed by: L.C. Meyer, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Electronic Relays	Not stated	Not stated	Basler	Not stated	Not stated
			L			· · · · · · · · · · · · · · · · · · ·	·

Page 55B

Document: WYLE 60103-6, Test Plan of Timing Relays for the Comprehensive Aging Assessment of Circuit Breakers and Relays for Nuclear Plant Aging Researc Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
	Occasional	Not discussed in	Application	Not stated	4-1	1
caused by low current application of silver		report	dependent,			
alloy contacts.			Tech Spec		1	
			Surveill.			

Document: WYLE 60103-7, Test Plan of Electronic Relays for the Comprehensive Aging Assessment of Circuit Breakers and Relays for Nuclear Plant Aging Rese Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Not stated	Not stated	Not discussed in	Application	Not stated	4-1	1
		report	dependent,			
			likely no			
			program			
			<u> </u>			

Table A.2 Gall Report for NRC Generic Letters

.

Page 1A

Document: GL 91-15, Operating Experience Feedback Report, Solenoid-Operated Valve Problems at U.S. Reactors Reviewed by: E. W. Roberts, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	Not stated	Not stated	Solenoid Operated Valves	Not stated	Not stated	Not stated	Not stated

.

Table A.2 Gall Report for NRC Generic Letters

.

•

Page 1B

 Document:
 GL 91-15, Operating Experience Feedback Report, Solenoid-Operated Valve Problems at U.S. Reactors

 Reviewed by:
 E. W. Roberts, INEL

 Effect of Aging on Component Function Contrib to Failure
 Reported progs

 Report Rec

	Reference to case report study NUREG- 1275, volume 6, "Operating Experience Feedback Report-Solenoid-Operated	Not stated	Not discussed in report	Vendor specific	Report Recommendations Review info and consider actions as appropriate [4]	Page No.	Item 1	T
ĺ	Valve Problems," February 1991							

•

Document: IN NO. 89-07, Failures of Small-Diameter Tubing in Control Air, Fuel Oil, and Lube Oil Systems Which Render Emergency Diesel Generators Inoperativ Reviewed by: E. W. Roberts, INEL

Iten	n System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	1 Emergency diesel		Small Diameter	Stainless Steel	Not stated	VIBR	Cracks, breaks, &
	generators		Tubing		-		holes in tubing
	_		_				

Document: IN NO. 89-17, Contamination and Degradation of Safety-Related Battery Cells Reviewed by: E. W. Roberts, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	2		Battery Cells	Copper	Not stated	CONTAM	Electrolytic transfer
]		Connections				of copper to battery
			1				lead term/plates

Document: IN NO. 89-20, Weld Failures in A Pump of Byron-Jackson Design

Reviewed by: E. W. Roberts, INEL

Item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
3	Pump	Weids	Not stated	Byron Jackson	VIBR	Weld cracks
			Î			
		1	1		1	

Document: IN NO. 89-42, Failure of Rosemount Models 1153 and 1154 Transmitters

Reviewed by: E. W. Roberts, INEL

Item Syste	em Structure/Com	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
4		Pressure	Not stated	Rosemount	Not stated	Loss of oil from
	<u> </u>	Transmitters				sensing module

Document: IN NO. 89-43, Permanent Deformation of Torque Switch Helical Springs in Limitorque SMA-Type Motor Operators Reviewed by: E. W. Roberts, INEL

Item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
5	Torque Switch	Helical Springs	Not stated	Limitorque	MECHSTR	Permnent
						deformation of
						helical spring

Document: IN NO. 89-64, Electrical Bus Bas Failures Beviewed by: F W Boberts INE!

Item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
6	Electrical Bus	Noryl Insulation	Not stated	Not stated	CONTAM EMBR	Electrical ground fault, short to ground

Document: IN NO. 89-66, Qualification Life of Solenoid Valves Reviewed by: E. W. Roberts, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
7		Duel-Coil Solenoid	Elastomer Seat	Ethylene Propylene	Automatic Switch	CONTAM	Sticky and deformed
1		Valve		Dimer (EPDM)	Co.	ELETEMP	seats
	1						

Document: IN NO. 89-79, Degraded Coatings and Corrosion of Steel Containment Vessels Reviewed by: E. W. Roberts, INEL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
8	3	Containment	Coatings	Not stated	Not stated	MOIST-EL	Coating failure
		Vessels					

Document: IN NO. 89-84, Failure of Ingersoll Rand Air Start Motors as A Result of Pinion Gear Assembly Fitting Problems Reviewed by: E. W. Roberts, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	Diesel Generator	Air Starter Pinion	Tang and Retainer	Not stated	Ingersoll Rand	WEAR VIBR	Cracking of retainer
		Gear	Bolts				ring and loosening of bolts

Page 1A

Page 1B

Document: IN NO. 89-07, Failures of Small-Diameter Tubing in Control Air, Fuel Oil, and Lube Oil Systems Which Render Emergency Diesel Generators Inoperative Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	item
Inoperability of EDG	Not stated	Not discussed in	Vendor	Review info and take actions as	1	
		report	specific, RG	appropriate. [4]		
			1.108, IEEE			1
•			387, IEEE 749			

Document: IN NO. 89-17, Contamination and Degradation of Safety-Related Battery Cells Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Loss of battery capacity	Not stated	Tech. spec requires	Tech. Spec.,	Review into and take actions as		2
		exam, clean, & test	RG 1.129,	appropriate [4]		
		connections	IEEE 450-1987	1		

Document: IN NO. 89-20, Weld Failures in A Pump of Byron-Jackson Design

Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Broken ring and impeller - fasteners in	Not stated	Not discussed in	Vendor	Review info and take actions as		3
recirculation loop		report	specific, may	appropriate [4]		
			have Tech.			
			Spec. surveil			

Document: IN NO. 89-42, Failure of Rosemount Models 1153 and 1154 Transmitters Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Transmitter failure	Not stated	Not discussed in	Bul 90-1 Suppl.	Review info and take actions as		4
		report	1	appropriate [4]		

Document: IN NO. 89-43, Permanent Deformation of Torque Switch Helical Springs in Limitorque SMA-Type Motor Operators Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	item
Operability problem with valve motor	Not stated	Not discussed in	Vendor	Not stated		5
operator		report	specific,			
			NUREG-1352			

Document: IN NO. 89-64, Electrical Bus Bas Failures Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component	Function Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Inoperable electrical bus	Not stated	Not discussed in	IEEE 338-	Review info and take actions as		6
		report	1987, RG	appropriate [4]		
			1.118, IEEE			
			741-1986			

Document: IN NO. 89-66, Qualification Life of Solenoid Valves Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Valves fail to operate as required	Frequent	Not discussed in	Application	Review info and take actions as		7
		report	dependent,	appropriate [4]	1 1	
			may have Tech			i
	l		Spec req			

Document: IN NO. 89-79, Degraded Coatings and Corrosion of Steel Containment Vessels Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Oxidation and pitting of steel tanks	Not stated	Not discussed in	Vendor specific	Review info for applicability and take		8
		report		actions as appropriate [4]		

Document: IN NO. 89-84, Failure of Ingersoll Rand Air Start Motors as A Result of Pinion Gear Assembly Fitting Problems Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Fallure	Reported progs	Kel.progs	Report Recommendations	Page No.	Item
Diesel generators would not start	Frequent	Not discussed in	RG 1.108,IEEE	Review into and consider actions as		9
		report	387,IEEE	appropriate [4]	1	
			749,Tech.		1	
			Spec. maint.			

Page 2A

Document: IN NO. 90-41, Potential Failure of General Electric Magne-Blast Circuit Breakers and AK Circuit Breakers Reviewed by: E. W. Roberts, INEL Item Sunt

item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
10	Circuit Breakers	Prop Reset Spring	Not stated	General Electric	FAT	Broken spring
		1				j
		······································				1

Document: IN NO. 90-51, Failures of Voltage-Resistors in the Power Supply Circuitry of Electric Governor Systems Reviewed by: E. W. Roberts, INEL Item Svet

System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects	
1 Emergency Diesel Generator	Governor Control Power Supply	Voltage Dropping Resistor	Not stated	Pacific Resistor	ENVIR ELTEMP	Loss of resistance value	

Document: IN NO. 90-51-01, Failures of Voltage-Resistors in the Power Supply Circuitry of Electric Governor Systems Reviewed by: L. C. Meyer, INEL

		Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
12	Emergency Diesel Generator	Governor Control Power Supply	Voltage Dropping Resistor		Not stated	CURSTR & ELETEMP	Loss of resistance value

Document: IN NO. 90-80, Sand Intrusion Resulting in Two Diesel Generators Becoming Inoperable Reviewed by: E. W. Roberts, INEL

Item System Structure/Comp Subcomponent

Item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
13 Diesel Generatrors	Cylinders	Liners and Piston Rings	Not stated	Not stated	CONTAM ADH	Scoring of liners and piston rings

Document: IN NO. 91-20, Electric Wire Insulation Degradation Caused Failure in A Safety-Related Motor Control Center Reviewed by: E. W. Roberts, INEL Item Svotem Shushing/Osma

· · · · · · · · ·	Oystern	Structure/Comp	Supcomponent	Materials	Manufacturer	ARD mechanism	ADD affects
14		Motor Control Center	Wire	PCV - Vegatable oil plasticierR		ELTEMP	ARD effects Cond cover emits liquid which hardens
							on electrical contact

Document: IN NO. 91-45, Possible Malfunction of Westinghouse ARD, BFD, and NBFD Relays, and A200 DC and DPC 250 Magnetic Contactors Reviewed by: E. W. Roberts, INEL

18	em System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects	
	15	Relays	Coils	Ероху	Westinghouse	ELTEMP	Epoxy becomes fluid	
							when coil is	
							energized for ext	
				L		ł	period	

Document: IN NO. 91-46, Degradation of Emergency Diesel Generator Fuel Oil Delivery Systems Reviewed by: E. W. Roberts, INEL

i		System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects	
	16	Diesel Generators		Filters and Injectors	Not stated		CONTAM	Excessive	
								particulate, fouled	
				L	L			filters and injectors	

Document: IN NO. 91-62, Diesel Enging Damage Caused by Hydraulic Lockup Resulting From Fluid Leakage Into Cylinders

Reviewed by:	E. W. Robert	s, INEL	
Manage Courses			

	n System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism		
1	7 Emergency Diesel	Diesel Engine	Head Gasket	Not stated	Not stated	Not stated	ARD effects Water leaks into	1
L	Generator	[cylinder	

Document: IN NO. 91-78, Status Indication of Control Power for Circuit Breakers Used in Safety-Related Applications Reviewed by: E. W. Roberts, INEL

_	n System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	
	8	Indicator Lights	Fuse Holders	Not stated	Not stated	FAT	ARD effects Fuse holder fingers deformed resulting in
							DOOR elect contact

Page 2B

Document: IN NO. 90-41, Potential Failure of General Electric Magne-Blast Circuit Breakers and AK Circuit Breakers Reviewed by: E. W. Roberts, INEL Effect of Aging on Component Europian Constitution Constitution and a Science and AK Circuit Breakers

1	Brooker would allow the bin bonein Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
	Breaker would attempt to close but would	Frequent	Not discussed in	RG 1.108, IEEE	Review info and consider actions as		10
	trip free		report		appropriate [4]		1 ¹
ł				749,Tech.	-++···+··· [·]		
l				Spec. maint			

Document: IN NO. 90-51, Failures of Voltage-Resistors in the Power Supply Circuitry of Electric Governor Systems **Reviewed by:** E. W. Roberts, INEL **Effect of Aging on Comparent Function**

Edg loses speed control		Reported progs	Rel.progs	Report Recommendations	Page No.	Hem	
Edg loses speed control	Frequent	Scheduled		Review info and consider actions if		11	,
		Replacement	IEEE 387,	applicable [4]			
			IEEE 749				

Document: IN NO. 90-51-01, Failures of Voltage-Resistors in the Power Supply Circuitry of Electric Governor Systems Reviewed by: L. C. Meyer, INEL

Ellect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations		14	
Failure of resistor leads to governor power supply. Failure in original design. resistor failure in new replacement assembly results in a backup mechanical governor taking control of speed.	- new	Scheduled Replacement	RG 1.108,	Review info and consider actions if applicable [4]	Page No. 1 & 2	12	

Document: IN NO. 90-80, Sand Intrusion Resulting in Two Diesel Generators Becoming Inoperable Reviewed by: E. W. Roberts, INEL Effect of Aging on Compared to the Aging on

inoperable diesel generators - Not stated Not discussed in No specific Review info and consider actions if 13 diesel cylinders	Enect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem	
				No specific	Review info and consider actions if	rage No.	10	T

Document: IN NO. 91-20, Electric Wire Insulation Degradation Caused Failure in A Safety-Related Motor Control Center Reviewed by: E. W. Roberts, INEL Effect of Aging on Component Europian Control to Entitle Provide the Safety-Related Motor Control Center

Enect of Aging on Component Functio		Reported progs	Rel.progs	Report Recommendations	Page No.	ltem	
Insulates electrical contacts	Not stated	Not discussed in report	No specific	Review info and consider actions as appropriate [4]		14	I

Document: IN NO. 91-45, Possible Malfunction of Westinghouse ARD, BFD, and NBFD Relays, and A200 DC and DPC 250 Magnetic Contactors Reviewed by: E. W. Roberts, INEL Effect of Aging a Comparison of the second seco

Effect of Aging on Component Functio		Reported progs	Rel.progs	Report Recommendations	Page No.	Itam	
Degrades or delays relay function		Not discussed in report	No specific	Review info and consider actions if applicable [4]		15	-
	L						

Document: IN NO. 91-46, Degradation of Emergency Diesel Generator Fuel Oil Delivery Systems Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	14
Inoperable diesel generator	Not stated	Not discussed in report	No specific	Review info and consider actions as appropriate [4]	raye NO.	16

Document: IN NO. 91-62, Diesel Enging Damage Caused by Hydraulic Lockup Resulting From Fluid Leakage into Cylinders Reviewed by: E. W. Roberts, INEL

7	Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.proas	Report Recommendations	Domo Ma	14	
	Damage to engine will cause EDG failure	Not stated	Not discussed in	Vendor specific	Review info and consider actions as	Page No.		
ſ		L	report		appropriate [4]		17	

Document: IN NO. 91-78, Status Indication of Control Power for Circuit Breakers Used in Safety-Related Applications Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Dens Ma		
Improper indication of motor operation	Not stated		Vendor specific	Review info and consider actions as	Page No.	118	-
		төрон	program	appropriate [4]			

Page 3A

Document: IN NO. 91-81, Switchyard Problems That Contribute to Loss of Offsite Power Reviewed by: E. W. Roberts, INEL

Iten	<u>System</u>	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	9	Swithcyard Control	Zener Diodes	Not stated	Not stated	VOLSTR	Zenor diode failure
		System					

Document: IN NO. 91-83, Solenoid-Operated Valve Failures Resulted in Turbing Overspeed Reviewed by: E. W. Roberts, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
20	Turbine		Soleniod- Operated	Not stated	Parker Hannifin	Not stated	Pilot valve assy
			Valves				mechanically bound

Document: IN NO. 91-85, Potential Failures of Thermostatic Control Valves for Diesel Generator Jacket Cooling Water Reviewed by: E. W. Roberts, INEL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
21	Diesel Generator		Thermostatic Control	Not stated	Not stated	Not stated	Valve failure
		System	Valve				

Document: IN NO. 91-87, Hydrogen Embrittlement of Raychem Cryofit Couplings Reviewed by: L. C. Meyer, INEL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
22		Gas Space	Cryofit Coupling	Tinel (50% Titanium	Raychem	EMBR/HY &	Circumferential
		Sampling Line		and 50% Nickel)		ELETEMP	fracture at the
							midpoint of coupling

Document: IN NO. 92-04, Potter & Brumfield Model MDR Rotary Relay Failures

Reviewed by: E. W. Roberts, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
23	•	Rotary Relay	Rotor Coil	Varnish	Potter & Brumfield	CORR	Deposits on rotor
				•			

Document: IN NO. 92-27, Thermally Induced Accelerated Aging and Failure of ITE/GOULD A.C. Relaty Used in Safety-Related Applications Reviewed by: E. W. Roberts, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
24		Relay	Plastic Armature	Not stated	ITE/Gould	ELETEMP	Brittleness and
			Carrier and Coil				cracking
			Insulation		1		

Document: IN NO. 92-44, Problems With Westinghouse DS-206 Type Circuit Breakers

Reviewed by: E. W. Roberts, INEL

Item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
25	Circuit Breaker	Reset Spring	Not stated	Westinghouse	FAT	Weakened spring
	l			ļ	L	

Document: IN NO. 92-48, Failure of Exide Batteries

Reviewed by: E. W. Roberts, INEL

Iter	m System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	26	DC Power	Battery cells	Not stated	Exide	CORR	Cracking of battery face

Document: IN NO. 92-78, Piston to Cylinder Liner Tin Smearing On Cooper=Bessemer KSV Diesel Engines Reviewed by: E. W. Roberts, INEL

ttem	System	Structure/Comp	Subcomponent	Materiais	Manufacturer	ARD mechanism	ARD effects	
27	Diesel Generator	Cylinders	Walls	Not stated	Cooper Bessemer	CORR	Transfer of tin from	l
					KSV		cyl. walls and	
							breakdown of	
							lubrication	

Document: IN NO. 91-81, Switchyard Problems That Contribute to Loss of Offsite Power Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function Contrib to Failure		Reported progs	Rel.progs	Report Recommendations	Page No.	Item	
Loss of switchyard control	Not stated	Not discussed in	RG 1.118,	Review info and consider actions as		19	I
		report	IEEE 741-1986	appropriate [4]			
			Section 7				

Document: IN NO. 91-83, Solenoid-Operated Valve Failures Resulted in Turbing Overspeed Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function		Reported progs	Rel.progs	Report Recommendations	Page No.	ltem	
Valves failed to close allowing steam to	Not stated	Not discussed in	Vendor specific	Review info and consider actions as		20	
cause turbine overspeed		1		appropriate [4]			
		<u> </u>					

Document: IN NO. 91-85, Potential Failures of Thermostatic Control Valves for Diesel Generator Jacket Cooling Water Reviewed by: E. W. Roberts, INEL

	t of Aging on Component Function Contrib to Failure		Rel.progs	Report Recommendations	Page No.	ltem
Overheating of diesel generator	Not stated	Not discussed in	Vendor specific	Review info and consider actions as		21
		report	program	appropriate [4]		_

Document: IN NO. 91-87, Hydrogen Embrittlement of Raychem Cryofit Couplings Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
	Rare	Not discussed in	No specific	Not stated	182	22
coolant system leak that exceded the 1.0		report	program	1	1	
gpm technical specification limit.		1 ·				

Document: IN NO. 92-04, Potter & Brumfield Model MDR Rotary Relay Failures Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function Contrib to Failur	e Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Mechanical binding of rotor and failure of Not stated	Not discussed in	Vendor specific	Review info and consider actions as		23
relay to operate properly within 2 to 5	report		applicable [4]		
years after installation		ľ	· · · · · · · · · · · · · · · · · · ·		

Document: IN NO. 92-27, Thermally Induced Accelerated Aging and Failure of ITE/GOULD A.C. Relaty Used in Safety-Related Applications Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item	
Coil shorts and relay fails to operate	Not stated	Not discussed in	Vendor specific	Review into and consider actions as		24	L
		report	program	appropriate [4]			

Document: IN NO. 92-44, Problems With Westinghouse DS-206 Type Circuit Breakers Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Breaker fails to open when required	Not stated	Not discussed in	Vendor specific	Review info and consider action as		25
		report	program	appropriate [4]		

Document: IN NO. 92-48, Failure of Exide Batteries Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Leakage of electrolytic and battery cell	Not stated	Not discussed in	RG 1.129,	Review info and consider action as		26
failure		report	IEEE 450-	applicable [4]		
			1987, Tech.			
			Spec. Surveil.			

Document: IN NO. 92-78, Piston to Cylinder Liner Tin Smearing On Cooper=Bessemer KSV Diesel Engines

Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Crankcase explosions and diesel failure	Not stated	Not discussed in report		Review info and consider actions as appropriate [4]		27

Page 3B

Page 4A

Document: IN NO. 93-05, Storm-Related Loss of Offsite Power Events Due to Salt Buildup on Switchyard Insulators Reviewed by: E. W. Roberts, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
28		Switch Yard	Insulators	Not stated	Not stated	CONTAM	Arcing across salt-
							lading insulators

Document: IN NO. 93-22, Tripping of Klockner-Moeller Molded-Case Circuit Breakers due to Support Lever Failure Reviewed by: E. W. Roberts, INEL

_	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
29		Mold-Case Circuit	Support Lever	Polycarbonate &	Klockner Moeiler	CORR FAT	Fractured support
		Breakers	(Spring Arm)	Glass fiber			lever
				composite			

Document: IN NO. 93-23, Weschler Instruments Model 252 Switchboard Meters

Reviewed by: E. W. Roberts, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
30		Indicating Meters	Meter Movement	Not stated	Weschler	ADH	Sticking movement
					1		

Document: IN NO. 93-26, Grease Solidification Causes Molded-Case Circuit Breaker Failure to Close Reviewed by: E. W. Roberts, INEL

Breakers based grease based of cally General Electric ENVIR Drying out of greaters	Item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	31	_	Grease		General Electric	ENVIR	Drying out of grease, friction, gouging of metal-to-metal

Document: IN NO. 93-33, Potential Deficiency of Certain Class 1E Instrumentation and Control Cables

Reviewed by: E. W. Roberts, INEL

Item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
32		Cables	Not stated	Not stated	REFERENCE	Reference nureg/cr-
					NUREG/CR-5772	5772

Document: IN NO. 93-64, Periodic Testing and Preventive Maintenance of Moded Case Circuit Breakers Reviewed by: E. W. Roberts, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
33			Circuit Breakers	Not stated	Westinghouse	Not stated	Thermal and
	1		Type EB and EHB				instantaneous trip
							not within
							specifications

Document: IN NO. 94-04, Digital Integrated Circuit Sockets With Intermittent Contact

Reviewed by: E. W. Roberts, INEL

Item System	Structure/Comp	Subcomponent	Materials		Manufacturer	ARD mechanism	ARD effects
34	Digital Board	Socket Contacts	Tin-lead	,	Augat	CORR/OX	Contact failure
	<u></u>						

Document: IN NO. 94-33, Capacitor Failures in Westonghouse Easge 21 Plant Protection Systems

Reviewed by: E. W. Roberts, INEL

1	tem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	35	Westinghouse Eagle	ASTEC America DC	Electrolytic	Epoxy module	AVX	ELTEMP	Capacitor failure
		21 plant protection	Power Supply	Capacitors				oupdoilor relidie
	1	system	,					

Page 4B

Document: IN NO. 93-05, Storm-Related Loss of Offsite Power Events Due to Salt Buildup on Switchyard Insulators Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component I	Function Contrib to Fail	ure Reported progs	Rel.progs	Report Recommendations	Page No.	ltern
Loss of offsite ac power	Not stated	Not discussed in	IEEE 765-	Review info and consider actions as		28
		report	1983, Plant	appropriate [4]		
			specific			
			program			

Document: IN NO. 93-22, Tripping of Klockner-Moeller Molded-Case Circuit Breakers due to Support Lever Failure Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	on Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Breakers tripped without cause	Not stated	Not discussed in	No specific	Review info and consider actions as		29
		report	program	appropriate [4]		
L						

Document: IN NO. 93-23, Weschler Instruments Model 252 Switchboard Meters

Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Inaccurate meter indications	Not stated	Not discussed in	No specific	Review info and consider actions as		30
		report	program	appropriate [4]		

Document: IN NO. 93-26, Grease Solidification Causes Molded-Case Circuit Breaker Failure to Close Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Breaker fails to close	Not stated	Not discussed in	No specific	Review info and consider actions as		31
		report	program	appropriate [4]		

Document: IN NO. 93-33, Potential Deficiency of Certain Class 1E Instrumentation and Control Cables

Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	item
References the result of the NUREG	Not stated	Not discussed in	No specific	Review info and consider actions as		32
report to evaluate plant cables		report	program	appropriate [4]		

Document: IN NO. 93-64, Periodic Testing and Preventive Maintenance of Modled Case Circuit Breakers Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
	Not stated	Not discussed in	Vendor specific	Review info and consider actions as		33
maintenance caused breakers trips to go			program, Tech.			
out of specifications			Spec.			

Document: IN NO. 94-04, Digital Integrated Circuit Sockets With Intermittent Contact Reviewed by: E. W. Roberts, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	item
Not stated	Not stated	Not discussed in ,	No specific	Review info and consider action as		34
		report	program	appropriate [4]		

Document: IN NO. 94-33, Capacitor Failures in Westonghouse Easge 21 Plant Protection Systems Reviewed by: E. W. Roberts, INEL

 Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Power supply failure	Not stated	Not discussed in	Vendor specific	Review info and consider actions as		35
				appropriate [4]		

Page 1A

Document: LER 88-011-282, Auto-Start of Train A of Auxiliary Building Special Ventilation System as a result of a Radiation Monitor Spike Reviewed by: L. C. Meyer, INEL

		Structure/Comp	Subcomponent	Materials	Manufacturer		ARD effects
1	Ventilation System	Radiation Monitor	Not stated	Not stated	Not stated		Rad monitor spike -
							attributed to age of
							rad mon equipment
		tem System	System Structure/Comp 1 Ventilation System Radiation Monitor	di Vinstituti a component	1 Ventilation System - Dedeting Advisit Subcomponent Materials	1 Ventilation System Portistion Materials Manufacturer	1) Ventilation System Raciation Monitor Not stated Not stated

Document: LER 88-033-02-327, Unplanned Reactor Trip Signal Due to a Reactor Protection System (RPS) Channel 1 Instrument Failure During RPS Channel 2 C Reviewed by: L. C. Meyer, INEL

2 Reactor Protection System Not stated Not stated Not stated Not stated Foxboro Not stated Two transistors shorted and bridge assembly open	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
		Not stated	Not stated	Not stated			Two transistors shorted and bridge

Document: LER 89-001-280, Unplanned Auto Start of #3 EDG Due to Failed Diode Reviewed by: L. C. Meyer, INEL

Iten		Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	3 Diesel Generator	Control Circuit	Diode	Not stated	GM Electro-Motive Division		Failed diode caused start relay to actuate
L	<u> </u>						

Document: LER 89-002-331, Age-Related Failure of a Governor Printed Circuit Board Results in High Pressure Coolant Injection System Inoperability Reviewed by: L. C. Meyer, INEL

_	System		Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	High Pressure Injection System	Turbine Governor	Printed Circuit Board Component	Not stated	Woodward Governor Company		Intermitant electronic componet output
							l

Document: LER 89-003-263, Isolation of Reactor Water Cleanup System Due to Capacitor Failure in Filter/Demineralizer Inlet Temperature Indication Switch Reviewed by: L. C. Meyer, INEL

Item		Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	RWCU	Electronic Circuit Filter	Capacitor	Not stated	Seimans	Not stated	Capacitor failed

Document: LER 89-006-261, Reactor Trip Due to Loss of Turbine E-H Control Power Supplies Reviewed by: L. C. Meyer, INEL

_	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	APD offeets
	Turbine Control	Power Supply	Transistor	Not stated	Solid State Controls Inc.		ARD effects Transistors developed leakage current
		1					

Document: LER 89-010-362, Fuel Handling Isolation System Train "A" Actuation Due to Power Supply Failure Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
7	Fuel Handling Isolation System	Power Supply	Regulator	Not stated	Nuclear Meaurement Corp.	ELETEMP	Nylon screw broken due to thermal aging

Document: LER 88-011-282, Auto-Start of Train A of Auxiliary Building Special Ventilation System as a result of a Radiation Monitor Spike Reviewed by: L.C. Meyer, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Auto-start of aux building ventilation	Not stated	10 CFR 50.73	Vendor specific	Not stated	1-3	1
system when not called for. The		1	program			
electronics was 16 years old. Root cause			1 3			
of spike unknown, rad monitor upgrade						
pursued.			1			

Document: LER 88-033-02-327, Unplanned Reactor Trip Signal Due to a Reactor Protection System (RPS) Channel 1 Instrument Failure During RPS Channel 2 C Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Failure of a rcs channel 1 delta T/Tavg	Not stated	10 CFR 50.73	Tech. Spec.	Not stated	1-4	2
loop instrument caused an unplanned			surveillance,			
reactor trip signal. Component aging was			RG 1.118,			
referenced as a possible failure			IEEE 338			
mechanism.						

Document: LER 89-001-280, Unplanned Auto Start of #3 EDG Due to Failed Diode Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio		Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
The failure of the diode was attributed to	Not stated	10 CFR 50.73	No specific	Not stated	1-3	3
normal aging, the start relay iniated the air			surveillance for			
start motors and started the diesel when			this component			
no emergency existed.			·			

Document: LER 89-002-331, Age-Related Failure of a Governor Printed Circuit Board Results in High Pressure Coolant Injection System Inoperability Reviewed by: L.C. Meyer, INEL

n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Rare	10 CFR 50.73	Tech. Spec.	Change out the governor printed	1-4	4
		Surveillance	circuit boards every eight years [4]		
		reg'd for HPI	, , , , , , , , , , , , , , , , , , , ,		
					1 1
		n Contrib to Failure Reported progs Rare 10 CFR 50.73	Rare 10 CFR 50.73 Tech. Spec. Surveillance	Rare 10 CFR 50.73 Tech. Spec. Change out the governor printed circuit boards every eight years [4]	Rare 10 CFR 50.73 Tech. Spec. Change out the governor printed 1-4 Surveillance circuit boards every eight years [4] 1-4 </td

Document: LER 89-003-263, Isolation of Reactor Water Cleanup System Due to Capacitor Failure in Filter/Demineralizer Inlet Temperature Indication Switch Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Unexpected capacitor failure caused	Rare	10 CFR 50.73	No specific	Not stated	1-3	5
circuit to actuate a portion of the ESF			surveillance for			
system. Aging was given as the cause of			this component			
the capacitor failure						

Document: LER 89-006-261, Reactor Trip Due to Loss of Turbine E-H Control Power Supplies Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Transistor leakage current caused	Rare	10 CFR 50.73	No specific	Not stated	1-4	6
increased gain resulting in higher voltage			surveillance for			
on the output stage of the power supply.			this component			
the over voltage protective circuitry was		1				
triggered causing the fuse to blow.			1			
degraded transistors attributed to aging.						

Document: LER 89-010-362, Fuel Handling Isolation System Train "A" Actuation Due to Power Supply Failure Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Lost power from the power supply when	Rare	10 CFR 50.73	No specific	Not stated	1-5	7
the regulator shifted due to the broken			surveillance for			
screw and allowed a burr on the metal			this component			
heat sink to penetrate the mica insulation.						
a short circuit resulted blowing a fuse.		· · · ·				

Page 2A

Document: LER 89-014-271, Reactor Core Isolation Cooling System Inoperable Due to Motor Burn Out Reviewed by: L C. Meyer, INEL

		Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
e	Reactor Core Isolation Cooling	Motor Operated Valve	Motor	Not stated	Not stated	CURSTR	Failed armature winding
	System				ļ		winding

Document: LER 89-015-327, Control Room Isolation Resulting From a Worn Set of Contacts in the 480V Motor Starter for a Main Control Room Ventilation Intake F

		Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
9	Control Room	Motor Starter	Contacts	Not stated	Not stated	WEAR	Increased contact
	Isolation						resistance causing
							arcing
					· · ·		

Document: LER 89-019-01-325, Failure of Service Water System to Meet Design Requirements Reviewed by: L.C. Meyer, INEL

_	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
10	Service Water System	Pump	Winding Insulation	Not stated	General Electric	ELETEMP	Degraded insulation on motor winding
				<u> </u>			

Document: LER 89-020-01-528, Apparent Ground Causes Control Element Assembly Slip Reviewed by: L. C. Meyer, INEL

re/Comp Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
Coil Lead Wire	Not stated	Combustion	1	Not aging related
				Coil Lead Wire Not stated Combustion Not stated

Document: LER 89-031-01-302, Failure of "A" 480V Engineered Safeguards Transformer Causes Temporary Interruption of Decay Heat Cooling and a Plant Opera Reviewed by: L.C. Meyer, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
12	ESFAS	Transformer	Transformer Insulation	Not stated	Not stated	Not stated	Insulation degradation
		<u> </u>					

Document: LER 90-007-01-388, ESF Actuations Due to RPS EPA Breaker Spurious Trip Reviewed by: L. C. Meyer, INEL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
13	Reacotr Protection System	Electrical Protection Assembly	Logic Card	Not stated	General Electric	Not stated	Logic card failed
L	1						

Document: LER 90-018-244, Dropped Control Rod During Rod Control Exercise Causes Automatic Actuation of RPS Reviewed by: L. C. Meyer, INEL

_	m System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	14 Control Rod Drive System	Power Bridge	Capacitor	Not stated	Westinghouse	ELETEMP	Degraded capacitor
	_l						

Document: LER 90-022-01-344. Degraded Fire Penetration Seals as a Result of Inadewuate Construction Technique Reviewed by: L.C. Meyer, INEL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects	
15	Various	Cable Penetrations	Seal	Silicon foam	Not stated	WEAR	Degradation of foam,	
			· · · · · · · · · · · · · · · · · · ·				splits and gaps.	

Document: LER 89-014-271, Reactor Core Isolation Cooling System Inoperable Due to Motor Burn Out Reviewed by: L.C. Meyer, INEL Effect of Aging on Compon

1	Valve failed to please been portent Punction		Reported progs	Rel.progs	Report Recommendations	.		
1	Valve failed to close because of failed	Rare	10 CFR 50.73	Vendor specific	Netetetetete	Page No.	Item	
ł	motor. An incorrect upper bearing gasket		·		NOT STATED	1-4	8	l
Ľ	nickness resulted in a motor current 20%			testing		1		Ĺ
ł	above full rated load which is believed to							1
h	have contributed to premature aging.							
L								

Document: LER 89-015-327, Control Room Isolation Resulting From a Worn Set of Contacts in the 480V Motor Starter for a Main Control Room Ventilation Intake F Reviewed by: L. C. Meyer, INEL Effect of Aging on Component Fu

Contract of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Demont Demonstration			
Contacts not conducting properly and	Bare	10 CFR 50.73	1	Report Recommendations	Page No.	ltem	
current was arcing over introducing EMI	1			Not stated	1-3	9	
into the circuitry resulting in a spurious			surveillance for				
high radiation signal that initiated the			this component				
control room isolation.					1 1		
					1 1		
					1 1		

Document: LER 89-019-01-325, Failure of Service Water System to Meet Design Requirements Reviewed by: L. C. Meyer, INEL Effect of Aging on Component Fur

Inademusta ain for the second	n Contrib to Failure	Reported progs	Rel.progs	Report Becommondation		
Inadequate air flow through the motor winding over a period of time resulted in	Rare	10 CFR 50.73	IEEE 334-1974 Section 14.2	Report Recommendations Not stated	Page No.	Item 10
thermally aged insulation that resulted in a turn to turn failure.						
		· · · · · · · · · · · · · · · · · · ·				

Document: LER 89-020-01-528, Apparent Ground Causes Control Element Assembly Slip Reviewed by: L.C. Meyer, INEL

Effect of Aging on Compo

Manufacturing defect	0	Reported progs 10 CFR 50.73	Rel.progs Vendor specific program	Report Recommendations	Page No. 4 & 5	Item 11	I
							4

Document: LER 89-031-01-302, Failure of "A" 480V Engineered Safeguards Transformer Causes Temporary Interruption of Decay Heat Cooling and a Plant Opera Effect of Aging on Component Function Contrib to Fail

Transformer failed equain		Reported progs	Rel.progs	Report Recommendations	.		
Transformer failed causing a cooling pump to de-energize and loss of decay heat cooling. Power was also interrupted to vanous plant ventilation systems. Event compounded by personnel error.	Rare	10 CFR 50.73	100	Report Recommendations Not stated	Page No.	Item 12	
			L				

Document: LER 90-007-01-388, ESF Actuations Due to RPS EPA Breaker Spurious Trip Reviewed by: L. C. Meyer, INEL Effect of Aging on Component Fu

The test of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Deserves 1.1		
The logic card failure caused the trip	Occasional (12	10 CFR 50.73		Report Recommendations	Page No.	ltem
breaker to operate and initiated other esf	times/6 V)			Not stated	1-5	13
actuations. The card failure was attributed			IEEE 338-1987			
to aging and the aging process was found						
to be applicable when the epa logic card						
was both in service and in storage.						

Document: LER 90-018-244, Dropped Control Rod During Rod Control Exercise Causes Automatic Actuation of RPS Reviewed by: L.C. Meyer, INEL

Effect of Aging on Component Function Contrib to Failure Reported progs Rel.

Noisy incoming neuros to the		heported progs	Rel.progs	Report Recommendations		
Noisy incoming power to the control rod J-	Rare	10 CFR 50,73	IVerder if	internation internations	Page No.	item
10 (caused the rod to drop) was attributed		10 0111 30.73	Vendor specific	Not stated	1-8	14
to the degraded capacitor. Elevated			program		1.0	14
temperature at the power supply location						
was the cause of the decreased service					1 1	
life of the capacitor.					(1
] [
					1 1	

Document: LER 90-022-01-344, Degraded Fire Penetration Seals as a Result of Inadewuate Construction Technique Reviewed by: L. C. Meyer, INEL Effect of Aging on

Dense det Aging on Component Function	n Contrib to Failure	Reported progs	Rei.progs	Penert Deserves to t		
Degradation of foam is attributed to aging	Occasional	10 CFR 50,73		Report Recommendations	Page No.	Item
and wear as noted under other defects			program		1-6	15
			program		1 1	

Page 2R

Page 3A

Document: LER 90-023-325, Partial Group 6 Isolation Resulting From Failure of Relay I-CAC-3A Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
16	Containment	Isolation Logic	Coil	Not stated	General Electric	Not stated	Coil burned up
	Isolation Control						
ł			_				<u> </u>

Document: LER 90-023-424, Transformer Failure Results in Loss of Steam Generator Level and Manual Reactor Trip Reviewed by: L. C. Meyer, INEL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
17	Non 1-E Power	Transformer	Not stated	Not stated	Genera: Electric	Not stated	Internal fault in the
	System						"b" phase high side
					1		windings
		I					A commence of the second se

Document: LER 90-029-01-325, CBEAF SYSTEM Actuation Resulting From the Failure of the 1-D22A-K2 Relay Coil.

L. C. Meyer, INEL Reviewed by: **ARD effects** Structure/Comp Manufacturer ARD mechanism Subcomponent **Materials** Item System Cracks on epoxy Not stated General Electric Not stated 18 Control Building Arm Logic Relav coating, relay burned Emergency Air up (probably Filtration System shorted)

Document: LER 91-001-293, Automatic Closing of the Primary Containment System Group 5 Isolation Valves During Sruveillance Testing Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
19	Primary Isolation Control System	Electric Governor	Transistor	Not stated	Not stated	Not stated	Transistor failed
20	Primary Isolation Control System	Electric Governor	Cable Insulation	Not stated	Woodward Governor Company	ELETEMP, MOIST, & EMBR	Embrittlement due to past exposure to heat and humidity

Document: LER 91-002-01-327, EGTS Inoperable Because of a Train EGTS Being Out of Service for Filter Testing and B Train Diesel Generator Being Declared I Reviewed by: L.C. Meyer, INEL

item	System	Structure/Comp	Subcomponent	Materiais	Manufacturer	ARD mechanism	ARD effects
21	Emergency Gas	Diesel Generator	Fuse	Not stated	Not stated	THERM-CY	Fuse failed
	Treatment System (EGTS)						

Document: LER 91-006-530, ESF Actuation Due to Loss of Power to 4.16 KV Bus Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
22	1È Power	Circuit Breaker	Trip Circuit	Not stated	Not stated	MOIST	Moisture induced short circuit in trip circuit

Document: LER 91-007-456, Rod Control System Failure Causes Shutdown Bank Control Rods to be in a Condition Prohibited by Technical Specifications Reviewed by: L.C. Meyer, INEL

Ite	m	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
Г	23	Rod Control System	Circuit Card	Transistor	Not stated	Not stated	Not stated	Transistor failed
		•						
1								
					1			

Document: LER 90-023-325, Partial Group 6 Isolation Resulting From Failure of Relay I-CAC-3A Reviewed by: L. C. Meyer, INEL Effect of Aging on Component Eulertion Combile to Failure Device and the Section Participation Combileton C

Roby failure assults d.	on Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Relay failure resulted in partial loss of cac logic and subsequent partial group 6 isolation. This normally energized coil burned up as a result of normal end of life failure due to aging.	Mo)	10 CFR 50.73	RG 1.118, IEEE 338- 1987, Tech Spec. surv.	Not stated	1-3	16

Document: LER 90-023-424, Transformer Failure Results in Loss of Steam Generator Level and Manual Reactor Trip Reviewed by: L. C. Meyer, INEL

Transforment Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	18	
Transformer failed resulted in loss of power to speed control circuitry of the 1B main feedwater pump. Possible premature aging of transformer.	Rare	10 CFR 50.73	No specific surveillance for this component	Not stated	1-4	17	
					1 1		

Document: LER 90-029-01-325, CBEAF SYSTEM Actuation Resulting From the Failure of the 1-D22A-K2 Relay Coil. Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function Contrib to Failure Reported progs **Rel.progs Report Recommendations** CBEAF system actuation resulted from Page No. Item Occasional 10 CFR 50.73 No specific Not stated the failed relay. This normally energized 1-3 18 surveillance for relay failed due to cracks in the epoxy this component coating on the coil. This was called a normal end of life failure due to aging.

Document: LER 91-001-293, Automatic Closing of the Primary Containment System Group 5 Isolation Valves During Sruveillance Testing Reviewed by: L. C. Meyer, INEL Effect of Aging on Component European Control to Tellure Development and the Statement System Group 5 Isolation Valves During Sruveillance Testing

			Report Recommendations	Page No.	litem
Circuit failed to control governor leading to automatic closure of isolation valves. Cable embrittlement due to thermal aging was listed as the cause. handling of cable during maintenance and surveillance activities may have contributed to the cable failure.	10 CFR 50.73	No specific surveillance for this component No specific surveillance for this component	Not stated	1-4	20

Document: LER 91-002-01-327, EGTS Inoperable Because of a Train EGTS Being Out of Service for Filter Testing and B Train Diesel Generator Being Declared I

	Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Dens No.	••	
	Failed fuse resulted in train B EGTS	Rare	10 CFR 50.73	1		Page No.	Item	
	being declared inoperable. Frequent				Not stated	1-5	21	
- [cycling on and off of the air start system			required			1 1	
	due to an air leak is believed to be have			surveillance				
- 1	degraded the fuse resulting in fuse failure.						1	
L								

Document: LER 91-006-530, ESF Actuation Due to Loss of Power to 4.16 KV Bus Reviewed by: L.C. Meyer, INEL Effect of Aging on Component Experience Contribute Failure, Dependent events

Breaker opened when it was supposed to be closed. A degraded seal around an air conditioning duct penetration allowed moisture from a rain storm to enter the bant multiplexer cabinet council to come the council to come the council to come the council to come the council to c	Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	-	
short circuit.	be closed. A degraded seal around an air conditioning duct penetration allowed moisture from a rain storm to enter the plant multiplexer cabinets causing the	Rare		RG 1.118, IEEE 338- 1987, IEEE		1.1.1	 •

Document: LER 91-007-456, Rod Control System Failure Causes Shutdown Bank Control Rods to be in a Condition Prohibited by Technical Specifications Reviewed by: L. C. Meyer, INEL Effect of Aging on Component Function Control to Evilence D

Ellect of Aging on Component Function Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	B		
Transistor failure caused the circuit to fail Rare resulting in no motion control for the group 1 control rods. Aging degradation was given as the cause of the transistor failure.	10 CFR 50.73		Not stated	Page No.	ltem 23	

Page 3B

Page 4A

Document: LER 91-008-260, Unplanned Engineered Safety Features Actuation Due to a Failed PCIS Relay Reviewed by: L.C. Meyer, INEL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
24	Primary Containment	Logic Relay	Coil	Not stated	General Electric	Not stated	Burned coil
	isolation System						

Document: LER 91-010-01-155, Reactor Protection System Pressure Switches Experiencing Setpoint Drift, Revision 1 Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
25	Reactor Protection	Switches		Not stated	Foxboro	CORR	Corrosion caused
	System						switch setpoint drift

Document: LER 91-014-01-498, Erratic Containment Extended Range Pressure Channel Output

Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
26	Containment	Pressure	Thermisitor	Not stated	Barton	Not stated	Erratic behavior of
	Extended Range	Transmitter					instrument
	Pressure Channel					i	

Document: LER 91-016-260, Unplanned Engineered Safety Features Actuation Due to a Blown Fuse Caused by a Failed Relay Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
27	ESFAS	Relay	Coil	Not stated	General Electric	ELETEMP	Relay coil failed
!							
ليسبيها		L	1	1	1		1

Document: LER 91-016-424, Failure to Complete Technical Specification Required Action for Battery Cell Low Voltage Reviewed by: L. C. Meyer, INEL

Item System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
28 Various	Battery	NA	Not stated	C & D Batteries	Not stated	Low cell voltage while single cell charging

Document: LER 91-020-237, Reactor Building Ventilation Isolation and Automatic Standby Gas Treatment Initiation Due to Radiation Monitor Power Supply Failure Reviewed by: L. C. Meyer, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
29	Reactor Building	Power Supply	Wire	Not stated	General Electric	WEAR	Insulation worn and
	Ventilation System						spark caused power
							supply failure

Document: LER 91-021-254, RCIC Declared Inoperable Due to High Pump Flow in ISI Required Action Range Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
30	RCIC System	Tachometer	NA	Not stated	Not stated	Not stated	Instrument drift

Document: LER 91-028-254, Loss of Power to 1A RPS Bus Caused by EPA 1A-1 Tripping on Undervoltage Due to Low M-G Set Output Reviewed by: L.C. Meyer, INEL

Ite	m	System	Structure/Comp	Subcomponent	Materiais	Manufacturer	ARD mechanism	ARD effects
Γ	31	M-G Set	Voltage Regulator	Voltage Rheostat	Insulation	General Electric	Not stated	Low voltage from m- g set
				-	•			

Page 4B

Document: LER 91-008-260, Unplanned Engineered Safety Features Actuation Due to a Failed PCIS Relay Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function Contrib to Failure Reported pro

	neponed progs	Rel.progs	Report Recommendations	D		
energized relay to fail resulting in loss of logic power and an unplanned actuation of the esfas. This was called a thermally aged relay coil failure.	10 CFR 50.73		Not stated	Page No.	ltern 24	

Document: LER 91-010-01-155, Reactor Protection System Pressure Switches Experiencing Setpoint Drift, Revision 1 Effect of Aging on Component Function Contrib to Fail

calibration.	operation. Found during refueling outage	Bare	Reported progs 10 CFR 50.73	Tech Spec. required	Report Recommendations Not stated	Page No. 1-2	Item 25	
--------------	--	------	--------------------------------	------------------------	--------------------------------------	------------------------	-------------------	--

Document: LER 91-014-01-498, Erratic Containment Extended Range Pressure Channel Output Reviewed by: L.C. Meyer, INEL

Effect of Aging on Component Function Contrib to Fail

A cracked thermistor was found on the	Date	Reported progs	Rel.progs	Report Recommendations	Dees No.	••	
control card, however the erratic behavior	nare	10 CFR 50.73		Not stated	Page No.	1 tem 26	r
of the pressure transmitter cannot be	ļ		surveillance		1	20	1
positively attributed to this thermistor.			RG 1.118,				1
			IEEE 338				

Document: LER 91-016-260, Unplanned Engineered Safety Features Actuation Due to a Blown Fuse Caused by a Failed Relay

Effect of Aging on Component Function Contrib to Failure Reported progs

Unplanned ESFAS actuation due to failed Rare	ib to Failure Reported progs	Rel.progs	Report Recommendations	D	
relay. The failed relay coil was 15 years old and the service life for a normally- energized coil relay of this type is 15 to 20 years. This was an end of life failure.	10 CFR 50.73	Tech Spec. surveillance, not specific	Not stated	Page No.	ltem 27
				1 1	

Document: LER 91-016-424, Failure to Complete Technical Specification Required Action for Battery Cell Low Voltage

Effect of Aging on Component Function Contrib to Failure Reported progs

Battery failed to meet technical	D	rieponed progs	Rel.progs	Report Recommendations	D	••
specification while charging. This was	Rare	10 CFR 50.73	Tech Spec.	Not stated	Page No.	
considered to be related to battery aging			surveillance,		1-4	28
phenomena.			RG 1.118,		1 1	
			IEEE 450		1 1	

Document: LER 91-020-237, Reactor Building Ventilation Isolation and Automatic Standby Gas Treatment Initiation Due to Radiation Monitor Power Supply Failure

The ventilation system and gas treatment Occasional system actuation resulted from the power	Reported progs 10 CFR 50.73		Report Recommendations	Page No.	Item	_
supply failure.		surveillance for this component		1-4	29	ĺ

Document: LER 91-021-254, RCIC Declared Inoperable Due to High Pump Flow in ISI Required Action Range

Effect of Aging on Component Function Contrib to Failure Reported progs Failure due to instrument drift caused by Rel.progs Report Recommendations Rare 10 CFR 50.73 Page No. Item No specific aging Not stated 1-4 30 surveillance for this component

Document: LER 91	1-028-254	Loss of Power to 14 RPS Bus Coursed by ED	A
Reviewed by: L	C Mever	INEL	A 1A-1 Tripping on Undervoltage Due to Low M-G Set Output
Effect of Aging an			

Cause of din is using on Component Function Contrib to Failure Reported progs

Cause of dip is unknown, but normal wear of the voltage adjustment rheostat was supected. It was believed to have developed a flat spot or corrosion at the point of the previous adjustment due to normal wear at that point point due to	Occasional	Reported progs 10 CFR 50.73	Rel.progs Vendor specific program	Report Recommendations Not stated	Page No. 1-6	item 31
point of the previous adjustment due to normal wear at that point over a long period of time.						

Page 5A

.....

. . .

. .

Document: LER 91-028-325, Component Failure of a Reactor Water Cleanup System Isolation Logic Relay Resulted in an Unplanned Engineered Safety Feature A Reviewed by: L.C. Meyer, INEL

	Sustem	E. O. 1118	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects	
	 System RWCU		Relay	Coil	Insulation	General Electric	Not stated	Relay coil failed after insulation breakdown	
1					1				

Document: LER 91-030-423, Motor Control Center Auxiliary Control Relay Failure Due to Thermal Aging Reviewed by: L.C. Mever, INEL

System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD enects
 Motor Control Center		Coil	Insulation	ITE Gould	ELETEMP & EMBR	Relay coil insulaton embrittlement and failure
				1	l	

Document: LER 92-001-155, Brittle Motor Lead Wires Discovered in VOP-7050 (Main Steam Isolation Valve-MSIV)

		yer, INEL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
_	 System Main Steam	 Isolation Valve Motor			Limitorque	ELETEMP & EMBR	Brittle and cracked insulation
							L

Document: LER 92-001-263, Shutdown Required by Technical Specification Due to Inoperable Bellows Leak Detection System for Safety Relief Valves Reviewed by: L. C. Meyer, INEL .

		Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
_	m System 35 Bellows Leak Detection System	Valve	Seating Material	Cast urethane	Automatic Switch Company	ELETEMP	Urethane seat material degraded due to high temperature

Document: LER 92-001-296, Engineered Safety Feature Actuation Caused by a Failed Relay Coil Reviewed by: L.C. Mever. INEL

	yer, INEL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
Item System 36 Engineered Safety	Relay	Coil	Not stated	General Electric	ELETEMP	Degraded insulation causing coil failure
Feature Actuating System (ESFAS)						

Document: LER 92-001-339, Reactor Trip Caused by MFRV Closure Upon Failure of Driver Card

Mover INE

Reviewed by:	 Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
Item System 37 Feedwat	Main Feed Regulating Valve	Power Supply	Not stated	Not stated	Not stated	Power supply failed on driver card

Document: LER 92-002-247, Reactor Trip Due to Main Feedwater Regulating Valve Going Closed Reviewed by: L. C. Meyer, INEL

		Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	System Feedwater system	Feedwater	Solenoid Valve	Not stated	Not stated	Not stated	Solenoid valve failed
	,	Regulating Valve					
1							
	L	L					

Document: LER 92-004-389, Manual Reactor Trip Due to Low Steam Generator Water Level Caused by a Failed Circuit in the 2A Feedwater Regulating Control Sy Reviewed by: L.C. Meyer, INEL .

heriewed P	•	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
Item Syste		Power Supply	Capacitor	Not stated	Not stated	Not stated	Capacitor failed
	atiog Valve						
Contro	ol System						

Document: LER 91-028-325, Component Failure of a Reactor Water Cleanup System Isolation Logic Relay Resulted in an Unplanned Engineered Safety Feature A Reviewed by: L. C. Meyer, INEL

	ffect of Aging on Component Function Contrib to Failure		Rel.progs	Report Recommendations	Page No.	Item
ESFAS actuation resulted from the relay	Occasional	10 CFR 50.73	Tech Spec. not	Not stated	1-4	32
failure. Component failure determined to			specific for this			
be a normal end of life failure due to			component			
aging. This was a normally energized						
relay.						

Document: LER 91-030-423, Motor Control Center Auditary Control Relay Failure Due to Thermal Aging Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Elevated temperature from continuous	Occasional	10 CFR 50.73	Vendor specific	Not stated	1-5	33
operation of relays caused embrittlement			program			
and failure. Heat also discolored other			p g			
plastic parts near the coil.						
Assessment and a second s		L				

Document: LER 92-001-155, Brittle Motor Lead Wires Discovered in VOP-7050 (Main Steam Isolation Valve-MSIV) Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Loss of isolation capability, the degraded	Rare	10 CFR 50.73	Vendor specific	Not stated	1-4	34
wire insulation was found in the limit			progarm, GL			
switch housing as a result of planned			89-10.			
maintenance during a scheduled refueling		I	NUREG-1352			
outage.						

Document: LER 92-001-263, Shutdown Required by Technical Specification Due to Inoperable Bellows Leak Detection System for Safety Relief Valves Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio		Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Valve failed to seat due to degradation of	Rare	10 CFR 50.73	Vendor specific	Not stated	1-6	35
the seating material from exposure to			program			
temperatures near manufacturers rated						
temperature.						

Document: LER 92-001-296, Engineered Safety Feature Actuation Caused by a Failed Relay Coil Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio		Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
The coil failure iniated partial actuation of	OCCAIONAL	10 CFR 50.73	Vendor specific	Not stated	1-5	36
the ESFAS system.			program, Tech.			
			Spec. Surveil.			

Document: LER 92-001-339, Reactor Trip Caused by MFRV Closure Upon Failure of Driver Card Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Power supply failure caused the MFRV	Occasional	10 CFR 50.73	No specific	Not stated	1-3	37
valve to fail closed isolating normal			program			
feedwater and causing a reactor trip.						{

Document: LER 92-002-247, Reactor Trip Due to Main Feedwater Regulating Valve Going Closed Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Solenoid valve failued relieving air	Rare	10 CFR 50.73	No specific	Not stated	1-3	38
pressure to the diaphragm of the			program			
regulating valve which caused it to go to		Ì			1	
the closed position.						

Document: LER 92-004-389, Manual Reactor Trip Due to Low Steam Generator Water Level Caused by a Failed Circuit in the 2A Feedwater Regulating Control Sy Reviewed by: L. C. Meyer, INEL

	Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rei.progs	Report Recommendations	Page No.	Item
	Because of the capacitor failure the lead	Rare	10 CFR 50.73	Vendor specific	Not stated	1-3	39
	lag circuit output current was low and the			program			
	steam regulating valve closed. The reactor						
	was manually tripped.						1
1	/ 13			L			1

Page 5B

Page 6A

Document: LER 92-006-331, Emergency Safety Feature Actuation During Modification Acceptance Testing Due to Damaged Switchyard Cable Reviewed by: L.C. Meyer, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
40	1E Power	Cable	Insulation	Ethylene propylene rubber	Not stated	WEATH, CORR, & MOIST	Insulation degraded, galvanic corrosion
							rusted wire cores

Document: LER 92-006-354, Reactor Shutdown to Comply With Technical Specification 3.6.1.1, Due to Failure of Suppression Chamber to Drywell Vacuum Break Reviewed by: L.C. Meyer, INEL

item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
41	Various	Drywell Vacuum	Seal	Not stated	Not stated	Not stated	Seal degraded due
		Breakers					to aging
1							

Document: LER 92-007-01-33, Failure of Analog Transmitter Trip System (ATTS) Trip Relays Due to Thermal Aging Reviewed by: L. C. Meyer, INEL

lten	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
4	2 Analog Transmitter Trip System	Relay	Coil	Not stated	Amerace	ELETEMP	Relay coil wire insulation embrittlement
L		<u> </u>					

Document: LER 92-009-01-499, Missed Technical Specification Required Surveillance Due to a Faulty Toxic Gas Monitoring System Modem Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
43	Emergency Response Display System (ERFDADS)	Modern	NA	Not stated	Black Box Corporation	Not stated	Modern failed

Document: LER 92-011-325, Primary Containment Monitoring System Inoperability Due to Relay Failure Reviewed by: L. C. Meyer, INEL

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
44	Containment	Containment Control	Relay	Not stated	General Electric	Not stated	Relay failed (end of
	Atmospheric Control	– Logic					life)
	(CAC) System	-					

Document: LER 92-021-237, Automatic Isolation of Reactor Building Ventilation Due to Radiation Monitor Trip Relay Failure Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
4	5 Reactor Building	RBV Radiation	Relay	Not stated	General Electric	Not stated	Burned out coil
	Ventilation System	Monitor					

Document: LER 92-034-01-333, Engineered Safety Feature Actuations Due to Transformer Failure Reviewed by: L. C. Meyer, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
46	ESFAS	Transformer	NA	Not stated	General Electric	ELETEMP	Insulation
							degradation in
							transformer
L					L		

Document: LER 92-006-331, Emergency Safety Feature Actuation During Modification Acceptance Testing Due to Damaged Switchyard Cable Reviewed by: L C. Meyer, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
A tear or crack in the insulation exposed	Rare	10 CFR 50.73	No specific	Not stated	1-8	40
wires to ambient conditions and moisture			program		1	
intrusion with continuous dc potential on						1 1
wires may have contributed to galvanic						1 1
corrosion leading to an open circuit. The						
failed circuit caused sf actuation during						
test						

Document: LER 92-006-354, Reactor Shutdown to Comply With Technical Specification 3.6.1.1, Due to Failure of Suppression Chamber to Drywell Vacuum Break Reviewed by: L.C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
Leak in vacuum breakers was too large	Rare	10 CFR 50.73	No specific	Not stated	1-5	41
and violated the technical specifications			program			
resulting in reactor shut down. Two of the			1			
three leaking breakers also had seal and						
pallet alignment problems.			1			

Document: LER 92-007-01-33, Failure of Analog Transmitter Trip System (ATTS) Trip Relays Due to Thermal Aging Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Debris from the embrittled coil spool was Occasional inhibiting movement of the relay plunger resulting in sticking relay and excessive delay time. The relay had been in service 4 years which exceeded the recommended service life of 3 years	10 CFR 50.73	Tech Spec. required surveillance	Not stated	1-5	42

Document: LER 92-009-01-499, Missed Technical Specification Required Surveillance Due to a Faulty Toxic Gas Monitoring System Modern Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Garbled data sent to erfdads computer.	Rare	10 CFR 50.73	No specific	Not stated	1-5	43
Failure of modem attributed to aging.		1	program			
Operators were unable to meet technical			1 -			
specifications requiring the each chemical						
detection system be demonstrated						
operable every 12 hours.						

Document: LER 92-011-325, Primary Containment Monitoring System Inoperability Due to Relay Failure Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	item
Failure of this relay resulted in loss of	Occasional	10 CFR 50.73	Tech Spec.	Not stated	1-3	44
power to various containment isolation			required			
valves and inoperability of the cac system.			surveillance			

Document: LER 92-021-237, Automatic Isolation of Reactor Building Ventilation Due to Radiation Monitor Trip Relay Failure Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Failure of relay coil caused the RBV	Rare	10 CFR 50.73	No specific	Not stated	1-4	45
system to actuate.			program			

Document: LER 92-034-01-333, Engineered Safety Feature Actuations Due to Transformer Failure Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	item
Fault in middle phase b winding due to	Rare	10 CFR 50.73	RG 1.118,	Not stated	1-16	46
dielectric breakdown of insulation caused	1		IEEE 338-1987			
transformer failure resulting in ESFAS						
actuations. The dielectric breakdown due						
to aging resulted in multiple faults.						

Page 7A

Document: LER 92-038-255, Reactor Trip Caused by a Loss of the Preferred AC BUS Y-20 Coincident With a Blown Fuse in a Second Channel of the Reactor Pro Reviewed by: L.C. Meyer, INEL

	n System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects	
	7 Reactor Protection	Inverter	Transformer	Not stated	Sola	ELETEMP	Transformer coils	1
	System						failed	
								l
	•	ĺ						l
L		1				1	1	1

Document: LER 93-002-249, Control Valve Fast Closure Half-Scram Pressure Switches Out-of Calibration Due to Setpoint Drift Reviewed by: L. C. Meyer, INEL

-	_	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects	
	48	Reactor Protection System	Pressure Switch	NA	Not stated	Barksdale	VIB	Wear of face of the plunger	

Document: LER 93-003-530, Emergency Diesel Generator Unable to Start and Run in Manual Test Mode

ltem	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
49	Emergency Diesel Generator	Starting System	Relay	Not stated	Agastat	Not stated	Relay failed by fault of a suppression
ļ							varistor across coil

Document: LER 93-005-01-275, Medium Voltage Cable Failures Due to Chemical Degradation and Undkown Causes Reviewed by: L. C. Meyer, INEL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
50	Various	Cable	12KV Underground Cable	Ethylene- propylene=rubber (EPR) and neoprene jacket	Okonite	CHEM, CONTAM, & CORR	
51	Various	Cable	12KV Underground Cable	Ethylene- propylene=rubber (EPR) and neoprene jacket	Okonite	Not stated	Anomalies occurred over time

Document: LER 93-005-01-305, Annual Transmitter Calibration Finds a Shift in the Pressurizer High Pressure Reactor Trip Signal Initiation Due to Instrument Drift Reviewed by: L.C. Meyer, INEL

-	em System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	52 Reactor Protection	Pressure	NA	Not stated	Foxboro	Not stated	Transmitter drift
	System	Transmitter					
L							

Document: LER 93-007-249, Yarway Reactor Water Level Switch Failure Reviewed by: L. C. Meyer, INEL

53 High PRessure Level Switch NA Not state Coolant Injection	Manufacturer ARD mechanism ARD effects
System (HPCI)	Yarway MECHSTR Spring force degradation

Document: LER 93-008-237, Yarway Reactor Water Level Switch Failure Reviewed by: , L. C. Meyer, INEL

ite	n System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	54 High PRessure Coolant Injection System (HPCI)	Level Switch	NA	Not stated	Yarway	MECHSTR	Spring force degradation
	System (HPCI)				I		

Page 78

Document: LER 92-038-255, Reactor Trip Caused by a Loss of the Preferred AC BUS Y-20 Coincident With a Blown Fuse in a Second Channel of the Reactor Pro Reviewed by: L.C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	
The transformer failure resulted from	Rare	10 CFR 50.73	Tech. Spec.	Not stated	1-8	47
accelerated aging due to improper inernal			required			
wiring in the inverter. Only one primary			surveillance,			
winding was connected resulting in			RG 1.118			
operation at a higher temperature. the Y-						
20 bus power failure tripped the reactor.						

Document: LER 93-002-249, Control Valve Fast Closure Half-Scram Pressure Switches Out-of Calibration Due to Setpoint Drift Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	_
Vibration contributed to the drift of the set	Rare	10 CFR 50.73	Tech Spec.	Not stated	1-6	48
point because of wear on the plunger			required		1	
face.			surveillance			

Document: LER 93-003-530, Emergency Diesel Generator Unable to Start and Run in Manual Test Mode

Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Functio	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
	Rare	10 CFR 50.73	RG 1.108, IEEE 387-1984 Section 7.5, IEEE 749	Not stated	1-9	49

Document: LER 93-005-01-275, Medium Voltage Cable Failures Due to Chemical Degradation and Undkown Causes Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	_
A ground fault developed at the cable	Rare	10 CFR 50.73	No specific	Not stated	1-16	50
acket degradation location (insulation			program			
breakdown). Excess chlorides and a fatty						
acid, ethyl ester compound, were						
identified as the chemical that attacked						1
the cable jacket. Water carried chemical						
into conduit.						
Ground fault occurred on cable, water	Rare	10 CFR 50.73	No specific	Not stated	1-16	51
was in conduit (cable was designed for			program			
wet conditions) cable removed from						
conduit and no root cause identified from						1 1
inspections or tests conducted by utility						
and manufacturer.						

Document: LER 93-005-01-305, Annual Transmitter Calibration Finds a Shift in the Pressurizer High Pressure Reactor Trip Signal Initiation Due to Instrument Drif Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Item
The transmitter would not initiate a trip	Occasional	10 CFR 50.73		Not stated	1-5	52
signal at the required point. The method			IEEE 338-1987			
of calibration was most probable cause						
and aging was the next most likely cause.					<u></u>	

Document: LER 93-007-249, Yarway Reactor Water Level Switch Failure Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
Switch tripped outside of technical		10 CFR 50.73		Not stated	1-5	53
specification limits. Excessive set point			IEEE 338-1987			
drifts were also found.				L		

Document: LER 93-008-237, Yarway Reactor Water Level Switch Failure Reviewed by: L. C. Meyer, INEL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	item
Out of tolerance	Frequently	10 CFR 50.73	RG 1.118, IEEE 338-1987	Not stated	1-6	54
		•			l	

Page 8A

 Document:
 LER 93-009-498, Technical Specification 3.0.3 Entry Due to Potentially Undersized Fuses in the Solid State Protection System

 Reviewed by:
 L. C. Meyer, INEL

 Item System
 Structure/Comp
 Subcomponent
 Materials
 Manufacturer
 ARD mechanism
 A

System		Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
Solid State Protection System	Fuse	NA	Not stated	Not stated	Not stated	Fuse failed

Document: LER 93-009-498, Technical Specification 3.0.3 Entry Due to Potentially Undersized Fuses in the Solid State Protection System Reviewed by: L.C. Meyer, INEL Effect of Aging on Component Function Contrib to Failure, Reported program, Palances, Depart Departs Departs of the

	Encor of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	Ham
	An independent laboratory determined	Rare	10 CFR 50,73		Not stated		_
	that the fuse did not open as the result of		10 0111 00.73		NOT STATED	1-5	55
	a high current fault. It was not possible to		1	program]	1	
	determine whether the was not possible to		ļ		1		
	determine whether the fuse had a defect.						
	LER states that the event was caused by						
1	the random age related failure of a ssps						
	fuse.					1 1	
1							

Table A.2 Gall Report for NRC Bulletins

Page 1A

Document: BL 90-01, Loss of Fill-Oil in Transmitters Manufactured by Rosemount Reviewed by: E. W. Roberts, INEL

Item	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1		Pressure	O-Ring	Metal	Rosemount	Not stated	Loss of transmitter
		Transmitters Model					oil
		1153 & 1154					

Table A.2 Gall Report for NRC Bulletins

Page 1B

Document: BL 90-01, Loss of Fill-Oil in Transmitters Manufactured by Rosemount Reviewed by: E. W. Roberts, INEL Effect of Aging on Component Function Contribute Solitons, Department for

Effect of Aging on Component Function		Reported progs	Rel.progs	Report Recommendations	Page No.	ltem
	Frequent	Not discussed in	Bul 90-01	Identify transmitters and take	<u> </u>	1
to respond over full range, sustained		report		appropriate corrective action [4]		1 1
zero/span drift, or total failure			1.118, IEEE		1 1	
			338-1987			

Distribution for NUREG/CR-6490

Internal:

D. R. Diercks (25) H. Drucker K. E. Kasza (10) C. A. Malefyt L. A. Neimark R. B. Poeppel

W. J. Shack C. E. Till R. A. Valentin M. W. Wambsganss R. W. Weeks TIS File

External:

Libraries ANL-E

ANL-W

Manager, Chicago Field Office, DOE

Energy Technology Division Review Committee:

H. K. Birnbaum, University of Illinois, Urbana

R. C. Buchanan, University of Cincinnati, Cincinnati, OH

S.-N. Liu, Fremont, CA

H. S. Rosenbaum, Fremont, CA

R. K. Shah, University of Kentucky, Lexington

S. Smialowska, Ohio State University, Columbus

R. E. Smith, Altran Corp., Huntersville, NC

INEL Technical Library

J. L. Edson (10), INEL

Federal Recycling Program

NIRC FORM 336 U.S. 1 (2-89) NRCM 1102, 3201, 3202 BIBLIOGRAPHIC DATA SHE (See instructions on the reverse) 2. TITLE AND SUBTITLE	NUCLEAR RÉGULATORY COMMISSION ET	1. REPORT NUMBER (Assigned by NRC, Ac and Addendum Numb NUREG/ ANL-5 Vol	ers, if any.) CR-6490 96/13
Nuclear Power Plant Generic Aging Lessons Learned (GALL)		VO	. 1
Main Report and Appendix A		3. DATE REPOR	T PUBLISHED
		MONTH	YEAR
		December	1996
		4. FIN OR GRANT NU	
5. AUTHOR(S)		J2076 an	a L1606
		6. TYPE OF REPORT	
K.E.Kasza,* D.R. Diercks,* J.W. Holland,* S.U. Choi,* J.L. Binde	r,*W.J. Shack,*O.K. Chopra,*	Techr	nical
D.C. Ma,* A. Erdemir,* J.L. Edson,** L.C.Meyer,** and E.W. Ro	bberts	7 PERIOD COVERED	(Inclusive Dates)
8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, (provide name and mailing address.)	Office or Region, U.S. Nucleer Regulatory Com	nission, and mailing address	, if contractor
*Argonne National Laboratory	Midaho National Engineerin	a Laboratory	
9700 South Cass Avenue	Idaho National Engineerin Lockheed Idaho Technolo		
Argonne, IL 60439	Post office Box 1625	gies Company	
	Idaho Falls, ID 83415		
9. SPONSORING ORGANIZATION - NAME AND ADDRESS (IT NRC, lype "Same as abo			
and mailing address.)			
License Renewal Project Directorate			
Office of Nuclear Reactor Regulation			
U.S. Nuclear Regulatory Commission			
Washington, DC 20555-0001			
10. SUPPLEMENTARY NOTES			
11. ABSTRACT (200 words or less)			-
Argonne National Laboratory and Idaho National Engineering Lab the U.S. Nuclear Regulatory Commission (NRC) performed a com aging effects. This generic aging lessons learned (GALL) effor assess materials and component aging issues related to continued on mechanical, structural, thermal-hydraulic, and electrical cor Aging Research Reports, 31 NRC Generic Letters, 265 Informat Nuclear Management and Resources Council Industry Reports standardized GALL tabular format and standardized definitions computerized data base has also been developed for all review components, and relevant aging effects. A survey of the GALL t issues are currently being addressed by the regulatory process structures has been highlighted for continued scrutiny.	prehensive review of literature p t was a systematic review of pla d operation and license renewal of nponents and systems reviewed ation Notices, 82 Licensee Event . The results of these reviews w of aging related degradation main tables and can be used to search wables reveals that all significant	ertaining to nuclear int aging informatio of operating reactor consisted of 163 N reports, 5 Bulletins rere systematized u echanisms and effect of for information o component and str	r power plant n in order to s. Literature Juclear Plant s, and 10 using a tects. A on structures, ructure aging
2. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locate Aging of Nuclear Power Plant Components and Systems License Renewal Age-Related Degradation Mechanisms Component Aging Data Base Structure Aging Generic Aging Lessons Learned	ng the report.)	UI 14. SECURITY (This Page) UNi (This Report)	TY STATEMENT nlimited CLASSIFICATION Classified classified OF PAGES
		16. PRICE	

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300 SPECIAL STANDARD MAIL POSTAGE AND FEES PAID USNRC PERMIT NO. G-67

411

NUREG/CR-6490 ANL-96/13 Vol. 2

Nuclear Power Plant Generic Aging Lessons Learned (GALL)

Appendix B

Prepared by K. E. Kasza, D.R. Diercks, J. W. Holland, S. U. Choi, J. L. Binder, ANL W. J. Shack, O. K. Chopra, D. C. Ma, A. Erdemir, ANL J. L. Edson, L. C. Meyer, E. W. Roberts, INEL

Argonne National Laboratory

Idaho National Engineering Laboratory Lockheed Idaho Technologies Company

Prepared for U.S. Nuclear Regulatory Commission

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001
- 2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20402-9328
- 3. The National Technical Information Service, Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda: NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. *Federal Register* notices, Federal and State legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, Two White Flint North. 11545 Rockville Pike. Rockville. MD 20852-2738, for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018-3308.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NUREG/CR-6490 ANL-96/13 Vol. 2

Nuclear Power Plant Generic Aging Lessons Learned (GALL)

Appendix B

Manuscript Completed: October 1996 Date Published: December 1996

Prepared by K. E. Kasza, D. R. Diercks, J. W. Holland, S. U. Choi, J. L. Binder, ANL W. J. Shack, O. K. Chopra, D. C. Ma, A. Erdemir, ANL J. L. Edson, L. C. Meyer, E. W. Roberts, INEL

Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439

Idaho National Engineering Laboratory Lockheed Idaho Technologies Company Idaho Falls, ID 83415

Prepared for License Renewal Project Directorate Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555–0001 NRC Job Codes J2076 and L1606

Nuclear Power Plant Generic Aging Lessons Learned: - Mechanical, Structural, and Thermal-Hydraulic Components and Systems - Electrical Components and Systems

by

K. E. Kasza, D. R. Diercks, J. W. Holland, S. U. Choi, J. L. Binder,
W. J. Shack, O. K. Chopra, D. C. Ma, A. Erdemir,
J. L. Edson, L. C. Meyer, and E. W. Roberts

Abstract

The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters, 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volumes 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny.

Contents

Volume 1

E	Executive Summary	vii
А	Acknowledgments	viii
L	ist of Acronyms	ix
1	Introduction	1
2	Description of Review Process	2
3	Summary and Observations	5
	3.1 Mechanical, Structural, and Thermal-Hydraulic Components and Systems	5
	3.2 Electrical Components and Systems	8
R	references	50
Aj	ppendix A: GALL Literature Review Tables - NPAR Reports, NRC Generic Letters, Information Notices, Licensee Event Reports, and NRC Bulletins	51
Volum	ne 2	

Appendix B: Gall Literature Review Tables - NUMARC Industry Reports

Appendix B: GALL Literature Review Tables - NUMARC Industry Reports

NUREG/CR-6490

B.1 Mechanical, Structural, and Thermal-Hydraulic Components and Systems

4

•

NUREG/CR-6490

Document: IR 90	0-01, PWR Reactor Containment Structures Industry Report	
Reviewed by:	David C. Ma, ANL	

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	Reinforced or Prestress Concrete Containments	All	Not stated	Concrete	Not stated	All	Not stated
_	Reinforced or Prestress Concrete	Concrete Dorne & Concrete	Not stated	Concrete	Not stated	FRZ-THAW	Scaling, cracking spalling
	Containments	Containment Wall Above Grade					
	Reinforced or Prestress Concrete Containments	Concrete Dome & Concrete Containment Wall Above Grade	Not stated	Concrete	Not stated	LEACH	Increase of poros & permeability
	Reinforced or Prestress Concrete Containments	Concrete Dome &Concrete Containment Wall Above Grade	Not stated	Concrete	Not stated	AGR-CHEM	Increase of poros & permeability, cracking, & spall
	Reinforced or Prestress Concrete Containments	Concrete Dome &Concrete Containment Wall Above Grade	Not stated	Concrete	Not stated	AGREAC Unresolved	Expansion & cracking
6	Reinforced or Prestress Concrete Containments	Concrete Dome &Concrete Containment Wall Above Grade	Not stated	Concrete	Not stated	ELE-TEMP	Loss of strength modulus
7	Reinforced or Prestress Concrete Containments	Concrete Dome &Concrete Containment Wall Above Grade	Not stated	Concrete	Not stated	ÉMBR/IR	Loss of strength modulus
8	Reinforced or Prestress Concrete Containments	Concrete Dome & Concrete Containment Wall Above Grade	Not stated	Concrete	Not stated	CORR/RE	Cracking, spallir loss of bond, & I of material
9	Reinforced or Prestress Concrete Containments	Concrete Dome & Concrete Containment Wall Above Grade	Not stated	Concrete	Not stated	FAT	Cumulative fatig damage
10	Reinforced or Prestress Concrete Containments	Concrete Dome & Concrete Containment Wall Above Grade	Not stated	Concrete	Not stated	CONCAL	Reduction of concrete streng
11	Reinforced or Prestress Concrete Containments	Concrete Containment Wall Below Grade	Not stated	Concrete	Not stated	FRZ-THAW	Scaling, crackir spalling
12	Reinforced or Prestress Concrete Containments	Concrete Containment Wall Below Grade	Not stated	Concrete	Not stated	LEACH	Increase of por & permeability

۰.

Document: IR 9	0-01, PWR Reactor Containment Structures Industry Report
Reviewed by:	David C. Ma, ANL
Effect of Aging	OD Component Eurotion Contrib to Follows

Effect of Aging on Component Loss of pressure boundary.	Not stated	If resolution based	Rel.progs Report Recommendations	Page No.	ITE
,	THUI SIGUEU		NRC recommendation: A one time		1.
		upon evaluation of	focused inspection of containment is		
		plant-specific	proposed to provide assurance for	1	
		features, then	continued satisfactory performance		
		baseline inspection	and to identify existing degradation		1
		not needed.	mechanisms and to take necessary		ł
			corrective actions.		
Loss of pressure boundary.	Not stated	Non-significant if		4-3 to 4-7	
		located in region of	freeze thaw damage of the dome of	+-3 10 4-7	
		weathering	concrete containments should be		
		index<100 day-in/yr	addressed.		
	1	or concrete meets		1	
		CC-2231.7.1			
Loss of pressure boundary.	Not stated				
,	101 32400	Not stated		4-8 to 4-	
				11	
			constructed using ACI 201.2R-77 to		
			ensure dense, weil-cured concrete		
Loss of pressure boundary.			with low permeability.		
Loss of pressure boundary.	Not stated	Not stated	Non-significant for components not 4	1-12 to 4-	
			· · ·	4	
			(pH <5.5, chloride >500 ppm, &	·	
			sulfate >1500 ppm); or exposed to		
		1 1	aggressive groundwater for		
Loss of pressure boundary.	Not stated	Non-significant for	intermittent periods only.		_
		· · · · ·		-14 to 4-	
		aggregate taken	can not be ruled out. Tests alone are 17	7	
		from regions other	not satisfactory in predicting		
		than those known to	performance. AGREAC may occur		
		(More)	>25 years. Use of pozzolans & low		
			alkali content cement may not control		
			reactions for concretes.(See IR90-		
			06 & 90-10)		
oss of pressure boundary.	Not stated	Not stated			
				-20 to 4-	
			maintained at <66_C (150_F) & local 25	5, 4-34	
			area temperatures <93_C (200_F),		
			or plant-specific justification is		
			provided in accordance with ACI		
oss of pressure boundary.			349-85.		
oss of pressure boundary.	Not stated	Not stated	Non-significant because the total 4-2	25 to 4-	
			neutron fluence & integrated gamma 31	4-35	
			doses are low compared to the levels 4-3	36	
		l l	causing degradation, i.e., 10/19		
			n/cm^2 & 10^10 rads, respectively.		
oss of pressure boundary.	Not stated	Not stated		17 to 4-	
					4
				9, 4-31	
		1		4-33	
			concrete has low water-to-cement		
			ratio (0.35-0.45) & adequate air		
oss of pressure boundary.	Not stated	Not stated	entrainment (3-6%).		
preserve bouridaty,	NUC SLALEO	Not stated	Non-significant because designed to 4-5	52 to 4-	ç
	, i		have good fatigue strength in 54	, I	
			accordance with ASME Sect. III,		
			Div. 2 & ACI 215R-74		
oss of pressure boundary.	Not stated	Not stated		54, 4-55	10
	}	J I	concrete strength was noted during	 - 1	
			initial structural testing, or if		
			aluminum piping were not used for		
	1		concrete placement		
oss of pressure boundary.	Not stated	Not stated			
				3 to 4-7	11
			located in a geographic region of	Ì	
	[weathering index <100 day-in./yr or		
	1		concrete mix design meets air		
			content & water-to-cement ratio		
		1 1	requirements of ASME Sect. III, Div.		
		/	2. CC-2231.7.1		
oss of pressure boundary.	Not stated	Not stated			
•			exposed to ferring under a	3 to 4-	12
			exposed to flowing water or 11		
		1 1	constructed using ACI 201.2R-77 to		
		1	ensure dense, well-cured concrete		

Page	2A

Document: IR 90-01, PWR Reactor Containment Structures Industry Report Reviewed by: David C. Ma, ANL

_

	wed by: David C System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
13	Reinforced or Prestress Concrete Containments	Concrete Containment Wall Below Grade	Not stated	Concrete	Not stated	AGR-CHEM	Increase of porosity & permeability, cracking, & spalling
14	Reinforced or Prestress Concrete Containments	Concrete Containment Wall Below Grade	Not stated	Concrete	Not stated	AGREAC Unresolved	Expansion & cracking
15	Reinforced or Prestress Concrete Containments	Concrete Containment Wall Below Grade	Not stated	Concrete	Not stated	ELE-TEMP	Loss of strength & modulus
16	Reinforced or Prestress Concrete Containments	Concrete Containment Wall Below Grade	Not stated	Concrete	Not stated	EMBR/IR	Loss of strength & modulus
17	Reinforced or Prestress Concrete Containments	Concrete Containment Wall Below Grade	Not stated	Concrete	Not stated	CORR/RE	Cracking, spalling, loss of bond, & los of material
18	Reinforced or Prestress Concrete Containments	Concrete Containment Wall Below Grade	Not stated	Concrete	Not stated	FAT	Cumulative fatigue damage
19	Reinforced or Prestress Concrete Containments	Concrete Containment Wall Below Grade	Not stated	Concrete	Not stated	CONCAL	Reduction of concrete strength
20	Reinforced or Prestress Concrete Containments	Concrete Basemat	Not stated	Concrete	Not stated	FRZ-THAW	Scaling, cracking, spalling
21	Reinforced or Prestress Concrete Containments	Concrete Basemat	Not stated	Concrete	Not stated	LEACH	Increase of porosity & permeability
22	Reinforced or Prestress Concrete Containments	Concrete Basemat	Not stated	Concrete	Not stated .	AGR-CHEM	Increase of porosit & permeability, cracking, & spalling
23	Reinforced or Prestress Concrete Containments	Concrete Basemat	Not stated	Concrete	Not stated	AGREAC Unresolved	Expansion & cracking
				,			

.

Document: IR 90-01, PWR Reactor Containment Structures Industry Report Reviewed by: David C. Ma, ANL

Effect of Aging on Component F Loss of pressure boundary.	Not stated		Rel.progs Report Recommendations	Page No.	
Less of pressure boundary.	NOT STATED	Accessible concrete	Management for the effects of	5-4 to 5-6	1
		surfaces are	aggressive chemical of concrete		
		periodically	surfaces that are not periodically		
		examined in	examined due to inaccessibility		
		accordance with	requires plant-specific program.		
		Type A integrated			
		(More)			
loss of pressure boundary.	Not stated	Non-significant for	NRC recommendation: AGREAC	4-14 to 4-	1
		aggregate taken	can not be ruled out. Tests alone are	17	
		from regions other	not satisfactory in predicting		
		than those known to	performance. AGREAC may occur		
		(More)	>25 years. Use of pozzolans & low		
			alkali content cement may not control	3	
				1	1
			reactions for concretes.(See IR90- 06 & 90-10)		[
oss of pressure boundary.	Not stated	Not stated			
toos of prossure boundary.	NOT STATED	Not stated	Non-significant for concrete	4-20 to 4-	1
			maintained at <66_C (150_F) & loca	25, 4-34	
			area temperatures <93_C (200_F),		[
			or plant-specific justification is		
			provided in accordance with ACI		
			349-85		
oss of pressure boundary.	Not stated	Not stated	Non-significant because the total	4-25 to 4-	1
-			neutron fluence & integrated gamma	4	l "
					l l
			doses are low compared to the levels	4-30	
	í		causing degradation, i.e., 1019		
oss of pressure boundary.	high shade of		n/cm2 & 1010 rads, respectively.		
oss of pressure boundary.	Not stated	Accessible surfaces	NRC recommendation: Potential	5-4 to 5-6	17
		examined with	degradation due to chlorine		
		ASME Sect. XI;	corrosion of the PWR containments	1 1	
	1	inaccessible	has to be addressed in the plant		
		surfaces require	specific baseline inspection. (See		
		further evaluation	IR90-06 & 90-10)		
oss of pressure boundary.	Not stated	Not stated	Non-significant because designed to	4-52 to 4-	
•					18
			have good fatigue strength in	54	
			accordance with ASME Sect. III,		
			Div. 2 & ACI 215R-74		
oss of pressure boundary.	Not stated	Not stated	Non-significant if no degradation of	4-54, 4-55	19
			concrete strength was noted during		
			initial structural testing, or if		
			aluminum piping were not used for		
			concrete placement.		
oss of pressure boundary.	Not stated	Not stated	Non-significant for component	4-3 to 4-7	20
				4-3 (0 4-7	20
			located in a geographic region of		
			weathering index <100 day-in./ yr or		
			concrete mix design meets air		
			content & water-to-cement ratio		
			requirements of ASME Sect. III, Div.	1	
			2, CC-2231.7.1.		
oss of pressure boundary.	Not stated	Not stated	Non-significant for components not	4-8 to 4-	21
			exposed to flowing water or	11	_
			constructed using ACI 201.2R-77 to		
			ensure dense, well-cured concrete		
			with low permeability.		
oss of pressure boundary.	Not stated	Accessible concrete			
ter et presedute bedridday.	Hot Stated		Management for the effects of	5-4 to 5-6	22
	1	surfaces are	aggressive chemical of concrete	1	
	1	periodically	surfaces that are not periodically		
		examined in	examined due to inaccessibility		
		accordance with	requires plant-specific program.		
		Type A integrated		1	
		(More)		•	
ss of pressure boundary.	Not stated	Non-significant for	NRC recommendation: AGREAC	4-14 to 4-	23
		aggregate taken	can not be ruled out. Tests alone are		20
	· ·	from regions other	not satisfactory in predicting	·'	
		than those known to	not sausiaciory in predicting	1	
			performance. AGREAC may occur		
		(More)	>25 years. Use of pozzolans & low		
			alkali content cement may not control	1	
			reactions for concretes (See IR90-		
		1 1	06 & 90-10)		
		1 1	00 8 30-10		

	ewed by: David C System	. Ma, ANL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
_	Reinforced or Prestress Concrete Containments	Concrete Basemat	Not stated	Concrete	Not stated	ÉLE-TEMP	Loss of strength & modulus
25	Reinforced or Prestress Concrete Containments	Concrete Basemat	Not stated	Concrete	Not stated	EMBR/IR	Loss of strength & modulus
26	Reinforced or Prestress Concrete Containments	Concrete Basemat	Not stated	Concrete	Not stated	CORR/RE	Cracking, spalling, loss of bond, & loss of material

	Containments						
26	Reinforced or Prestress Concrete Containments	Concrete Basemat	Not stated	Concrete	Not stated	CORR/RE	Cracking, spalling, loss of bond, & loss of material
27	Reinforced or Prestress Concrete Containments	Concrete Basemat	Not stated	Concrete	Not stated	FAT	Cumulative fatigue damage
28	Reinforced or Prestress Concrete Containments	Concrete Basemat	Not stated	Concrete	Not stated	SETTLE Unresolved	Cracking, in-crease in component stress level, distortion
29	Reinforced or Prestress Concrete Containments	Containment Liner Interior Surface & Containment Liner Above Grade Exterior Surface	Not stated	CS	Not stated	ELE-TEMP	Loss of strength & modulus
30	Reinforced or Prestress Concrete Containments	Containment Liner Interior Surface & Containment Liner Above Grade Exterior Surface	Not stated	CS	Not stated	EMBR/IR	Loss of fracture toughness
31	Reinforced or Prestress Concrete Containments	Containment Liner Interior Surface & Containment Liner Above Grade	Not stated	cs	Not stated	CORR	Loss of material
32	Reinforced or Prestress Concrete Containments	Exterior Surface Containment Liner Interior Surface & Containment Liner Above Grade Exterior Surface	Not stated	cs	Not stated	FAT	Cumulative fatigue damage
33	Reinforced or Prestress Concrete Containments	Containment Liner Below Grade Exterior Surface	Not stated	cs	Not stated	ELE-TEMP	Loss of strength & modulus
3	4 Reinforced or Prestress Concrete Containments	Containment Liner Below Grade Exterior Surface	Not stated	CS .	Not stated	EMBR/IR	Loss of fracture toughness
3	5 Reinforced or Prestress Concrete Containments	Containment Liner Below Grade Exterior Surface	Not stated	cs	Not stated	CORR	Loss of material
3	6 Reinforced or Prestress Concrete Containments	Containment Liner Below Grade Exterior Surface	Not stated	ĊS	Not stated	FAT	Cumulative fatigue damage

Document: IR 90-01, PWR Reactor Containment Structures Industry Report Reviewed by: David C. Ma, ANL Effect of Aging on Component Function Contrib to Failure. Reported progs

Effect of Aging on Component Fu Loss of pressure boundary.			Rel.progs	Report Recommendations	Page No.	
	Not stated	Not stated		Non-significant for concrete maintained at <66_C (150_F) & loca area temperatures <93_C (200_F), or plant-specific justification is provided in accordance with ACI 349-85.	4-20 to 4- 25, 4-34	2
Loss of pressure boundary.	Not stated	Not Stated		Non-significant because the total neutron fluence & integrated gamma doses are low compared to the levels causing degradation, i.e., 10^19 in/cm^2 & 10^10 rads, respectively.		2!
Loss of pressure boundary.	Not stated	Accessible surfaces examined with ASME Sect. XI; inaccessible surfaces require further evaluation		NRC recommendation: Potential degradation due to chlorine corrosion of the PWR containments has to be addressed in the plant specific baseline inspection.(See IR90-06 & 90-10)	5-4 to 5-6	26
Loss of pressure boundary.	Not stated	Not stated		Non-significant because designed to have good fatigue strength in accordance with ASME Sect. III, Div. 2 & ACI 215R-74	4-52 to 4- 54	27
Loss of pressure boundary.	Not stated	Plant settlement monitoring during construction & continued during (More)		NRC recommendation: Effect of settlement of the PWR containments need to be evaluated.(See IR90-06 & 90-10)		28
Loss of pressure boundary.	Not stated	Not stated		Non-significant because operating temperatures within PWR containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be significantly affected.	4-34, 4-47 to 4-49	29
Loss of pressure boundary.	Not stated	Not stated		Non-significant because the total radiation exposure is far below the 10^19 n/cm^2 level that could cause change in mechanical or physical properties.	4-49 to 4- 51	30
Loss of pressure boundary.	Not stated	Not stated		Galvanic corrosion & corrosion due	4-42 to 4- 47	31
Loss of pressure boundary.	Not stated	Not stated		Non-significant because designed to have good fatigue strength in accordance with ASME Sect. III, Div. 2 & ACI 215R-74	4-52 to 4- 54	32
Loss of pressure boundary.	Not stated	Not stated		Non-significant because operating temperatures within PWR containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be significantly affected.	4-34, 4-47 to 4-49	33
loss of pressure boundary.	Not stated	Not stated		Non-significant because the total radiation exposure is far below the 10^19 n/cm^2 level that could cause change in mechanical or physical properties.	4-49 to 4- 51	34
loss of pressure boundary.	Not stated	Periodic examination and monitoring of accessible areas in accordance with ASME Sect. XI, (More)			5-9 to 5- 12	35
oss of pressure boundary.	Not stated	Not stated			4-52 to 4- 54	36

Document:	IR 90-01,	PWR Read	tor Containmen	t Structures industry Report
Reviewed b	v: Dav	rid C. Ma. A	NL	

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
37	Reinforced or Prestress Concrete Containments	Basemat Liner Interior Surface	Not stated	CS	Not stated	ELE-TEMP	Loss of strength 8 modulus
38	Reinforced or Prestress Concrete Containments	Basemat Liner Interior Surface	Not stated	CS	Not stated	EMBR/IR	Loss of fracture toughness
39	Reinforced or Prestress Concrete Containments	Basemat Liner Interior Surface	Not stated	CS	Not stated	CORR	Loss of material
40	Reinforced or Prestress Concrete Containments	Basemat Liner Interior Surface	Not stated	CS	Not stated	FAT	Cumulative fatigue damage
41	Reinforced or Prestress Concrete Containments	stress Concrete Exterior Surface	CS	Not stated	ELE-TEMP	Loss of strength 8 modulus	
42	Reinforced or Prestress Concrete Containments	Basemat Liner Exterior Surface	Not stated	CS	Not stated	EMBR/IR	Loss of fracture toughness
43	Reinforced or Prestress Concrete Containments	Basemat Liner Exterior Surface	Not stated	CS	Not stated	CORR	Loss of material
44	Reinforced or Prestress Concrete Containments	Basemat Liner Exterior Surtace	Not stated	cs	Not stated	FAT	Cumulative fatigu damage
44 Re Pro Co 45 Re Pro	Reinforced or Prestress Concrete Containments	Liner Anchors Above Grade	Not stated	cs	Not stated	ELE-TEMP	Loss of strength of modulus
46	Reinforced or Prestress Concrete Containments	Liner Anchors Above Grade	Not stated	cs	Not stated	EMBR/IR	Loss of fracture toughness
47	Reinforced or Prestress Concrete Containments	Liner Anchors Above Grade	Not stated	CS	Not stated	CORR	Loss of material
48	Reinforced or Prestress Concrete Containments	Liner Anchors Above Grade	Not stated	CS	Not stated	FAT	Cumulative fatigu damage

Effect of Aging on Component Function Contrib to Failure Reported progs **Rel.progs Report Recommendations** Page No. Item Loss of pressure boundary. Not stated Not stated 4.34 4.4 Non-significant because operating 37 temperatures within PWR to 4-49 containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be significantly affected. Loss of pressure boundary. Not stated Not stated Non-significant because the total 4-49 to 4-38 radiation exposure is far below the 51 10^19 n/cm^2 level that could cause change in mechanical or physical properties. Loss of pressure boundary. Not stated Not stated Galvanic corrosion & corrosion due 4-42 to 4-39 to aggressive aqueous solutions will 47 not occur if dissimilar metals are not used & if aggressive ground water (chlorides >500 ppm) is not present Loss of pressure boundary. Not stated Not stated Non-significant because designed to 4-52 to 4-40 have good fatigue strength in 54 accordance with ASME Sect. III. Div. 2 & ACI 215R-74 Loss of pressure boundary. Not stated Not stated Non-significant because operating 41 4-34 4-47 temperatures within PWR to 4-49 containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be significantly affected. Loss of pressure boundary. Not stated Not stated Non-significant because the total 4-49 to 4-42 radiation exposure is far below the 51 10^19 n/cm^2 level that could cause change in mechanical or physical properties. Loss of pressure boundary. Not stated Periodic examination 5-9 to 5-43 For inaccessible areas, plantand monitoring of specific program is required. 12 accessible areas in accordance with ASME Sect. XI. (More) Loss of pressure boundary. Not stated Not stated Non-significant because designed to 4-52 to 4-44 have good fatigue strength in 54 accordance with ASME Sect. III, Div. 2 & ACI 215R-74 Loss of pressure boundary. Not stated Not stated Non-significant because operating 4-34, 4-47 45 temperatures within PWR to 4-49 containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be significantly affected. Loss of pressure boundary. Not stated Not stated Non-significant because the total 4-49 to 4-46 radiation exposure is far below the 51 10^19 n/cm^2 level that could cause change in mechanical or physical properties. Loss of pressure boundary Not stated Not stated Galvanic corrosion & corrosion due 4-42 to 4-47 to aggressive aqueous solutions will 47 not occur if dissimilar metals are not used & if aggressive ground water (chlorides >500 ppm) is not present. Loss of pressure boundary. Not stated Not stated Non-significant because designed to 4-52 to 4-48 have good fatigue strength in 54 accordance with ASME Sect. III, Div. 2 & ACI 215R-74

	Page

5A

m	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
49	Reinforced or Prestress Concrete Containments	Liner Anchors Below Grade	Not stated	CS	Not stated	ELE-TEMP	Loss of strength & modulus
50	Reinforced or Prestress Concrete Containments	Liner Anchors Below Grade	Not stated	cs	Not stated	EMBR/IR	Loss of fracture toughness
51	Reinforced or Prestress Concrete Containments	Liner Anchors Below Grade	Not stated	cs	Not stated	CORR	Loss of material
52	Reinforced or Prestress Concrete Containments	Liner Anchors Below Grade	Not stated	CS	Not stated	FAT	Cumulative fatigue damage
53	Reinforced or Prestress Concrete Containments	Dome Reinforcing Steel & Containment Wall Reinforcing Steel Above Grade	Not stated	cs	Not stated	ÉLE-TEMP	Loss of strength & modulus
54	Reinforced or Prestress Concrete Containments	Dome Reinforcing Steel & Containment Wall Reinforcing Steel Above Grade	Not stated	CS	Not stated	EMBR/IR	Loss of fracture toughness
55	Reinforced or Prestress Concrete Containments	Dome Reinforcing Steel & Containment Wall Reinforcing Steel Above Grade	Not stated	ĊS	Not stated	CORR/RE	Loss of strength, loss of material
56	Reinforced or Prestress Concrete Containments	Dome Reinforcing Steel & Containment Wall Reinforcing Steel Above Grade	Not stated	CS	Not stated	FAT	Cumulative fatigue damage
57	Reinforced or Prestress Concrete Containments	Containment Wall Reinforcing Steel Below Grade & Basemat Reinforcing Steel	Not stated	CS	Not stated	ELE-TEMP	Loss of strength & modulus
58	Reinforced or Prestress Concrete Containments	Containment Wall Reinforcing Steel Below Grade & Basemat Reinforcing Steel	Not stated	CS	Not stated	EMBR/IR	Loss of fracture toughness
59	Reinforced or Prestress Concrete Containments	Containment Wall Reinforcing Steel Below Grade & Basemat Reinforcing Steel	Not stated	cs	Not stated	CORR/RE	Loss of strength, loss of material
60	Reinforced or Prestress Concrete Containments	Containment Wall Reinforcing Steel Below Grade & Basemat Reinforcing Steel	Not stated	cs	Not stated	FAT	Cumulative fatigue damage
61	Reinforced or Prestress Concrete Containments	Prestressing	Not stated	CS	Not stated	ELE-TEMP	Loss of strength & modulus

Document: IR 9	0-01, PWR Reactor Containme	ent Structures Industry	/ Report
Reviewed by:	David C. Ma, ANL		
Item System	Structure/Comp	Subcomponent	Materials

Document: IR 90-01, PWR Reactor Containment Structures Industry Report Reviewed by: David C. Ma, ANL

Effect of Aging on Component Fun			Rel.progs	Report Recommendations	Page No.	_
oss of pressure boundary.	Not stated	Not stated		Non-significant because operating temperatures within PWR containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be significantly affected.	to 4-49	
oss of pressure boundary.	Not stated	Not stated		Non-significant because the total radiation exposure is far below the 10^19 n/cm^2 level that could cause change in mechanical or physical properties.	4-49 to 4- 51	5
oss of pressure boundary.	Not stated	Periodic examination and monitoring of accessible areas in accordance with ASME Sect. XI, (More)		For inaccessible areas, plant- specific program is required.	5-9 to 5- 12	5
oss of pressure boundary.	Not stated	Not stated		Non-significant because designed to have good fatigue strength in accordance with ASME Sect. III, Div. 2 & ACI 215R-74	4-52 to 4- 54	5
oss of pressure boundary.	Not stated	Not stated		Non-significant because operating temperatures within PWR containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be significantly affected.	4-34, 4-47 to 4-49	
Loss of pressure boundary.	Not stated	Not stated		Non-significant because the total neutron fluence is far below the 10^19 n/sq.cm level for degradation of reinforcing steel.	4-35, 4-36	
oss of pressure boundary.	Not stated	Not stated		Non-significant for concrete not exposed to aggressive environment, pH <11.5 or chlorides >500 ppm; or concrete has low water-to-cement ratio (0.35-0.45) & adequate air entrainment (3-6%).	4-17 to 4- 19, 4-31 to 4-33	5
oss of pressure boundary.	Not stated	Not stated		Non-significant because designed to have good fatigue strength in accordance with ASME Sect. III, Div. 2 & ACI 215R-74	4-52 to 4- 54	5
oss of pressure boundary.	Not stated	Not stated		Non-significant because operating temperatures within PWR containment structures are well below 371Deg-C (700Deg-F) level a which the structural integrity of rebar/structural steel begins to be significantly affected.	4-34, 4-47 to 4-49 t	7 5
Loss of pressure boundary.	Not stated	Not stated		Non-significant because the total neutron fluence is far below the 10^19 n/sq.cm level for degradation of reinforcing steel.	4-35, 4-36	65
Loss of pressure boundary.	Not stated	Accessible surfaces examined with ASME Sect. XI; inaccessible surfaces require further evaluation		NRC recommendation: Potential degradation due to chlorine corrosion of the PWR containments has to be addressed in the plant specific baseline inspection. (See IR90-06 & 90-10)		
Loss of pressure boundary.	Not stated	Not stated		Non-significant because designed to have good fatigue strength in accordance with ASME Sect. III, Div. 2 & ACI 215R-74	o 4-52 to 4- 54	-
Loss of pressure boundary.	Not stated	Not stated		Non-significant because prestressing tendons are subjected to temperatures <60 C (<140_F).	4-38 to 4- 40	- (

Document: IR 9	0-01, PWR Reactor Containme	ent Structures Industry	/ Report
Reviewed by:	David C. Ma, ANL		
Item System	Structure/Comp	Subsemmenent	Mataniala

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
62	2 Reinforced or Prestress Concrete Containments	Prestressing Tendons & Ducts	Not stated	cs	Not stated	EMBR/IR	Loss of fracture toughness
63	Reinforced or Prestress Concrete Containments	Prestressing Tendons & Ducts	Not stated	CS	Not stated	CORR Unresolved	Loss of material
64	Prestressed Concrete Containments	Prestressing Tendons & Ducts	Not stated	cs	Not stated	RELAX	Reduction of desig margin
65	Prestressed Concrete Containments	Prestressing Tendons & Ducts	Not stated	CS	Not stated	FAT	Cumulative fatgue damage
66	Free-standing cylindrical and spherical sleel containments with eliptical bottoms	All	Not stated	Concrete	Not stated	Ali	Not stated
67	Free-standing Cylindrical & Spherical Steel Containments with Elliptical Bottom	Containment Shell Interior Surface & Containment Shell Exterior	Not stated	cs	Not stated	ELE-TEMP	Loss of strength & modulus
68	Free-standing Cylindrical & Spherical Steel Containments with Elliptical Bottom	Containment Shell Interior Surface & Containment Shell Exterior	Not stated	CS	Not stated	EMBR/IR	Loss of fracture toughness
69	Free-standing Cylindrical & Spherical Steel Containments with Elliptical Bottom	Containment Shell Interior Surface & Containment Shell Exterior	Not stated	CS	Not stated	CORR	Loss of material
	Free-standing Cylindrical & Spherical Steel Containments with Eliptical Bottom	Containment Shell Interior Surface & Containment Shell Exterior	Not stated	CS	Not stated	FAT	Cumulative fatigue damage
	Free-standing Cylindrical & Spherical Steel Containments with Eliptical Bottom	Containment Shell Interior Surface & Containment Shell Exterior	Not stated	CS	Not stated	EMBR/SA	Loss of fracture toughness
	Free-standing Cylindrical & Spherical Steel Containments with Eliptical Bottom	Embedded Shell Region & Sand Pocket Region	Not stated	CS	Not stated	ELE-TEMP	Loss of strength & modulus
73	Free-standing Cylindrical & Spherical Steel Containments with Eliptical Bottom	Embedded Shell Region & Sand Pocket Region	Not stated	CS	Not stated	EMBR/IR	Loss of fracture toughness
	Free-standing Cylindrical & Spherical Steel Containments with Eliptical Bottom	Embedded Shell Region & Sand Pocket Region	Not stated	CS	Not stated	CORR	Loss of material

Document: IR 90-01, PWR Reactor Containment Structures Industry Report Reviewed by: David C. Ma, ANL Effect of Aging on Component Function Contrib to Failure. Reported progs.

Effect of Aging on Component F Loss of pressure boundary.			Rel.progs	Report Recommendations	Page No.	
	Not stated	Not stated		Non-significant because tendons will not receive enough radiation to incurage related degradation, i.e., <=10^19 n/cm^2.	4-40, 4-41	62
Loss of pressure boundary.	Not stated	Examination & testing of tendons & leakage of corrosion protection medium in (More)		NRC recommendation: Large amount of grease leakage can degrade concrete strength, IWL lacks certain criteria in RG 1.35. Also, anchor heads have failed in prestressed concrete containments.	4-37, 4- 38, 5-7	63
Loss of pressure boundary.	Not stated	Reg. Guide RG 1.35.		Inspection & load monitoring to detect progressive reductions of prestress for the license renewal term using RG 1.35.	4-41, 4- 42, 5- 8	64
Loss of pressure boundary.	Not stated	Not stated		Non-significant because designed to have good fatigue strength in accordance with ASME Sect. III, Div. 2 & ACI 215R-74	4-52 to 4- 54	65
Loss of pressure boundary.	Not stated	If resolution based upon evaluation of plant-specific features, then baseline inspection not needed.		NRC recommendation: A one time focused inspection of containment is proposed to provide assurance for continued satisfactory performance and to identify existing degradation mechanisms and to take necessary corrective actions.		66
Loss of pressure boundary.	Not stated	Not stated		Non-significant because operating temperatures within PWR containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be significantly affected.	4-34, 4-47 to 4-49	67
Loss of pressure boundary.	Not stated	Not stated		Non-significant because the total radiation exposure is far below the 10^19 n/cm^2 level that could cause change in mechanical or physical properties.	4-49 to 4- 51	68
Loss of pressure boundary.	Not stated	Not stated		Galvanic corrosion and SCC are not significant if dissimilar metals are not used.	F	69
Loss of pressure boundary.	Not stated	Not stated		Non-significant because designed to have good fatigue strength in accordance with ASME Sect. III, Div. 2 & ACI 215R-74	4-52 to 4- 54	70
Loss of pressure boundary.	Not stated	Not stated		Dynamic strain aging is non- significant for component stress under elastic limit. Static strain aging is non-significant for components that were not cold worked; or the plates were normalized or stress relieved.	4-57 to 4- 59	71
Loss of pressure boundary.	Not stated	Not stated		Same as for containment shell interior or exterior surfaces.	4-34, 4-47 to 4-49	72
Loss of pressure boundary.	Not stated	Not stated		Non-significant because the total radiation exposure is far below the 1019 n/cm2 level that could cause change in mechanical or physical properties.	4-49 to 4- 51	73
Loss of pressure boundary.	Not stated	Penodic examination and monitoring of accessible areas in accordance with ASME Sect. XI, (More)		For inaccessible areas, plant- specific program is required.	5-9 to 5 12	74

Pag	e	7A

Document: IR 90-01, PWR Reactor Containment Structures Industry Report Reviewed by: David C. Ma, ANL

em	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
_	Free-standing Cylindrical & Spherical Steel Containments with	Embedded Shell Region & Sand Pocket Region	Not stated	CS	Not stated	FAT	Cumulative fatigue damage
76	Eliptical Bottom Free-standing Cylindrical & Spherical Steel Containments with	Embedded Shell Region & Sand Pocket Region	Not stated	cs	Not stated	EMBR/SA	Loss of fracture toughness
77	Eliptical Bottom Free-standing Steel Containments with Flat Bottom & Ice- condenser	All	Not stated	Concrete	Not stated	All	Not stated
78	Free-standing Steel Containments with Flat Bottorn & Ice- condenser	Dome Shell Interior Surface, Dome Shell Exterior Surface, Cylindrical shell Interior Surface, & Cylindrical Shell Exterior Surface	Not stated	CS	Not stated	ELE-TEMP	Loss of strength & modulus
79	Free-standing Steel Containments with Flat Bottom & Ice- condenser	Dome Shell Interior Surface, Dome Shell Exterior Surface, Cylindrical Shell Interior Surface, & Cylindrical Shell Exterior Surface	Not stated	CS	Not stated	EMBR/IR	Loss of fracture toughness
80	Free-standing Steel Containments with Flat Bottom & Ice- condenser	Dome Shell Interior Surface, Dome Shell Exterior Surface, Cylindrical shell Interior Surface, & Cylindrical Shell Exterior Surface	Not stated	CS	Not stated	CORR	Loss of material
81	Free-standing Steel Containments with Flat Bottom & Ice- condenser	Dome Shell Interior Surface, Dome Shell Exterior Surface, Cylindrical shell Interior Surface, & Cylindrical Shell Exterior Surface	Not stated	CS	Not stated	FAT	Cumulative fatigu damage
82	Free-standing Steel Containments with Flat Bottom & Ice- condenser	Dome Shell Interior Surface, Dome Shell Exterior Surface, Cylindrical shell Interior Surface, & Cylindrical Shell Exterior Surface	Not stated	CS	Not stated	EMBR/SA	Loss of fracture toughness
83	Free-standing Steel Containments with Flat Bottom & loe- condenser	Embedded Shell Region, Basemat Liner, & Liner Anchors	Not stated	CS	Not stated	ELE-TEMP	Loss of strength modulus
84	Free-standing Steel Containments with Flat Bottom & Ice- condenser	Embedded Shell Region, Basemat Liner, & Liner Anchors	Not stated	CS	Not stated	EMBR/IR	Loss of fracture toughness
85	Free-standing Steel Containments with Flat Bottorn & Ice- Condenser	Embedded Shell Region, Basemat Liner, & Liner Anchors	Not stated	cs	Not stated	CORR	Loss of strength, loss of material

Document: IR 90-01, PWR Reactor Containment Structures Industry Report Reviewed by: David C. Ma, ANL

Effect of Aging on Component F Loss of pressure boundary.	Not stated	Iure Reported progs Rel.pi Not stated	rogs Report Recommendations Non-significant because designed to	Page No.	
	NOTSIGLED	NOT STATED	have good fatigue strength in laccordance with ASME Sect. III, loiv. 2 & ACI 215R-74	4-52 to 4- 54	7
					1
loss of pressure boundary.	Not stated	Not stated	Same as for containment shell interior or exterior surfaces.	4-57 to 4- 59	70
oss of pressure boundary.	Not stated	If resolution based	NRC recommendation: A one time	<u> </u>	7
		upon evaluation of plant-specific features, then baseline inspection not needed.	focused inspection of containment is proposed to provide assurance for continued satisfactory performance and to identify existing degradation mechanisms and to take necessary corrective actions.		
oss of pressure boundary.	Not stated	Not stated	Non-significant because operating temperatures within PWR containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be isignificantly affected.	4-34, 4-47 to 4-49	78
oss of pressure boundary.	Not stated	Not stated	Non-significant because the total radiation exposure is far below the 10^19 n/cm^2 level that could cause change in mechanical or physical properties.	4-49 to 4- 51	79
ass of pressure boundary.	Not stated	Not stated	Galvanic corrosion and SCC are not significant if dissimilar metals are not used.		80
oss of pressure boundary.	Not stated	Not stated	Non-significant because designed to have good fatigue strength in accordance with ASME Sect. III, Div. 2 & ACI 215R-74	4-52 to 4- 54	81
oss of pressure boundary.	Not stated	Not stated	Dynamic strain aging is non- significant for component stress under elastic limit. Static strain aging is non-significant for components that were not cold worked; or the plates were normalized or stress relieved.	4-57 to 4- 59	82
oss of pressure boundary.	Not stated	Not stated	Non-significant because operating temperatures within PWR containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be significantly affected.	4-34, 4-47 to 4-49	83
oss of pressure boundary.	Not stated	Not stated	Non-significant because the total	4-49 to 4- 51	84
oss of pressure boundary.	Not stated	Periodic examination and monitoring of accessible areas in accordance with ASME Sect. XI, (More)	For inaccessible areas, plant- specific program is required.	5-9 to 5- 12	85

	wed by: David C. System	Ma, ANL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
		Embedded Shell Region, Basemat Liner, & Liner	Not stated	CS	Not stated	FAT	Cumulative fatigue damage
87	Condenser Free-standing Steel Containments with Flat Bottom & Ice- Condenser	Anchors Concrete Basemat	Not stated	Concrete	Not stated	FRZ-THAW	Scaling, cracking, & spalling
88	Free-standing Steel Containments with Flat Bottorn & Ice- Condenser	Concrete Basemat	Not stated	Concrete	Not stated	LEACH	Increase of porosity & permeability
89	Free-standing Steel Containments with Flat Bottom & Ice- Condenser	Concrete Basemat	Not stated	Concrete	Not stated	AGR-CHEM	Increase of porosity & permeability, cracking, & spalling
90	Free-standing Steel Containments with Flat Bottom & Ice- Condenser	Concrete Basemat	Not stated	Concrete	Not stated	AGREAC Unresolved	Expansion & cracking
91	Free-standing Steel Containments with Flat Bottom & Ice- Condenser	Concrete Basemat	Not stated	Concrete	Not stated	ELE-TEMP	Loss of strength & modulus
92	Free-standing Steel Containments with Flat Bottom & Ice- Condenser	Concrete Basemat	Not stated	Concrete	Not stated	EMBR/IR	Loss of fracture toughness
93	Free-standing Steel Containments with Flat Bottom & Ice- Condenser	Concrete Basemat	Not stated	Concrete	Not stated	CORR/RE	Loss of strength, loss of material
94	Free-standing Steel Containments with Flat Bottom & Ice-	Concrete Basemat	Not stated	Concrete	Not stated	FAT	Cumulative fatigue damage
95	Condenser Free-standing Steel Containments with Flat Bottom & Ice- Condenser	Concrete Basemat	Not stated	Concrete	Not stated	CONCAL	Reduction of concrete strength
96	Free-standing Steel Containments with Flat Bottom & Ice- Condenser	Concrete Basemat	Not stated	Concrete	Not stated	SETTLE Unresolved	Cracking, in-crease in component stres: level, distortion
97	Free-standing Steel Containments with Flat Bottom & Ice- Condenser	Basemat Reinforcing Steel	Not stated	cs	Not stated	ELE-TEMP	Loss of strength & modulus

.

Document: IR 90-01, PWR Reactor Containment Structures Industry Report Reviewed by: David C. Ma, ANL

Document: IR 90-01, PWR Reactor Containment Structures Industry Report Reviewed by: David C. Ma, ANL

Effect of Aging on Component I Loss of pressure boundary.	Not stated	Not stated Not stated	rogs Report Recommendations Page Non-significant because designed to 4-52	e No. I	
· · · · · · · · · · · · · · · · · · ·	, ior stated	NOT STATED	have good fatigue strength in 54	to 4-	86
			accordance with ASME Sect. III.		
			Div. 2 & ACI 215R-74		
Loss of pressure boundary.	Not stated	Not stated	Non-significant for component 4-3 to	4-7	87
			located in a geographic region of		
			weathering index <100 day-in./ yr or		
	1		concrete mix design meets air		
			content & water-to-cement ratio	1	
			requirements of ASME Sect. III, Div.		
Loss of pressure boundary.	Not stated	Not stated	2. CC-2231.7.1.		
	NOT STATED	Not stated	Non-significant for components not 4-8 to	×4-	88
			exposed to flowing water or 11 constructed using ACI 201,2R-77 to		
			ensure dense, well-cured concrete		
			with low permeability.		
Loss of pressure boundary.	Not stated	Accessible concrete	Management for the effects of 5-4 to	5-6	89
		surfaces are	aggressive chemical of concrete		00
		periodically	surfaces that are not periodically		1
		examined in	examined due to inaccessibility		
		accordance with	requires plant-specific program.		
		Type A integrated			
		(More)			ľ
Loss of pressure boundary.	Not stated	Non-significant for	NRC recommendation: AGREAC 4-14	10 4-	90
		aggregate taken	can not be ruled out. Tests alone are 17		
		from regions other	not satisfactory in predicting	·	
		than those known to	performance. AGREAC may occur		
		(More)	>25 years. Use of pozzolans & low		
			alkali content cement may not control		
			reactions for concretes.(See IR90- 06 & 90-10)		
oss of pressure boundary.	Not stated	Not stated			
······································	, we could a	NOT STATED	Non-significant for concrete 4-20 t maintained at <66_C (150_F) & local 25, 4-		91
			area temperatures <93_C (200_F).	34	(
			or plant-specific justification is		
			provided in accordance with ACI		
			349-85.		
oss of pressure boundary.	Not stated	Not stated	Non-significant because the total 4-25 t	04-	92
			neutron fluence & integrated gamma 31, 4-		
			doses are low compared to the levels 4-36		
			causing degradation, i.e., 1019		
			n/cm2 & 1010 rads, respectively.	1	
loss of pressure boundary.	Not stated	Accessible surfaces	NRC recommendation: Potential 5-4 to	5-6	93
		examined with	degradation due to chlorine		1
		ASME Sect. XI;	corrosion of the PWR containments		
		inaccessible	has to be addressed in the plant		
		surfaces require	specific baseline inspection. (See		- 1
oss of pressure boundary.	Not stated	further evaluation	IR90-06 & 90-10)		
toos of pressure boundary.	NOT STATED	Not stated	Non-significant because designed to 4-52 to	> 4-	94
			have good fatigue strength in 54		
			accordance with ASME Sect. III, Div. 2 & ACI 215R-74		
oss of pressure boundary.	Not stated	Not stated	Non-significant if no degradation of 4-54, 4	4.5.5	
			concrete strength was noted during	+-22	95
	· ·		initial structural testing, or if		Ì
			aluminum piping were not used for		
			concrete placement.		
oss of pressure boundary.	Not stated	Plant settlement	NRC recommendation: Effect of 4-56,	5-13	96
		monitoring during	settlement of the PWR containments		
		construction &	need to be evaluated. (See IR90-06 &		
		continued during	90-10)		
		(More)			
oss of pressure boundary.	Not stated	Not stated	Non-significant because operating 4-20 to	4-	97
	1		temperatures within PWR 25, 4-3	34	
			containment structures are well		
			below 371 C (700_F) level at which		
			rebar/concrete/pre-stressed tendons		
			begin to be significantly affected.		

Welds

Dissimilar Metal

112 All Type PWR

Containments

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism EMBR/IR	ARD effects
98	Free-standing Steel Containments with Flat Bottom & Ice- Condenser	Basemat Reinforcing Steel		CS	Not stated		toughness
99	Free-standing Steel Containments with Flat Bottom & Ice- Condenser	Basemat Reinforcing Steel	Not stated	CS	Not stated	CORR/RE	Loss of strength, loss of material
100	Free-standing Steel Containments with Flat Bottom & Ice- Condenser	Basemat Reinforcing Steel	Not stated	CS	Not stated	FAT	Cumulative fatigue damage
101	All Type PWR Containments	Penetration Sleeves	Not stated	CS	Not stated	ELE-TEMP	Loss of strength & modulus
102	All Type PWR Containments	Penetration Sleeves	Not stated	CS	Not stated	EMBR/IR	Loss of fracture toughness
103	All Type PWR Containments	Penetration Sleeves	Not stated	CS	Not stated	CORR	Loss of strength, loss of material
104	All Type PWR Containments	Penetration Sleeves	Not stated	cs	Not stated	FAT Unresolved	Cumulative fatigue damage
105	5 All Type PWR Containments	Penetration Sleeves	Not stated	CS	Not stated	EMBR/SA	Loss of fracture toughness
106	6 All Type PWR Containments	Penetration Bellows	Not stated	SS	Not stated	ELE-TEMP	Loss of strength &
107	7 All Type PWR Containments	Penetration Bellows	Not stated	SS	Not stated	EMBR/IR	Loss of fracture toughness
10	8 All Type PWR Containments	Penetration Beliows	Not stated	SS	Not stated	CORR	Loss of strength, loss of material
10!	9 All Type PWR Containments	Penetration Bellows	Not stated	SS	Not stated	FAT Unresolved	Cumulative fatigu damage
11	0 All Type PWR	Penetration Bellows	Not stated	SS	Not stated	EMBR/SA	Loss of fracture toughness
11	Containments 1 All Type PWR Containments	Dissimilar Metal Welds	Not stated	CS	Not stated	ELE-TEMP	Loss of strength a modulus

CS

Not stated

EMBR/IR

Not stated

Loss of fracture

toughness

• .

Document: IR 90-01, PWR Reactor Containment Structures Industry Report Reviewed by: David C. Ma, ANL Effect of Aging on Component Function Contrib to Failure Reported pro

Effect of Aging on Component I	Not stated	Not stated	_Rel.progs	Report Recommendations	Page No.	
				Non-significant because the total neutron fluence is far below the 10^19 n/cm^2 level for degradation of reinforcing steel.	4-35, 4-36	\$ 94
Loss of presșure boundary.	Not stated	Accessible surfaces examined with ASME Sect. XI; inaccessible surfaces require further evaluation		NRC recommendation: Potential degradation due to chlorine corrosion of the PWR containments has to be addressed in the plant specific baseline inspection. (See IR90-06 & 90-10)	5-4 to 5-6	95
Loss of pressure boundary. Loss of pressure boundary.	Not stated	Not stated		Non-significant because designed to have good fatigue strength in accordance with ASME Sect. III, Div. 2 & ACI 215R-74	4-52 to 4- 54	100
	Not stated	Not stated		Non-significant because operating temperatures within PWR containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be significantly affected.	4-34, 4-47 to 4-49	101
Loss of pressure boundary.	Not stated	Not stated		Non-significant because the total radiation exposure is far below the 10^19 n/cm^2 level that could cause change in mechanical or physical properties.	4-49 to 4- 51	102
Loss of pressure boundary.	Not stated	Not stated	· · ·	Galvanic corrosion & corrosion due to aggressive aqueous solutions will not occur if dissimilar metals are not used & if aggressive ground water (chlorides >500 ppm) is not present.	4-42 to 4- 47	103
Loss of pressure boundary.	Not stated	ASME Sect. III, Subsect. NB fatigue reanalysis, monitoring of penetration (More)		NRC recommendation: Fatigue of penetration sleeve anchors can be induced by thermal cyclic loading & may not be detectable by leak rate tests.	5-14 , 5-15	104
oss of pressure boundary.	Not stated	Not stated		Dynamic strain aging is non- significant for component stress under elastic limit. Static strain aging is non-significant for components that were not cold worked; or the plates were normalized or stress relieved.	4-57 to 4- 59	105
oss of pressure boundary.	Not stated	Not stated		Same as for penetration sleeves.	4-34, 4-47	106
oss of pressure boundary.	Not stated	Not stated		Same as for penetration sleeves.	to 4-49 4-49 to 4-	107
oss of pressure boundary.	Not stated	Not stated		Galvanic corrosion and SCC are not significant if dissimilar metals are not used or the SS bellows are protected by shields from corrosive environment.		108
oss of pressure boundary.	Not stated	Same as for penetration sleeves.		Same as for penetration sieeves.	5-14, 5-15	109
oss of pressure boundary.	Not stated	Not stated		Same as for penetration sleeves.	4-57 to 4-	110
oss of pressure boundary.	Not stated	Not stated		Non-significant because operating temperatures within PWR containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be significantly affected.	59 4-34, 4-47 to 4-49	111
oss of pressure boundary.	Not stated	Not stated		Non-significant because the total	4-49 to 4- 51	112

		C. Ma, ANL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	System All Type PWR Containments	Dissimilar Metal Welds	Not stated	CS	Not stated	CORR	Loss of strength, loss of material
114	All Type PWR Containments	Dissimilar Metal Welds	Not stated	CS	Not stated	FAT	Cumulative fatigue damage
115	All Type PWR Containments	Personnel Airlock & Equipment Hatches	Not stated	CS	Not stated	ELE-TEMP	Loss of strength & modulus
116	All Type PWR Containments	Personnel Airlock & Equipment Hatches	Not stated	CS	Not stated	EMBR/IR	Loss of fracture toughness
117	All Type PWR Containments	Personnel Airlock & Equipment Hatches	Not stated	CS	Not stated	CORR	Loss of strength loss of material
118	All Type PWR Containments	Personnel Airlock & Equipment Hatches	Not stated	CS	Not stated	FAT	Cumulative fatigue damage
119	All Type PWR Containments	Personnel Airlock & Equipment Hatches	Not stated	cs	Not stated	EMBR/SA	Loss of fracture toughness

Document:	IR 90-01, PWR Reacto	r Containment Structures Industry Report
Reviewed b		

Document: IR 90-02, BWR Pressure Vessel Industry Report Reviewed by: O. Chopra/D. Gavenda, ANL

	pra/D. Gavenda, AN Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	Top Head	Not stated	SA302-Gr B, SA533-Gr B	Not stated	EMBR/IR	Loss of fracture toughness
BWR Pressure Vessel	Top Head	Not stated	SA302-Gr B, SA533-Gr B	Not stated	CORR/IGSCC	Crack initiation & growth
BWR Pressure Vessel	Top Head	Not stated	SA302-Gr B, SA533-Gr B	Not stated	CORR/IASCC	Crack initiation & growth
BWR Pressure Vessel	Top Head	Not stated	SA302-Gr B, SA533-Gr B	Not stated	CORR	Loss of material, corrosion product buildup
BWR Pressure Vessel	Top Head	Not stated	SA302-Gr B, SA533-Gr B	Not stated	ERO/CORR	Wall thinning, loss material
BWR Pressure Vessel	Top Head	Not stated	SA302-Gr B, SA533-Gr B	Not stated	FAT	Cumulative fatigue damage
7 BWR Pressure Vessel	Vessel Shell	Belttine Shell	SA302-Gr B, SA533-Gr B	Not stated	EMBR/IR	Loss of fracture toughness
	System BWR Pressure Vessel Industry Report BWR Pressure Vessel BWR Pressure Vessel BWR Pressure Vessel BWR Pressure Vessel BWR Pressure Vessel	System Structure/Comp BWR Pressure Top Head Vessel Industry Top Head BWR Pressure Top Head Vessel Top Head	SystemStructure/CompSubcomponentBWR Pressure Vessel Industry ReportTop HeadNot statedBWR Pressure VesselTop HeadNot stated	SystemStructure/CompSubcomponentMaterialsBWR Pressure Vessel industry ReportTop HeadNot statedSA302-Gr B, SA533-Gr BBWR Pressure VesselTop HeadNot statedSA302-Gr B, SA533-Gr BBWR Pressure VesselVessel ShellBeltine ShellSA302-Gr B, SA533-Gr B	SystemStructure/CompSubcomponentMaterialsManufacturerBWR Pressure Vessel industry ReportTop HeadNot statedSA302-Gr B, SA533-Gr BNot statedBWR Pressure VesselTop HeadNot statedSA302-Gr B, SA533-Gr BNot statedBWR Pressure VesselVessel ShellBeltine ShellSA302-Gr B, SA533-Gr BNot stated	SystemStructure/CompSubcomponentMaterialsManufacturerARD mechanismBWR Pressure Vessel Industry ReportTop HeadNot statedSA302-Gr B, SA533-Gr BNot statedEMBR/IRBWR Pressure VesselTop HeadNot statedSA302-Gr B, SA533-Gr BNot statedCORR/IGSCCBWR Pressure VesselTop HeadNot statedSA302-Gr B, SA533-Gr BNot statedCORR/IGSCCBWR Pressure VesselTop HeadNot statedSA302-Gr B, SA533-Gr BNot statedCORR/IASCCBWR Pressure VesselTop HeadNot statedSA302-Gr B, SA533-Gr BNot statedCORRBWR Pressure VesselTop HeadNot statedSA302-Gr B, SA533-Gr BNot statedCORRBWR Pressure VesselTop HeadNot statedSA302-Gr B, SA533-Gr BNot statedERO/CORRBWR Pressure VesselTop HeadNot statedSA302-Gr B, SA533-Gr BNot statedFATBWR Pressure VesselTop HeadNot statedSA302-Gr B, SA533-Gr BNot statedFATBWR Pressure VesselVessel ShellBeltine ShellSA302-Gr B, SA533-Gr BNot statedEMBR/IR

-

.

Document: IR 90-01, PWR Reactor Containment Structures Industry Report Reviewed by: David C. Ma, ANL Effect of Aging on Component Europtics Contribute Solitons, Dependent of

Effect of Aging on Component F	Function Contrib to Failure		Rel.progs	Report Recommendations	Page No.	Item
Loss of pressure boundary.	Not stated	Not stated		Galvanic corrosion & corrosion due to aggressive aqueous solutions will not occur if dissimilar metals are not used & if aggressive ground water (chlorides >500 ppm) is not present.		
Loss of pressure boundary.	Not stated	Not stated		Non-significant because designed to have good fatigue strength in accordance with ASME Sect. III, Div. 2 & ACI 215R-74	54	
Loss of pressure boundary.	Not stated	Not stated		Non-significant because operating temperatures within PWR containment structures are well below 371 C (700_F) level at which the structural integrity of rebar/structural steel begins to be significantly affected.	4-34, 4-47 to 4-49	115
Loss of pressure boundary.	Not stated	Not stated		Non-significant because the total radiation exposure is far below the 10^19 n/cm^2 level that could cause change in mechanical or physical properties.	4-49 to 4- 51	116
Loss of pressure boundary.	Not stated	Not stated		Galvanic corrosion & corrosion due to aggressive aqueous solutions will not occur if dissimilar metals are not used & if aggressive ground water (chlorides >500 ppm) is not present.	4-42 to 4- 47	117
Loss of pressure boundary.	Not stated	Not stated		Non-significant because designed to have good fatigue strength in accordance with ASME Sect. III, Div. 2 & ACI 215R-74	4-52 to 4- 54	118
oss of pressure boundary.	Not stated	Not stated		Same as for penetration sleeves.	4-57 to 4- 59	119

Document: IR 90-02, BWR Pressure Vessel Industry Report Reviewed by: O. Chopra/D. Gavenda, ANL

Effect of Aging on Component F			Rel.progs	Report Recommendations	Page No.	iten
Loss of pressure boundary.	Not stated	Not stated		Non-significant because neutron fluence is <10^17 n/cm^2 the level identified in 10CFR 50 Appendix H requiring surveillance program	4-2 to 4-4	
Loss of pressure boundary.	Not stated	Not stated		Non-significant because low-alloy	4-14 to 4- 24	
Loss of pressure boundary.	Not stated	Not stated		CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-24, 4-25	
Loss of pressure boundary.	Not stated	Not stated		Non-significant because cladding is resistant to CORR, removal of cladding results in very low corrosion rates	4-25 to 4- 27	4
Loss of pressure boundary.	Not stated	Not stated		Non-significant because SS or Ni alloy cladding are resistant to ERO/ CORR and/or relatively low flow	4-27, 4-28	Ę
Loss of pressure boundary.	Not stated	Design basis or plant-specific fatigue usage factor is <0.25 for CS in high (More)		NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	4-5 to 4- 13	e
Loss of pressure boundary.	Not stated	Verification of integrity by requirements of Appendices G & H of 10CFR50 & (More)		NRC recommendation: A 100%	5-3 to 5-9, 5-26 to 5- 28	7

Document: IR 9	0-02, BWR Pressure Vessel industry Report
	O. Chopra/D. Gavenda, ANL

m	System	opra/D. Gavenda, ANL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects Crack initiation &
	BWR Pressure Vessel	Vessel Shell	Beltine Shell	SA302-Gr B, SA533-Gr B	Not stated	CORR/IGSCC	growth
9	BWR Pressure Vessel	Vessel Shell	Beltine Shell	SA302-Gr B, SA533-Gr B	Not stated	CORR/IASCC	Crack initiation & growth
10	BWR Pressure Vessel	Vessel Shell	Beltine Shell	SA302-Gr B, SA533-Gr B	Not stated	CORR	Loss of material, corrosion product buildup
11	BWR Pressure Vessel	Vessel Shell	Beltine Shell	SA302-Gr B, SA533-Gr B	Not stated	ERO/CORR	Wall thinning, loss of material
12	2 BWR Pressure Vessel	Vessel Shell	Beltline Shell	SA302-Gr B,SA533- Gr B	Not stated	FAT	Cumulative fatigue damage
15	3 BWR Pressure Vessel	Vessel Shell	Beltine Welds	Low-alloy steel weld	Not stated	EMBR/IR	Loss of fracture toughness
1,	4 BWR Pressure Vessel	Vessel Sheli	Beltine Welds	Low-alloy steel weld	Not stated	CORR/IGSCC	Crack initiation & growth
1:	5 BWR Pressure Vessel	Vessel Shell	Beltine Welds	Low-alloy steel weld	Not stated	CORRIASCC	Crack initiation & growth
1	6 BWR Pressure Vessel	Vessel Shell	Beltine Welds	Low-alloy steel weld	Not stated	CORR	Loss of material, corrosion product buildup
1	7 BWR Pressure Vessel	Vessel Shell	Beltline Welds	Low-alloy steel weld	Not stated	ERO/CORR	Wall thinning, loss material
1	18 BWR Pressure Vessel	Vessel Shell	Beltline Welds	Low-alloy steel weld	Not stated	FAT	Cumulative fatigue damage
	19 BWR Pressure Vessel	Vessel Shell	Other than beltine shell & welds	SA302-Gr B, SA533-Gr B	Not stated	EMBR/IR	Loss of fracture toughness
	20 BWR Pressure Vessel	Vessel Shell	Other than beltline shell & welds	SA302-Gr B, SA533-Gr B	Not stated	CORR/IGSCC	Crack initiation & growth
-	21 BWR Pressure Vessel	Vesset Shell	Other than bettline shell & welds	SA302-Gr B, SA533-Gr B	Not stated	CORR/IASCC	Crack initiation & growth
	22 BWR Pressure Vessel	Vessel Shell	Other than beltime shell & welds	SA302-Gr B, SA533-Gr B	Not stated	CORR	Loss of material, corrosion product buildup

-

Document: IR 90-02, BWR Pressure Vessel Industry Report	
Reviewed by: O. Chopra/D. Gavenda, ANL	
Effect of Aging on Component Function Contrib to Failure	Reported progs

Effect of Aging on Component I Loss of pressure boundary.	Not stated		Rel.progs	Report Recommendations	Page No.	<u>Iten</u>
	NOT STATED	Not stated		Non-significant because low-alloy steel & SS clad with >5% ferrite are not susceptible to CORR/IGSCC and/or applied stresses are low	4-14 to 4- 24	
Loss of pressure boundary.	Not stated	Not stated		CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typica of BWR vessel service		5 9
Loss of pressure boundary.	Not stated	Not stated		Non-significant because cladding is resistant to CORR, removal of cladding results in very low corrosior rates	4-25 to 4- 27	10
Loss of pressure boundary.	Not stated	Not stated		Non-significant because SS or Ni alloy cladding are resistant to ERO/CORR and/or relatively low Iflow	4-27, 4-28	3 11
Loss of pressure boundary.	Not stated	Design basis or plant-specific fatigue usage factor is <0.25 for CS in high (More)		NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	4-5 to 4- 13	12
Loss of pressure boundary.	Not stated	Verification of integrity by requirements of Appendices G & H of 10CFR50 & (More)		NRC recommendation: A 100% volumetric inspection of all bettine & all other accessible welds required by ASME Sect. XI. Exceptions for license renewal will be reviewed on a case by case basis.	5-3 to 5-9, 5-26 to 5- 28	13
Loss of pressure boundary.	Not stated	Non-significant because weld metal with >5% ferrite is not susceptible to (More)		NRC recommendation: Same as for EMBR/IR	4-14 to 4- 24	14
Loss of pressure boundary.	Not stated	Not stated		CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-24, 4-25	15
oss of pressure boundary.	Not stated	Not stated		Non-significant because cladding is	4-25 to 4- 27	16
oss of pressure boundary.	Not stated	Not stated			4-27, 4-28	17
oss of pressure boundary.	Not stated	Design basis or plant-specific fatigue usage factor is <0.25 for CS in high (More)		1	4-5 to 4- 13	18
oss of pressure boundary.	Not stated	Not stated		Non-significant because neutron fluence is <10^17 n/ cm^2 the level identified in 10CFR 50 Appendix H requiring surveillance program	4-2 to 4-4	19
oss of pressure boundary.	Not stated	Not stated		Non-significant because low-alloy	4-14 to 4- 24	20
oss of pressure boundary.	Not stated	Not stated		CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-24, 4-25	21
oss of pressure boundary.	Not stated	Not stated		Non-significant because cladding is	4-25 to 4- 27	22

•

Document: IR 90	0-02, BWR Pressure Vessel Industry Report
Reviewed by:	O. Chopra/D. Gavenda, ANL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
23	BWR Pressure Vessel	Vessel Shell	Other than beltline shell & welds	SA302-Gr B, SA533-Gr B	Not stated	ERO/CORR	Wall thinning, loss material
24	BWR Pressure Vessel	Vessel Shell	Other than bettine shell & welds	SA302-Gr B, SA533-Gr B	Not stated	FAT	Cumulative fatigue damage
25	BWR Pressure Vessel	Vessel Flange	Not stated	SA336, SA508-CI 2	Not stated	EMBR/IR	Loss of fracture toughness
26	BWR Pressure Vessel	Vessel Flange	Not stated	SA336, SA508-CI 2	Not stated	CORR/IGSCC	Crack initiation & growth
27	BWR Pressure Vessel	Vessel Flange	Not stated	SA336, SA508-CI 2	Not stated	CORR/IASCC	Crack initiation & growth
28	BWR Pressure Vessel	Vessel Flange	Not stated	SA336, SA508-CI 2	Not stated	CORR	Loss of material, corrosion product buildup
29	BWR Pressure Vessel	Vessel Flange	Not stated	SA336, SA508-CI 2	Not stated	ERO/CORR	Wall thinning, loss material
30	BWR Pressure Vessel	Vessel Flange	Not stated	SA336, SA508-CI 2	Not stated	FAT	Cumulative fatigue damage
31	BWR Pressure Vessel	Bottom Head	Not stated	SA302-Gr B, SA533-Gr B	Not stated	EMBR/IR	Loss of fracture toughness
32	BWR Pressure Vessel	Bottom Head	Not stated	SA302-Gr B, SA533-Gr B	Not stated	CORR/IGSCC	Crack initiation & growth
33	BWR Pressure Vessel	Bottom Head	Not stated	SA302-Gr B, SA533-Gr B	Not stated	CORR/IASCC	Crack initiation & growth
34	BWR Pressure Vessel	Bottom Head	Not stated	SA302-Gr B. SA533-Gr B	Not stated	CORR	Loss of material, corrosion product buildup
35	BWR Pressure Vessel	Bottom Head	Not stated	SA302-Gr B, SA533-Gr B	Not stated	ERO/CORR	Wall thinning, loss material
36	BWR Pressure Vessel	Bottom Head	Not stated	SA302-Gr B, SA533-Gr B	Not stated	FAT	Cumulative fatigue damage
37	BWR Pressure Vessel	Closure Studs	Not stated	SA193, SA540	Not stated	EMBR/IR	Loss of fracture toughness

-

Document: IR 90-02, BWR Pressure Vessel Industry Report Reviewed by: O. Chopra/D. Gavenda, ANL

Loss of pressure boundary.	Not stated	Iure Reported progs I	Rel.progs Report Recommendations Non-significant because SS or Ni	4-27 4-28	iter
· · · · · · · · · · · · · · · · · · ·		Not Stated		4-21, 4-20	4 2
			alloy cladding are resistant to ERO/		
Loss of pressure boundary,	Not stated	Design he sis as	CORR and/or relatively low flow		<u> </u>
Lood of prosoure boundary.	NUCSIALEU	Design basis or	NRC recommendation: Licensee	4-5 to 4-	2
•		plant-specific fatigue	must verify that plant-specific	13	
		usage factor is	analyses based on conservative		
		<0.25 for CS in high	extrapolation of an enveloping set of		
		(More)	transients & including effects of		
			environment, demonstrate that		
			fatigue usage factor is <1		
oss of pressure boundary.	Not stated	Not stated	Non-significant because neutron	4-2 to 4-4	2
			fluence is <10^17 n/ cm^2 the level		_ <u> </u>
			identified in 10CFR 50 Appendix H		
	1		requiring surveillance program		
oss of pressure boundary.	Not stated	Not stated		1 1 1 1 1	
······································	NOT STATED	NOT STATED	Non-significant because low-alloy	4-14 to 4-	26
			steel & SS clad with >5% ferrite are	24	
			not susceptible to CORR/IGSCC	1	
	-		and/or applied stresses are low	}	
loss of pressure boundary.	Not stated	Not stated	CORR/IASCC is non-significant for	4-24, 4-25	27
	1		low-alloy steel components	- · -	
			subjected to neutron fluences typica		
			of BWR vessel service	1	1
oss of pressure boundary.	Not stated	Not stated		1.05.	
	INUT STATED	INUL STATED	Non-significant because cladding is		- 28
			resistant to CORR, removal of	27	
			cladding results in very low corrosion	4	
			rates		
oss of pressure boundary.	Not stated	Not stated	Non-significant because SS or Ni	4-27, 4-28	29
			alloy cladding are resistant to ERO/		
			CORR and/or relatively low flow	1	
oss of pressure boundary.	Not stated	Design basis or	NRC recommendation: Verify that	4-5 to 4-	30
· · · · · · · · · · · · · · · · · · ·		plant-specific fatigue			30
	4		plant-specific analyses based on	13	
		usage factor is	conservative extrapolation of		
		<0.25 for CS in high	enveloping set of transients] [
		(More)	including environmental effects, yield		
			usage factor <1; identified by ASME		
	1		Sect. XI Task group as significant		
			for vessel flange.		
oss of pressure boundary.	Not stated	Not stated	Non-significant because neutron	4-2 to 4-4	31
			fluence is <10^17 n/ cm^2 the level		51
		· · · · · · · · · · · · · · · · · · ·	identified in 10CFR 50 Appendix H	t I	
·					
oss of pressure boundary.	Not stated		requiring surveillance program.		_
eee er pressure bouridary.	NOLSIANO	Not stated	Non-significant because low-alloy	4-14 to 4-	32
			steel & SS clad with >5% ferrite are	24	
			not susceptible to CORR/IGSCC		
			and/or applied stresses are low		
oss of pressure boundary.	Not stated	Not stated	CORR/IASCC is non-significant for	4-24, 4-25	33
			low-alloy steel components	,	
			subjected to neutron fluences typical		
		1	of BWR vessel service		
oss of pressure boundary.	Not stated	Not stated		4.05 10	
process souriousy.		1101 312100	Non-significant because cladding is	4-25 to 4-	34
		I	resistant to CORR, removal of	27	
		j l	cladding results in very low corrosion		
			rates		
oss of pressure boundary.	Not stated	Not stated	Non-significant because SS or Ni	4-27, 4-28	35
			alloy cladding are resistant to ERO/		
			CORR and/or relatively low flow		
oss of pressure boundary.	Not stated	Design basis or	NUMARC recomm: Non-significant	4-5 to 4-	
, , , , , , , , , .		plant-specific fatigue			36
			for all BWRs & for BWR-2 if dT	13	
	1	usage factor is	between top and bottom head has		
		<0.25 for CS in high	not exceeded 63 deg C (145 deg F).		
		(More)	NRC recomm: Verify that fatigue		
			usage based on enveloping setup		
		1	conditions including environmental		
			effects is < 1.		
	Not stated	Not stated	Non-significant because neutron	4-2 to 4-4	
oss of pressure boundary.				+-2 10 4-4	37
oss of pressure boundary.					
oss of pressure boundary.			fluence is <10^17 n/ cm^2 the level		
oss of pressure boundary.			fluence is <10^17 n/ cm^2 the level identified in 10CFR 50 Appendix H requiring surveillance program		

Page 12B

Document: IR 9	0-02, BWR Pressure Vessel Industry Report
Reviewed by:	O. Chopra/D. Gavenda, ANL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	BWR Pressure Vessel	Closure Studs	Not stated	SA193, SA540	Not stated	CORR/IGSCC	growth
	BWR Pressure Vessel	Closure Studs	Not stated	SA193, SA540	Not stated	CORR/IASCC	Crack initiation & growth
	BWR Pressure	Closure Studs	Not stated	SA193, SA540	Not stated	CORR	Loss of material,
	Bwr Pressure Vessei	Closule Studs					corrosion product buildup Wall thinning loss of
	BWR Pressure Vessel	Closure Studs	Not stated	SA193, SA540	Not stated	ERO/CORR	material Cumulative fatigue
42	BWR Pressure Vessel	Closure Studs.	Not stated	SA193, SA540	NOT STATED		damage
43	BWR Pressure Vessel	Support Skirt	Not stated	SA533-Gr B	Not stated	EMBR/IR	Loss of tracture toughness
44	BWR Pressure	Support Skirt	Not stated	SA533-Gr B	Not stated	CORR/IGSCC	Crack initiation &
45	Vessel BWR Pressure Vessel	Support Skirt	Not stated	SA533-Gr B	Not stated	CORR/IASCC	Crack initiation & growth
46	BWR Pressure Vessel	Support Skirt	Not stated	SA533-Gr B	Not stated	CORR	Loss of material corrosion product buildup
47	BWR Pressure Vessel	Support Skirt	Not stated	SA533-GR B	Not stated	ERO/CORR	Wall thinning loss material
48	BWR Pressure Vessel	Support Skirt	Not stated	SA533-GR B	Not stated	FAT	Cumulative fatigue damage
49	BWR Pressure Vessel	Attachment Welds	Not stated	SS, Alloy 182	Not stated	EMBR/IR	Loss of fracture toughness
50	BWR Pressure Vessel	Attachment Welds	Not stated	SS, Alloy 182	Not stated	CORR/IGSCC	Crack initiation & growth
51	BWR Pressure Vessel	Attachment Welds	Not stated	SS,Alloy 182	Not stated	CORR/IASCC	Crack initiation & growth
- 53	2 BWR Pressure Vessel	Attachment Welds	Not stated	SS,Alloy 182	Not stated	CORR	Loss of material, corrosion product buildup
5	3 BWR Pressure Vessel	Attachment Welds	Not stated	SS,Alloy 182	Not stated	ERO/CORR	Wall thinning, los material

Document: IR 90-02, BWR Pressure Vessel Industry Report Reviewed by: O. Chopra/D. Gavenda, ANL Effect of Aging on Component Function Contrib to Failure Reported to

ASME Sect. XI. Subsect. IWB augmented by RICSIL 055 & RG 1.65 Not stated Not stated Not stated ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated Not stated	inspection and testing programs, exam category B-G-1, recommendations of RICSIL 055, & replacement in accordance with RG 1.65 CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service Non-significant because not exposed to corrosive environment 2 Non-significant because not exposed to flowing liquid NRC recommendation: Licensee must verify that plant-specific 1 analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1 Non-significant because not extrapolation because shift in reference temperature due to neutron exposure is <11 deg C Non-significant because not subjected to corrosive environment 2 CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service	5-18, 5-20 4-24, 4-25 4-25 to 4- 27 4-27, 4-28 5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24 4-24, 4-25	3
augmented by RICSIL 055 & RG 1.65 Not stated Not stated ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated Not stated	exam category B-G-1, recommendations of RICSIL 055, & replacement in accordance with RG 1.65 CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service Non-significant because not exposed to corrosive environment 2 Non-significant because not exposed to flowing liquid NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1 Non-significant because not extrapolation because shift in reference temperature due to neutron exposure is <11 deg C Non-significant because not subjected to corrosive environment 2 CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-25 to 4- 27 4-27, 4-28 5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
RIČSIL 055 & RG 1.65 Not stated Not stated ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated Not stated	recommendations of RICSIL 055, & replacement in accordance with RG 1.65 CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service Non-significant because not exposed to corrosive environment 2 Non-significant because not exposed to flowing liquid NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1 Non-significant because shift in reference temperature due to neutron exposure is <11 deg C Non-significant because not subjected to corrosive environment 2 CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-25 to 4- 27 4-27, 4-28 5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
1.65 Not stated Not stated Not stated ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated Not stated	replacement in accordance with RG 1.65 CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service Non-significant because not exposed to corrosive environment 2 Non-significant because not exposed to flowing liquid NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1 Non-significant because shift in reference temperature due to neutron exposure is <11 deg C Non-significant because not subjected to corrosive environment 2 CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-25 to 4- 27 4-27, 4-28 5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
Not stated Not stated Not stated ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated	1.65 CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service Non-significant because not 4 exposed to corrosive environment 2 Non-significant because not 4 exposed to corrosive environment 2 Non-significant because not 4 exposed to flowing liquid NRC recommendation: Licensee must verify that plant-specific 1 analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	4-25 to 4- 27 4-27, 4-28 5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
Not stated Not stated ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated Not stated	CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service 4 Non-significant because not 4 exposed to corrosive environment 2 Non-significant because not 4 exposed to corrosive environment 2 Non-significant because not 4 exposed to flowing liquid 1 NRC recommendation: Licensee 5 must verify that plant-specific 1 analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	4-25 to 4- 27 4-27, 4-28 5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
Not stated Not stated ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated Not stated	Iow-alloy steel components subjected to neutron fluences typical of BWR vessel service Non-significant because not exposed to corrosive environment 2 Non-significant because not exposed to corrosive environment 2 Non-significant because not exposed to flowing liquid NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	4-25 to 4- 27 4-27, 4-28 5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
Not stated ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated Not stated	subjected to neutron fluences typical of BWR vessel service Non-significant because not exposed to corrosive environment Non-significant because not exposed to flowing liquid NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatgue usage factor is <1	27 4-27, 4-28 5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
Not stated ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated Not stated	of BWR vessel service Non-significant because not exposed to corrosive environment Non-significant because not exposed to flowing liquid NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	27 4-27, 4-28 5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
Not stated ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated Not stated	Non-significant because not 4 exposed to corrosive environment 2 Non-significant because not 4 exposed to flowing liquid 4 NRC recommendation: Licensee 5 must verify that plant-specific 1 analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	27 4-27, 4-28 5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
Not stated ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated Not stated	exposed to corrosive environment 2 Non-significant because not 4 exposed to flowing liquid NRC recommendation: Licensee Nust verify that plant-specific 1 analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	27 4-27, 4-28 5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated	Non-significant because not 4 exposed to flowing liquid NRC recommendation: Licensee 5 must verify that plant-specific 1 analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	4-27, 4-28 5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
ASME Sect. III, Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated	exposed to flowing liquid NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated	exposed to flowing liquid NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	5-9 to 5- 17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
Subsect. NB reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated	NRC recommendation: Licensee 5 must verify that plant-specific 1 analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	17, 5-20 4-2 to 4-4 4-14 to 4- 24	4
reanalysis of usage factor & ASME Sect. XI, (More) Not stated Not stated	analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1 Non-significant because shift in 4 reference temperature due to neutron exposure is <11 deg C Non-significant because not 4 subjected to corrosive environment 2 CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-2 to 4-4 4-14 to 4- 24	4
factor & ASME Sect. XI, (More) Not stated Not stated Not stated	analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1 Non-significant because shift in 4 reference temperature due to neutron exposure is <11 deg C Non-significant because not 4 subjected to corrosive environment 2 CORR/IASCC is non-significant for low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-2 to 4-4 4-14 to 4- 24	
XI, (More) Not stated Not stated Not stated	extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1 Non-significant because shift in 4 reference temperature due to neutron exposure is <11 deg C Non-significant because not 4 subjected to corrosive environment 2 CORR/IASCC is non-significant for 4- low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-14 to 4- 24	
XI, (More) Not stated Not stated Not stated	transients & including effects of environment, demonstrate that fatigue usage factor is <1 Non-significant because shift in 4 reference temperature due to neutron exposure is <11 deg C Non-significant because not 4 subjected to corrosive environment 2 CORR/IASCC is non-significant for 4 low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-14 to 4- 24	
Not stated Not stated Not stated	environment, demonstrate that fatigue usage factor is <1 Non-significant because shift in 4 reference temperature due to neutron exposure is <11 deg C Non-significant because not 4 subjected to corrosive environment 2 CORR/IASCC is non-significant for 4 low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-14 to 4- 24	
Not stated	fatigue usage factor is <1	4-14 to 4- 24	
Not stated	Non-significant because shift in 4 reference temperature due to 1 neutron exposure is <11 deg C	4-14 to 4- 24	
Not stated	reference temperature due to neutron exposure is <11 deg C Non-significant because not 4 subjected to corrosive environment 2 CORR/IASCC is non-significant for 4 low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-14 to 4- 24	
Not stated	neutron exposure is <11 deg C	24	
Not stated	Non-significant because not 4 subjected to corrosive environment 2 CORR/IASCC is non-significant for 4 low-alloy steel components 5 subjected to neutron fluences typical 6 BWR vessel service 6	24	
Not stated	subjected to corrosive environment 2: CORR/IASCC is non-significant for 4- low-alloy steel components subjected to neutron fluences typical of BWR vessel service	24	4
	CORR/IASCC is non-significant for 4- low-alloy steel components subjected to neutron fluences typical of BWR vessel service		
	low-alloy steel components subjected to neutron fluences typical of BWR vessel service	4-24, 4-25	
Vot stated	subjected to neutron fluences typical of BWR vessel service		4
lot stated	of BWR vessel service		
Not stated			
Not stated			
	Non-significant because not 4-	4-25 to 4-	4
	subjected to coolant environment 2	27	
Not stated		07.000	
IOT STATED		4-27, 4-28	4
SME Sect. III.	exposed to flowing liquid		
	1	5-9 to 5-	4
Subsect. NB		17, 5-28,	
eanalysis of usage		5-29	
actor.	extrapolation of an enveloping set of		
	operating conditions, demonstrate		
lat atota d			
		1-2 to4-4	4
	identitied in 10CFR 50 Appendix H		
	requiring surveillance program		
		-18, 5-19	5
	NRC review.		
		1	
			_
iot stated	CORR/IASCC is non-significant for 4-	-24, 4-25	5
	SS and Ni-Cr-Fe alloy components		
	because total fast neutron fluence		
	within the license renewal term is		
	<10^20 n/cm^2 for highly stressed		
	components & <5 x10^20 n/cm^2 for		
	<68 MPa.		
lot stated	Non-significant because SS or Ni 4-	-25 to 4-	5
	alloy is resistant to CORR 27	7	
lot stated			
OI STATED		-27, 4-28	53
1	and/or relatively low flow	[,]	
	1		
1			
	lot stated elect plant-specific ging management lan comprising of ualified inspec. More) lot stated	that fatigue usage factor is <1	that fatigue usage factor is <1

Document: IR 9	0-02, BWR Pressure Vessel In	dustry Report
Reviewed by:	O. Chopra/D. Gavenda, ANL	
Ham Custom	Structure/Comp	Subcomponent

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	
54	BWR Pressure Vessel	Attachment Welds	Not stated	SS,Alloy 182	Not stated	FAT	Cumulative tatigue damage
- 1	BWR Pressure Vessel	Nozzles	Feedwater	SA508-CI2	Not stated	EMBR/IR	Loss of fracture toughness
56	BWR Pressure Vessel	Nozzies	Feedwater	SA508-CI2	Not stated	CORR/IGSCC	Crack initiation & growth
57	BWR Pressure Vessel	Nozzies	Feedwater	SA508-Cl2	Not stated	CORR/IASCC	Crack initiation & growth
58	BWR Pressure Vessel	Nozzies	Feedwater	SA508-CI2	Not stated	CORR	Loss of material, corrosion produc buildup
59	BWR Pressure Vessel	Nozzles	Feedwater	SA508-Cl2	Not stated	ERO/CORR	Wall thinning, los material
60	BWR Pressure Vessel	Nozzles	Feedwater	SA508-CI2	Not stated	FAT	Cumulative fatigu damage
61	BWR Pressure Vessel	Nozzles	BWR/2CRDRL uncapped	SA508-Cl2	Not stated	EMBR/IR	Loss of fracture toughness
62	BWR Pressure Vessel	Nozzles	BWR/2CRDRL uncapped	SA508-Ci2	Not stated	CORR/IGSCC	Crack initiation & growth
63	BWR Pressure Vessel	Nozzles	BWR/2CRDRL uncapped	SA508-CI2	Not stated	CORR/IASCC	Crack initiation & growth
64	BWR Pressure Vessel	Nozzles	BWR/2CRDRL uncapped	SA508-Cl2	Not stated	CORR	Loss of material, corrosion produc buildup
65	BWR Pressure Vessel	Nozzies	BWR/2CRDRL uncapped	SA508-CI2	Not stated	ERO/CORR	Wall thinning, lo: material
66	BWR Pressure Vessel	Nozzies	BWR/2CRDRL uncapped	SA508-Cl2	Not stated	FAT	Cumulative fatig damage
67	BWR Pressure Vessel	Nozzies	BWR/5 LPCI	SA508-Cl2	Not stated	EMBR/IR	Loss of fracture toughness

۰.

Document: IR 90-02, BWR Pressure Vessel industry Report Reviewed by: O. Chopra/D. Gavenda, ANL Effect of Ading on Component Function Contrib to Failure

Loss of pressure boundary.	nction Contrib to Failure		Rel.progs	Report Recommendations	Page No.	Itel
Loss of pressure boundary.	Not stated	Non-significant	1	NRC recomm.: Licensee must verif	y 4-5 to 4-	5
		because no fatigue		that plant-specific analyses based	13	
		cracking expected		on conservative extrapolation of an	1	
		under operating		enveloping set of transients &		1
		conditions		including effects of environment,		
				demonstrate that usage factor is <1.		1
Loss of pressure boundary.	Not stated	Not stated		Non-significant because neutron	4-2 to 4-4	5
	1			fluence is <10^17 n/cm^2 the level		٦
				identified in 10CFR 50 Appendix H	1	
Loss of pressure boundary.	Not stated		<u> </u>	requiring surveillance program		
	NOT STATED	ASME Sect. XI,		ASME Sect. XI, Subsect. IWB	5-18, 5-21	50
		Subsect. IWB		inspection and testing programs;	1	
		augmented by		exam. categories B-D & B-F,		1
		NUREG 0313 &		additional requirements of NUREG		
		Generic letter 88-01		0313 implemented by Generic letter		
				88-01		
Loss of pressure boundary.	Not stated	Not stated	1	CORR/IASCC is non-significant for	4-24, 4-25	5
			1	low-alloy steel components	4 24, 4 25	"
				subjected to neutron fluences typical	.	
oss of pressure boundary.	Not stated	A high adapted		of BWR vessel service		L
Loss of pressure boundary.	NOT STATED	Not stated		Non-significant because the	4-25 to 4-	58
				components are internally clad with	27	
				SS which is resistant to corrosion		
oss of pressure boundary.	Not stated	Not stated		Non-significant because SS or Ni	4-27, 4-28	59
				alloy cladding are resistant to ERO/		
				CORR and/or relatively low flow		
oss of pressure boundary.	Not stated	ASME Sect. III.		NRC recommendation: Licensee	5-9 to 5-	60
		Subsect, NB				60
				must verify that plant-specific	17, 5-21	
		reanalysis of usage		analyses based on conservative		
		factor & ASME Sect.		extrapolation of an enveloping set of		
		XI, (More)		transients & including effects of		
•				environment, demonstrate that	1 1	
				fatigue usage factor is <1	i I	
oss of pressure boundary.	Not stated	Not stated		Non-significant because neutron	4-2 to 4-4	61
				fluence is <10^17 n/ cm^2 the level		
				identified in 10CFR 50 Appendix H	1	
				requiring surveillance program		
oss of pressure boundary.	Not stated	ASME Sect. XI.				
······································	Horotalda			ASME Sect. XI, Subsect. IWB	5-18, 5-21	62
		Subsect_IWB		inspection and testing programs;		
		augmented by		exam. categories B-D & B-F	. 1	
		NUREG 0313 &		additional requirements of NUREG		
		Generic letter 88-01		0313 implemented by Generic letter		
				88-01	. [
oss of pressure boundary.	Not stated	Not stated		CORR/IASCC is non-significant for	4-24, 4-25	63
				low-alloy steel components		
				subjected to neutron fluences typical		
	1			of BWR vessel service		i
oss of pressure boundary.	Not stated	Not stated			105 10 1	
F	, lot out ou	Not Stated			4-25 to 4-	64
				components are internally clad with	27	
				SS which is resistant to corrosion		
oss of pressure boundary.	Not stated	Not stated			4-27, 4-28	65
				alloy cladding are resistant to	1	
				ERO/CORR and/or relatively low		
				flow		
oss of pressure boundary.	Not stated	Current practices to			5-9 to 5-	66
		be enhanced, select				
		plant-specific aging			17, 5-23	1
		management		1		1
		program				
oss of pressure boundary.	Not stated			1100		
oss of pressure boundary.	I NOL SIZIOO	Verification of			5-3 to 5-9	67
		integrity by			5-24	
		requirements of		all other accessible welds required		
		Appendices G & H		by ASME Sect. XI. Exceptions for		
	1	of 10CFR50 &		license renewal will be reviewed on		
1		(More)		a case by case basis.	1	

Document: IR 9	0-02, BWR Pressure Vessel In	dustry Report
Reviewed by:	O. Chopra/D. Gavenda, ANL	
Item System	Structure/Comp	Subcompon

	System	Structure/Comp		Materials	Manufacturer	ARD mechanism	ARD effects
68	BWR Pressure Vessel	Nozzles	BWR/5 LPCI	SA508-Ci2	Not stated	CORR/IGSCC	Crack initiation & growth
69	BWR Pressure Vessel	Nozzles	BWR/5 LPCI	SA508-Cl2	Not stated	CORR/IASCC	Crack initiation & growth
70	BWR Pressure Vessel	Nozzies	BWR/5 LPCI	SA508-CI2	Not stated	CORR	Loss of material, corrosion product buildup
71	BWR Pressure Vessel	Nozzies	BWR/5 LPCI	SA508-C12	Not stated	ERO/CORR	Wall thinning, loss material
72	BWR Pressure Vessel	Nozzies	BWR/5 LPCI	SA508-Cl2	Not stated	FAT	Cumulative fatigue damage
73	BWR Pressure Vessel	Nozzles	All Other	SA508-Ci2	Not stated	EMBR/IR	Loss of fracture toughness
74	BWR Pressure Vessel	Nozzles	All Other	SA508-CI2	Not stated	CORR/IGSCC	Crack initiation & growth
75	BWR Pressure Vessel	Nozzies	All Other	SA508-CI2	Not stated	CORR/IASCC	Crack initiation & growth
76	BWR Pressure Vessel	Nozzles	All Other	SA508-Cl2	Not stated	CORR	Loss of material, corrosion product buildup
77	BWR Pressure Vessel	Nozzies	All Other	SA508-Cl2	Not stated	ERO/CORR	Wall thinning, loss material
78	BWR Pressure Vessel	Nozzles	All Other	SA508-Cl2	Not stated	FAT	Cumulative fatigue damage
79	BWR Pressure Vessel	Safe Ends	BWR/2CRDRL	CS, SB-166	Not stated	EMBR/IR	Loss of fracture toughness
80	BWR Pressure Vessel	Safe Ends	BWR/2CRDRL	CS, SB-166	Not stated	CORR/IGSCC	Crack initiation & growth
81	BWR Pressure Vessel	Safe Ends	BWR/2CRDRL	CS, SB-166	Not stated	CORR/IASCC	Crack initiation & growth

Document: IR 90-02, BWR Pressure Vessel Industry Report Reviewed by: O. Chopra/D. Gavenda, ANL

Effect of Aging on Component Function	n Contrib to Failure	Reported progs	Rel.progs	Report Recommendations	Page No.	
oss of pressure boundary.	Not stated	ASME Sect. XI.		ASME Sect. XI, Subsect. IWB	5-18, 5-21	6
		Subsect IWB		inspection and testing programs;		
		augmented by		exam. categories B-D & B-F,		
		NUREG 0313 &		additional requirements of NUREG		
		Generic letter 88-01		0313 implemented by Generic letter		
			[88-01		
oss of pressure boundary.	Not stated	Not stated		CORR/IASCC is non-significant for	4-24, 4-25	6
loss of pressure boundary.	NOTSIAIOG	NOT STATEG		low-alloy steel components		
				subjected to neutron fluences typical		ł
				of BWR vessel service		
		1 1 1 - 4 - 4 - 4 - 4		Non-significant because the	4-25 to 4-	7
oss of pressure boundary.	Not stated	Not stated			27	
				components are internally clad with	21	
			İ	SS which is resistant to corrosion		
oss of pressure boundary.	Not stated	Not stated		Non-significant because SS or Ni	4-27, 4-28	
				alloy cladding are resistant to ERO/		
				CORR and/or relatively low flow		
	Not stated	Design basis or		NRC recommendation: Licensee	5-9 to 5-	7
oss of pressure boundary.	NULSIALEU	plant specific fatigue		must verify that plant-specific	17. 5-21	
				analyses based on conservative	11,021	
		usage factor is		extrapolation of an enveloping set of		
		<0.25 for CS in high	1	extrapolation of an enveloping set of		i .
		stress		transients & including effects of		
				environment, demonstrate that		
				fatigue usage factor is <1		
oss of pressure boundary.	Not stated	Not stated		Non-significant because neutron	4-2 to 4-4	
Loss of pressure boundary.	Not oblige		1	fluence is <10^17 n/ cm^2 the level		
			1	identified in 10CFR 50 Appendix H		
			1		1	
	i		ļ	requiring surveillance program	5 49 5 01	
oss of pressure boundary.	Not stated	ASME Sect. XI,		ASME Sect. XI, Subsect. IWB	5-18, 5-21	1
		Subsect. IWB		inspection and testing programs;	1	
		augmented by	1	exam. categories B-D & B-F,		
		NUREG 0313 &		additional requirements of NUREG		
		Generic letter 88-01		0313 implemented by Generic letter		1
			1	88-01		
	hist stated	Not stated		CORR/IASCC is non-significant for	4-24, 4-25	
Loss of pressure boundary.	Not stated	Not stated		low-alloy steel components		
				subjected to neutron fluences typical		
				of BWR vessel service	1.05 1.1	
Loss of pressure boundary.	Not stated	Not stated		Non-significant because the	4-25 to 4-	1 '
•				components are internally clad with	27	
				SS which is resistant to corrosion		
Loss of pressure boundary.	Not stated	Not stated		Non-significant because SS or Ni	4-27 4-28	4
Loss of pressure boundary.	not stated	10000000		alloy cladding are resistant to ERO/		
				CORR and/or relatively low flow		
			<u> </u>	NRC recommendation: Licensee	4-5 to 4-	
Loss of pressure boundary.	Not stated	Design basis or			13	
		plant specific fatigue		must verify that plant-specific	13	1
		usage factor is		analyses based on conservative		
		<0.25 for CS in high		extrapolation of an enveloping set of		
		(More)		transients & including effects of		
		· · ·		environment, demonstrate that		
				fatigue usage factor is <1		
	Not stated	Not stated		Non-significant because neutron	4-2 to 4-4	
Loss of pressure boundary.	1,101,300,000			fluence is <10^17 n/cm^2 the level	1	
				identified in 10CFR 50 Appendix H	1	1
				requiring surveillance program, & Ni	-1	
	1	1	1	Cr-Fe alloys are not susceptible to	1	1
				neutron embrittlement at fluence less	7	
				than 10^20 n/cm^2	1	+
Loss of pressure boundary.	Not stated	ASME Sect. XI,		ASME Sect. XI, Subsect. IWB	5-18, 5-26	5
·· F · · · · · · · · · · · · · · · ·		Subsect. IWB	1	inspection and testing programs;	1	
		augmented by	i	exam. categories B-D & B-F,		1
		NUREG 0313 &		additional requirements of NUREG	1	1
		Generic letter 88-01		0313 implemented by Generic letter	i	1
				88-01		
	1		-+		4-24, 4-25	5
Loss of pressure boundary.	Not stated	Not stated		CORR/IASCC is non-significant for		1
				low-alloy steel components		
•				subjected to neutron fluences typica		
	1		1	of BWR vessel service & for Ni alloy	/	1
			1	components because the total fast	1	1
		1		neutron fluence within the license		1

Document: IR 9	0-02, BWR Pressure Vessel in	dustry Report
Reviewed by:	O. Chopra/D. Gavenda, ANL	,
Item System	Structure/Comp	Subcompos

BWR Pressure Vessel	Sate Ends	BWR/2CRDRL	CS, SB-166	Not stated	ARD mechanism	ARD effects
					CORR	Loss of material, corrosion product buildup
BWR Pressure Vessel	Safe Ends	BWR/2CRDRL	CS, SB-166	Not stated	ERO/CORR	Wall thinning, loss material
BWR Pressure Vessel	Safe Ends	BWR/2CRDRL	CS, SB-166	Not stated	FAT	Cumulative fatigue damage
BWR Pressure Vessel	Safe Ends	BWR/5LPCI	SS, SB-166	Not stated	EMBR/IR	Loss of fracture toughness
BWR Pressure Vessel	Safe Ends	BWR/5LPCI	SS, SB-166	Not stated	CORR/IGSCC	Crack initiation & growth
BWR Pressure Vessel	Safe Ends	BWR/5LPCI	SS, SB-166	Not stated	CORR/IASCC	Crack initiation & growth
BWR Pressure Vessel	Safe Ends	BWR/5LPCI	SS, SB-166	Not stated	CORR	Loss of material, corrosion product buildup
BWR Pressure Vessel	Sale Ends	BWR/5LPCI	SS, SB-166	Not stated	ERO/CORR	Wall thinning, loss of material
BWR Pressure Vessel	Safe Ends	BWR/5LPCi	SS, SB-166	Not stated	FAT	Cumulative fatigue damage
BWR Pressure Vessel	Sale Ends	Feed Water	CS, SB-166	Not stated	EMBR/IR	Loss of fracture toughness
BWR Pressure Vessel	Safe Ends	Feed Water	CS, SB-166	Not stated	CORR/IGSCC	Crack initiation & growth
	Vessel BWR Pressure Vessel BWR Pressure Vessel BWR Pressure Vessel BWR Pressure Vessel BWR Pressure Vessel BWR Pressure Vessel BWR Pressure SWR Pressure SWR Pressure SWR Pressure SWR Pressure	Vessel Safe Ends BWR Pressure Safe Ends	Vessel Safe Ends BWR/5LPCI BWR Pressure Safe Ends Feed Water	Vessel Safe Ends BWR/5LPCI SS, SB-166 BWR Pressure Vessel Safe Ends Feed Water CS, SB-166 BWR Pressure Safe Ends Feed Water CS, SB-166 BWR Pressure Safe Ends Feed Water CS, SB-166	Vessel Sale Ends BWR/5LPCI SS. SB-166 Not stated BWR Pressure Vessel Sale Ends BWR/5LPCI SS. SB-166 Not stated BWR Pressure Vessel Sale Ends BWR/5LPCI SS. SB-166 Not stated BWR Pressure Vessel Sale Ends BWR/5LPCI SS. SB-166 Not stated BWR Pressure Vessel Sale Ends BWR/5LPCI SS. SB-166 Not stated BWR Pressure Vessel Sale Ends BWR/5LPCI SS. SB-166 Not stated BWR Pressure Vessel Sale Ends BWR/5LPCI SS. SB-166 Not stated BWR Pressure Vessel Sale Ends BWR/5LPCI SS. SB-166 Not stated BWR Pressure Vessel Sale Ends BWR/5LPCI SS. SB-166 Not stated BWR Pressure Vessel Sale Ends BWR/5LPCI SS. SB-166 Not stated BWR Pressure Vessel Sale Ends Feed Water CS. SB-166 Not stated BWR Pressure Sale Ends Feed Water CS. SB-166 Not stated	Vessel Difference Difference Difference Difference PA1 BWR Pressure Vessel Safe Ends BWR/5LPCI SS, SB-166 Not stated EMBR/IR BWR Pressure Vessel Safe Ends BWR/5LPCI SS, SB-166 Not stated CORR/IGSCC BWR Pressure Vessel Safe Ends BWR/5LPCI SS, SB-166 Not stated CORR/IGSCC BWR Pressure Vessel Safe Ends BWR/5LPCI SS, SB-166 Not stated CORR/IASCC BWR Pressure Vessel Safe Ends BWR/5LPCI SS, SB-166 Not stated CORR BWR Pressure Vessel Safe Ends BWR/5LPCI SS, SB-166 Not stated ERD/CORR BWR Pressure Vessel Safe Ends BWR/5LPCI SS, SB-166 Not stated ERD/CORR BWR Pressure Vessel Safe Ends BWR/5LPCI SS, SB-166 Not stated FAT BWR Pressure Vessel Safe Ends BWR/5LPCI SS, SB-166 Not stated EMBR/IR BWR Pressure Vessel Safe Ends BWR/5LPCI SS, SB-166 Not stated EMBR/IR BWR Pressure Safe Ends Feed

Document: IR 90-02, BWR Pressure Vessel Industry Report Reviewed by: O. Chopra/D. Gavenda, ANL Effect of Aging on Component Function Contrib to Failure Reported progs Rel.progs

Lineer of Aging on Component			Hel.progs	Heport Recommendations	Page No.	
Loss of pressure boundary.	Not stated	Not stated		Non-significant because	4-25 to 4-	82
				components are internally clad with	27	
				SS or fabricated of Ni-Cr-Fe alloy		
Loss of pressure boundary.	Nict stated	Not obtained		which are resistant to corrosion	+	
Loss of pressure boundary.	Not stated	Not stated		Non-significant because SS or Ni	4-27, 4-28	83
				alloy cladding and Ni-Cr-Fe alloys		
				are resistant to E/C and/or relatively low flow		
Loss of pressure boundary.	Not stated	ASME Sect. III.	+	NRC recommendation: Licensee	5-9 to 5-	84
		Subsect NB		must verify that plant-specific	17, 5-26	~
		reanalysis of usage		analyses based on conservative	17, 5-20	
		factor; Sect. XI,		extrapolation of an enveloping set of		
		Subsect. (More)		transients & including effects of		
				environment, demonstrate that		
·				fatigue usage factor is <1		
Loss of pressure boundary.	Not stated	Not stated		Non-significant because neutron	4-2 to 4-4	85
				fluence is <10^17 n/ cm^2 the level		1
				identified in 10CFR 50 Appendix H]	
				requiring surveillance program, and		
				SS and Ni alloys are not susceptible	. j	
				to neutron embrittlement at fluence	1	
1				less than 10^20 n/cm^2		
Loss of pressure boundary.	Not stated	ASME Sect. XI,		ASME Sect. XI, Subsect. IWB	5-18, 5-26	86
		Subsect. IWB		inspection and testing programs;		
		augmented by		exam. categories B-D & B-F,		
		NUREG 0313 &		additional requirements of NUREG	1	
		Generic letter 88-01	ļ	0313 implemented by Generic letter	1	
Loss of pressure boundary.	Not stated			88-01		
Loss of pressure boundary.	NOUSLALED	Not stated	·	CORR/IASCC is non-significant for	4-24, 4-25	87
				SS and Ni-Cr-Fe alloy components		
				because total fast neutron fluence		
				within the license renewal term is		
				<10^20 n/cm^2 for highly stressed		
				components & <5 x10^20 n/cm^2 for		1
				components subjected to stresses		
Loss of pressure boundary.	Not stated	Not stated		Non-significant because the	4-25 to 4-	88
,		101 34160		-		~~
				Ni-Cr-Fe alloy which are resistant to	27	
				corrosion	1 1	
oss of pressure boundary.	Not stated	Not stated		Non-significant because austenitic	4-27, 4-28	89
				SSs and Ni-Cr-Fe alloys are	1	~
				resistant to E/C and/or relatively low	1	
				flow		
Loss of pressure boundary.	Not stated	Design basis or		NRC recommendation: Licensee	4-5 to 4-	90
		plant specific fatigue		must verify that plant-specific	13	
		usage factor is		analyses based on conservative	1 1	
		<0.25 for CS in high		extrapolation of an enveloping set of	1 1	
		(More)		transients & including effects of	1 1	
				environment, demonstrate that		
				fatigue usage factor is <1		
Loss of pressure boundary.	Not stated	Not stated		Non-significant because neutron	4-2 to 4-4	91
				fluence is <10^17 n/ cm^2 the level		
				identified in 10CFR 50 Appendix H		
				requiring surveillance program, & Ni-		
				Cr-Fe alloys are not susceptible to	1	-
				neutron embrittlement at fluence less		
	Nist at 1			than 10^20 n/cm^2		
loss of pressure boundary.	Not stated	ASME Sect. XI		ASME Sect. XI, Subsect. IWB	5-18, 5-26	92
		Subsect. IWB		inspection and testing programs;	· · ·	1
		augmented by		exam. categories B-D & B-F,		
		NUREG 0313 &		additional requirements of NUREG		1
		Generic letter 88-01		0313 implemented by Generic letter		
				88-01		1
		.				
	·				I	1

Page No. Item

Report Recommendations

• .

Document: IR 9	0-02, BWR Pressure Vessel Inc	Justry Report
Reviewed by:	O. Chopra/D. Gavenda, ANL	

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
93	BWR Pressure Vessel	Safe Ends	Feed Water	CS, SB-166	Not stated	CORR/IASCC	growth
	BWR Pressure Vessel	Safe Ends	Feed Water	CS, SB-166	Not stated	CORR	Loss of material, corrosion product buildup
	BWR Pressure Vessel	Safe Ends	Feed Water	CS, SB-166	Not stated	ERO/CORR	Wall thinning, loss material
96	BWR Pressure Vessel	Safe Ends	Feed Water	CS, SB-166	Not stated	FAT	Cumulative fatigue damage
97	BWR Pressure Vessel	Safe Ends	All Other	CS, SB-166	Not stated	EMBR/IR	Loss of fracture toughness
98	BWR Pressure Vessel	Sate Ends	All Other	CS, SB-166	Not stated	CORR/IGSCC	Crack initiation & growth
99	BWR Pressure Vessel	Sate Ends	All Other	CS, SB-166	Not stated	CORRIASCC	Crack initiation & growth
100	BWR Pressure Vessel	Sale Ends	All Other	CS, SB-166	Not stated	CORR	Loss of material, corrosion product buildup
101	BWR Pressure Vessel	Safe Ends	All Other	CS, SB-166	Not stated	ERO/CORR	Wall thinning, loss material
102	BWR Pressure Vessel	Sale Ends	All Other	CS, SB-166	Not stated	FAT	Cumulative fatigue damage
103	BWR Pressure Vessel	Penetrations		SS, SB-167	Not stated	EMBR/IR	Loss of fracture toughness
104	BWR Pressure Vessel	Penetrations	CRD StubTubes	SS, SB-167	Not stated	CORR/IGSCC	Crack initiation & growth

Document: IR 90-02, BWR Pressure Vessel Industry Report Reviewed by: O. Chopra/D. Gavenda, ANL Effect of Aging on Component Function Contrib to Failure

Effect of Aging on Component I Loss of pressure boundary.	Not stated	Not stated	el.progs Report Recommendations	Page No.	-
			Non-significant for low-alloy steels subjected to neutron fluences typica of BWR vessel; & for Ni alloys because total fluence is <10^20 or <5*10^20 n/cm^2; for components subjected to high or <68MPa stresses;		
Loss of pressure boundary.	Not stated	Not stated	Non-significant because the components are internally clad with SS or fabricated of Ni alloy which ar resistant to corrosion	4-25 to 4- 27 8	94
Loss of pressure boundary.	Not stated	Not stated	Non-significant because SS or Ni alloy cladding & Ni-Cr-Fe alloys are resistant to E/C; and/or relatively low flow	4-27, 4-28	95
Loss of pressure boundary.	Not stated	ASME Sect. III, Subsect. NB reanalysis of usage factor; Sect. XI, Subsect. (More)	NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	5-9 to 5- 17, 5-26	96
Loss of pressure boundary.	Not stated	Not stated	Non-significant because neutron fluence is <10^17 n/ cm^2 the level identified in 10CFR 50 Appendix H requiring surveillance program, & Ni Cr-Fe alloys are not susceptible to neutron embrittlement at fluence less than 10^20 n/cm^2		97
Loss of pressure boundary.	Not stated	ASME Sect. XI, Subsect. IWB augmented by NUREG 0313 & Generic letter 88-01	ASME Sect. XI, Subsect. IWB inspection and testing programs; exam. categories B-D & B-F, additional requirements of NUREG 0313 implemented by Generic letter 88-01	5-18, 5-26	98
Loss of pressure boundary.	Not stated	Not stated	Non-significant for low-alloy steels subjected to neutron fluences typical of BWR vessel; & for Ni alloys because total fluence is <10^20 or <5*10^20 n/cm ² /2, for components subjected to high or <68MPa stresses.	4-24, 4-25	99
Loss of pressure boundary.	Not stated	Not stated	Non-significant because the components are internally clad with SS or fabricated of Ni alloy which are resistant to corrosion	4-25 to 4- 27	100
Loss of pressure boundary.	Not stated	Not stated	Non-significant because SS or Ni alloy cladding & Ni-Cr-Fe alloys are resistant to E/C; and/or relatively low flow	4-27, 4-28	101
∟oss of pressure boundary.	Not stated	Design basis or plant specific fatigue usage factor is <0.25 for CS in high (More)	NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	4-5 to 4- 13	102
oss of pressure boundary.	Not stated	Not stated	Non-significant because neutron fluence is <10^17 n/cm^2 the level identified in 10CFR 50 Appendix H requiring surveillance program;& SS and Ni-Cr-Fe alloys are not susceptible to neutron embrittlement at fluence less than 10^20 n/cm^2	4-2 to 4-4	103
oss of pressure boundary.	Not stated	ASME Sect. XI, Subsect. IWB; exam. category B-E	ASME Sect. XI, Subsect. IWB inspection and testing programs; exam. category B-E	5-18, 5-26	104

.

Document: IR 90	0-02, BWR Pressure Vessel Industry Report
Reviewed by:	O. Chopra/D. Gavenda, ANL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects Crack initiation &
105	BWR Pressure Vessel	Penetrations	CRD StubTubes	SS, SB-167	Not stated	CORR/IASCC	Grack initiation &
106	BWR Pressure Vessel	Penetrations	CRD StubTubes	SS, SB-167	Not stated	CORR	Loss of material, corrosion product buildup
107	BWR Pressure Vessel	Penetrations	CRD StubTubes	SS, SB-167	Not stated	ERO/CORR	Wall thinning, loss of material
108	BWR Pressure Vessel	Penetrations	CRD StubTubes	SS, SB-167	Not stated	FAT	Cumulative fatigue damage
109	BWR Pressure Vessel	Penetrations	All Other	SB-167	Not stated	EMBR/IR	Loss of fracture toughness
110	BWR Pressure Vessel	Penetrations	All Other	SB-167	Not stated	CORR/IGSCC	Crack initiation & growth
111	BWR Pressure Vessel	Penetrations	All Other	SB-167	Not stated	CORR/IASCC	Crack initiation & growth
112	BWR Pressure Vessel	Penetrations	All Other	SB-167	Not stated	CORR	Loss of material, corrosion product
11:	Vessel BWR Pressure Vessel	Penetrations	All Other	SB-167	Not stated	ERO/CORR	buildup Wall thinning, loss material
11	BWR Pressure Vessel	Penetrations	All Other	SB-167	Not stated	FAT	Cumulative fatigue damage

Document: IR 90-03, BWR Vessel Internals Industry Report Reviewed by: O. Chopra/D. Gavenda, ANL

•	ora/D. Gavenda, ANL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
System 1 BWR Vessel Internals	Access Hole Cover	Not stated	Alloy 600	Not stated	EMBR/IR	Loss of fracture toughness
 2 BWR Vessel Internals	Access Hole Cover	Not stated	Alloy 600	Not stated	EMBR/TE	Loss of fracture toughness

 Document:
 IR 90-02, BWR Pressure Vessel Industry Report

 Reviewed by:
 O. Chopra/D. Gavenda, ANL

 Effect of Aging on Component Function Contrib to Failure
 Re

Effect of Aging on Component Fun			Rei.progs	Report Recommendations	Page No.	Iten
Loss of pressure boundary.	Not stated	Not stated		CORR/IASCC is non-significant for SS and Ni-Cr-Fe alloy components because total fast neutron fluence within the license renewal term is <10^20 n/cm^2 for highly stressed components & <5 x10^20 n/cm^2 for components subjected to stresses	4-24, 4-25	10
				<68 MPa.		
Loss of pressure boundary.	Not stated	Not stated		Non-significant because the components are fabricated of SS or Ni-Cr-Fe alloy which are very resistant to corrosion	4-25 to 4- 27	106
Loss of pressure boundary.	Not stated	Not stated		Non-significant because austenitic SSs and Ni-Cr-Fe alloys are resistant to E/C and/or relatively low flow	4-27, 4-28	107
Loss of pressure boundary.	Not stated	ASME Sect. III, Subsect. NB reanalysis; ASME Sect. XI, Subsect. IWB, inspection		NRC recommendation: Fatigue usage factor of stub tubes could be as high 0.67 during 40-yr life. More frequent inspections may be needed	5-9 to5- 17, 5-26	108
Loss of pressure boundary.	Not stated	Not stated		Non-significant because neutron fluence is <10^17 n/ cm^2 the level identified in 10CFR 50 Appendix H requiring surveillance program; & Ni- Cr-Fe alloys are not susceptible to neutron embrittlement at fluence less than 10^20 n/ cm^2	4-2 to 4-4	109
Loss of pressure boundary.	Not stated	ASME Sect. XI, Subsect. IWB; exam. category B-E		ASME Sect. XI, Subsect. IWB inspection and testing programs; exam. category B-E	5-18, 5-26	110
Loss of pressure boundary.	Not stated	Not stated		CORR/IASCC is non-significant for Ni alloy components because the total fast neutron fluence within the license renewal term is <10^20 n/ cm^2 for highly stressed components & <5 x 10^20 n/cm^2 for components that are subjected to stresses <68 MPa	4-24, 4-25	111
Loss of pressure boundary.	Not stated	Not stated		Non-significant because the components are fabricated of Ni-Cr- Fe alloy which is resistant to corrosion	4-25 to4- 27	112
Loss of pressure boundary.	Not stated	Not stated		Non-significant because Ni-Cr-Fe alloys are resistant to E/C and/or relatively low flow	4-27, 4-28	113
Loss of pressure boundary.	Not stated	Design basis or plant specific fatigue usage factor is <0.25 for CS in high (More)		NRC recommendation: Licensee must verify that plant-specific analyses based on conservative extrapolation of an enveloping set of transients & including effects of environment, demonstrate that fatigue usage factor is <1	4-5 to 4- 13	114

Document: IR 90-03, BWR Vessel Internals Industry Report Reviewed by: O. Chopra/D. Gavenda, ANL

Effect of Aging on Component Function Contrib to Failure Reported progs **Rel.progs Report Recommendations** Page No. Item Flow blockage, loose part damage. Not stated Not stated Non-significant because even 4-3 to 4-7 though neutron irradiation decreases fracture toughness in Nialloy components, the fracture toughness levels remain adequate even at end of life fluence levels because the applied stresses are юw Flow blockage, loose part damage. Not stated Not stated Non-significant because Ni-alloys 4-3 to 4-7 2 are not susceptible to thermal aging embrittlement

Document: IR 9	0-03, BWR Vessel Internals Inc	lustry Report
Reviewed by:	O. Chopra/D. Gavenda, ANL	
	Obstability / Comp	Cubeemper

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
3	BWR Vessel Internals	Access Hole Cover	Not stated	Alloy 600	Not stated	CORR/IGSCC	Crack initiation & growth
4	BWR Vessel Internals	Access Hole Cover	Not stated	Alloy 600	Not stated	CORR/IASCC	Crack initiation & growth
5	BWR Vessel	Access Hole Cover	Not stated	Alloy 600	Not stated	CORR	Loss of material
6	Internals BWR Vessel Internals	Access Hole Cover	Not stated	Alloy 600	Not stated	ERO/CORR	Wall thinning, loss material
7	BWR Vessel Internals	Access Hole Cover	Not stated	Alloy 600	Not stated	FAT	Cumulative fatigue damage
8	BWR Vessel Internals	Control Blade	Not stated	ss	Not stated	EMBR/IR	Loss of fracture toughness
9	BWR Vessei Internals	Control Blade	Not stated	SS	Not stated	EMBR/TE	Loss of fracture toughness
10	BWR Vessel Internals	Control Blade	Not stated	SS	Not stated	CORR/IGSCC	Crack initiation & growth
11	BWR Vessel Internals	Control Blade	Not stated	SS	Not stated	CORR/IASCC	Crack initiation & growth
12	BWR Vessel Internals	Control Blade	Not stated	ss	Not stated	CORR	Loss of material
13	BWR Vessel Internals	Control Blade	Not stated	SS	Not stated	ERO/CORR	Wall thinning, loss material
14	BWR Vessel Internals	Control Blade	Not stated	SS	Not stated	FAT	Cumulative fatigue damage
15	BWR Vessel Internais	Core Plate	Not stated	SS	Not stated	EMBR/IR	Loss of fracture toughness
16	BWR Vessel	Core Plate	Not stated	ss	Not stated	EMBR/TE	Loss of fracture toughness

Document: IR 90-03, BWR Vessel Internals industry Report Reviewed by: O. Chopra/D. Gavenda, ANL Effect of Aging on Component Function Contrib to Failure Reported progs

Effect of Aging on Component Fun Flow blockage, loose part damage.	Not stated		Rel.progs	Report Recommendations	Page No.	
		Recommendations of GESIL 462S1		GESIL 462S1 recommends volumetric inspections, implementation is plant-specific, & recommended repair is to attach reinforcement hardware	5-10, 5-12	
Flow blockage, loose part damage.	Not stated	Not stated		Total fast neutron fluence within the license renewal term is non- significant because it is <5 x 10 ²⁰ n/ cm ² for low stressed components & <10 ²⁰ n/ cm ² for high-stressed components	4-14 to 4- 20	
Flow blockage, loose part damage.	Not stated	Not stated		Non-significant because corrosion rates are very low	4-21, 4-22	
Flow blockage, loose part damage.	Not stated	Not stated		Non-significant because Ni-alloy are resistant to E/C, and/or low flow rate, and implementation of HWC which requires oxygen addition in the feedwater line to limit E/C		
Flow blockage, loose part damage.	Not stated	Nonsignificant because cyclic stresses are minimal or absent such that (More)		NRC recommendation: Not acceptable without detailed information. Evaluations based on ASME Sect. III, of all safety-related internal components should show a usage of <0.7 for the 60-yr lifetime of the plant	4-8 to 4- 10	
mpair reactor shutdown, loose part damage.	Not stated	Not stated		Non-significant because even though neutron irradiation decreases fracture toughness in SS components, the fracture toughness levels remain adequate even at end of life fluence levels because the applied stresses are low	4-3 to 4-7	1
mpair reactor shutdown, loose part Jamage.	Not stated	Not stated		Non-significant because wrought SS is not susceptible to thermal aging embrittlement	4-3 to 4-7	
mpair reactor shutdown, loose part damage.	Not stated	Guidelines of GESIL 157 and operational parameters monitoring		GESIL 157 routine replacement, operational parameter monitoring are current & effective programs for detection & evaluation-replacement	5-10, 5-12	10
mpair reactor shutdown, loose part damage.	Not stated	Guidelines of GESIL 157 and operational parameters monitoring		GESIL 157 routine replacement, operational parameter monitoring are current & effective programs for detection & evaluation-replacement	5-10, 5-13	11
mpair reactor shutdown, loose part damage.	Not stated	Not stated		Non-significant because corrosion rates are very low	4-21, 4-22	12
mpair reactor shutdown, loose part Jamage.	Not stated	Not stated		Non-significant because SS is resistant to E/C, and/or low flow rate, and implementation of HWC which requires oxygen addition in the feedwater line to limit E/C	4-23, 4-24	13
mpair reactor shutdown, loose part tarnage.	Not stated	Non-significant because cyclic stresses are minimal or absent such that ASME (More)		NRC recommendation: Not acceptable without detailed information. Evaluations based on ASME Sect. III, of all safety-related internal components should show a usage of <0.7 for the 60-yr lifetime of the plant	4-8 to 4- 10	14
Prevent CR insertion.	Not stated	Not stated		Non-significant because even though neutron irradiation decreases fracture toughness in SS components, the fracture toughness levels remain adequate even at end of life fluence levels because the applied stresses are low	4-3 to 4-7	15
Prevent CR insertion.	Not stated	Not stated		Non-significant because wrought SS is not susceptible to thermal aging embrittlement	4-3 to 4-7	16

Document: IR 90	0-03, BWR Vessel Internals Industry Report
Reviewed by:	O. Chopra/D. Gavenda, ANL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	BWR Vessel Internals	Core Plate	Not stated	SS	Not stated	CORR/IGSCC	Crack initiation & growth
18	BWR Vessel Internals	Core Plate	Not stated	ss	Not stated	CORR/IASCC	Crack initiation & growth
	BWR Vessel Internals	Core Plate	Not stated	ss	Not stated	CORR	Loss of material Wall thinning. loss of
	BWR Vessel Internals	Core Plate	Not stated	SS	Not stated	ERO/CORR	material
	BWR Vessel Internals	Core Plate	Not stated	SS	Not stated	FAT	Cumulative fatgue damage
	BWR Vessel internals	Core Shroud & Top Guide	Not stated	SS	Not stated	EMBR/IR	Loss of fracture toughness
23	BWR Vessel Internals	Core Shroud & Top Guide	Not stated	SS	Not stated	EMBR/TE	Loss of fracture toughness
24	BWR Vessel Internals	Core Shroud & Top Guide	Not stated	SS	Not stated	CORR/IGSCC	Crack initiation & growth
25	BWR Vessel Internals	Core Shroud & Top Guide	Not stated	SS	Not stated	CORR/IASCC	Crack initiation & growth
26	BWR Vessel	Core Shroud & Top Guide	Not stated	SS	Not stated	CORR	Loss of material
27	BWR Vessel Internais	Core Shroud & Top Guide	Not stated	SS	Not stated	ERO/CORR	Wall thinning, loss material
28	BWR Vessel Internals	Core Shroud & Top Guide	Not stated	SS	Not stated	FAT	Cumulative fatigue damage
29	BWR Vessel	Core Shroud Head	Not stated	SS, Alloy 600	Not stated	EMBR/IR	Loss of fracture
	Internals	Bolts					toughness

 Document:
 IR 90-03, BWR Vessel internals industry Report

 Reviewed by:
 O. Chopra/D. Gavenda, ANL

 Effect of Aging on Component Function Contrib to Failure
 Reported prime

Effect of Aging on Component Func Prevent CR insertion.	Not stated	Enhance current	Rel.progs	Report Recommendations	Page No.	-
		selecting plant- specific management comprising (More)		This item was not the subject of the NRC review.	5-10, 5-14	1 1
Prevent CR insertion.	Not stated	Not stated		Non-significant for low-alloy steels subjected to neutron fluences typica of BWR vessel; & for Ni alloys because total fluence is <10^20 or <5*10^20 n/cm^2, for components subjected to high or low stresses.	4-14 to 4- 1 20	1
Prevent CR insertion.	Not stated	Not stated		Non-significant because corrosion rates are very low	4-21, 4-22	19
Prevent CR insertion.	Not stated	Not stated		Non-significant because SS is resistant to E/C, and/or low flow rate and implementation of HWC which requires oxygen addition in the feedwater line to limit E/C	4-23, 4-24	20
Prevent CR insertion.	Not stated	Non-significant because cyclic stresses are minimal or absent such that ASME (More)		NRC recommendation: Not acceptable without detailed information. Evaluations based on ASME Sect. III, of all safety-related internal components should show a usage of <0.7 for the 60-yr lifetime o the plant	4-8 to 4- 10	21
Core support loss, prevent CR insertion.	Not stated	Not stated		Non-significant because even though neutron irradiation decreases fracture toughness in SS components, the fracture toughness levels remain adequate even at end of life fluence levels because the applied stresses are low	4-3 to 4-7	22
Core support loss, prevent CR insertion.	Not stated	Not stated		Non-significant because wrought SS is not susceptible to thermal aging embrittlement	4-3 to 4-7	23
ore support loss, prevent CR insertion.	Not stated	Enhance current practices by selecting plant- specific management comprising (More)		This item was not the subject of the NRC review.	5-10, 5- 14, 5-21	24
ore support loss, prevent CR insertion.	Not stated	Enhance current practices by selecting plant- specific aging management plan; (More)		This item was not the subject of the NRC review.	5-10, 5- 14, 5-21	25
ore support loss, prevent CR insertion.	Not stated	Not stated		Non-significant because corrosion rates are very low	4-21, 4-22	26
ore support loss, prevent CR insertion.	Not stated	Not stated		Non-significant because SS is resistant to E/C, and/or low flow rate, and implementation of HWC which requires oxygen addition in the feedwater line to limit E/C	4-23, 4-24	27
ore support loss, prevent CR insertion.	Not stated	Non-significant because cyclic stresses are minimal or absent such that ASME (More)		NRC recommendation: Not acceptable without detailed information. Evaluations based on ASME Sect. III, of all safety-related internal components should show a usage of <0.7 for the 60-yr lifetime of the plant	4-8 to 4- 10	28
amage by shroud head, loss of ECC.	Not stated	Not stated		Non-significant because even though neutron irradiation decreases fracture toughness in SS and Ni- alloy components, the fracture toughness levels remain adequate even at end of life fluence levels because the applied stresses are low	4-3 to 4-7	29

Document: IR 90	0-03, BWR Vessel Internals Industry Report
Reviewed by:	O. Chopra/D. Gavenda, ANL

	System	opra/D. Gavenda, ANL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	BWR Vessel Internals	Core Shroud Head Bolts	Not stated	SS, Alloy 600	Not stated	EMBR/TE	toughness
31	BWR Vessel Internals	Core Shroud Head Bolts	Not stated	SS, Alloy 600	Not stated	CORR/IGSCC	Crack initiation & growth
32	BWR Vessel Internals	Core Shroud Head Bolts	Not stated	SS, Alloy 600	Not stated	CORR/IASCC	Crack initiation & growth
33	BWR Vessel	Core Shroud Head	Not stated	SS, Alloy 600	Not stated	CORR	Loss of material
	Internals BWR Vessel Internals	Bolts Core Shroud Head Bolts	Not stated	SS, Alloy 600	Not stated	ERO/CORR	Wall thinning, loss o material
35	BWR Vessel Internals	Core Shroud Head Bolts	Not stated	SS, Alloy 600	Not stated	FAT	Cumulative fatigue damage
36	BWR Vessel Internals	Core Spray Interanl Piping	Not stated	ss	Not stated	EMBR/IR	Loss of fracture toughness
37	BWR Vessel	Core Spray Internal Piping	Not stated	SS	Not stated	EMBR/TE	Loss of fracture toughness
38	BWR Vessel Internals	Core Spray Internal Piping	Not stated	SS	Not stated	CORR/IGSCC	Crack initiation & growth
39	BWR Vessel Internals	Core Spray Internal Piping	Not stated	SS	Not stated	CORRIASCC	Crack initiation & growth
40	BWR Vessel	Core Spray Internal	Not stated	SS	Not stated	CORR	Loss of material
4	Internals 1 BWR Vessel Internals	Piping Core Spray Internal Piping	Not stated	SS	Not stated	ERO/CORR	Wall thinning, loss material
4:	2 BWR Vessel Internals	Core Spray Internal Piping	Not stated	SS	Not stated	FAT	Cumulative fatigue damage

۰.

Document: IR 90-03, BWR Vessel Internals Industry Report Reviewed by: O. Chopra/D. Gavenda, ANL Effect of Aging on Component Function Contrib to Failure Reported progs

Effect of Aging on Component Function Damage by shroud head, loss of ECC.	Not stated	Not stated	Rel.progs	Report Recommendations	Page No.	_
		Not sizied		Non-significant because wrought S & Ni-alloys are not susceptible to thermal aging embrittlement	S 4-3 to 4-7	30
Damage by shroud head, loss of ECC.	Not stated	Implementation of GESIL 433		GESIL 433 recommends UT examination during outages, implementation is plant-specific, & replacement is with crevice-free	5-10, 5-18	5 3.
Damage by shroud head, loss of ECC.	Not stated	Not stated		design Total fast neutron fluence within the license renewal term is non- significant because it is <5 x 10^20 n/ cm^2 for low stressed	4-14 to 4- 20	32
Damage by shroud head, loss of ECC.	Not stated			components & <10^20 n/cm^2 for high-stressed components		
Damage by shroud head, loss of ECC.		Not stated		Non-significant because corrosion rates are very low	4-21, 4-22	33
	Not stated	Not stated		Non-significant because SS and Ni- alloys are resistant to E/C, and/or low flow rate, and implementation of HWC which requires oxygen addition in the feedwater line to limit E/C		34
Damage by shroud head, loss of ECC.	Not stated	Non-significant because cyclic stresses are minimal or absent such that ASME (More)		NRC recommendation: Not acceptable without detailed information. Evaluations based on ASME Sect. III, of all safety-related internal components should show a usage of <0.7 for the 60-yr lifetime of the plant	4-8 to 4- 10	35
.oss of ECC.	Not stated	Not stated		Non-significant because even though neutron irradiation decreases fracture toughness in SS components, the fracture toughness levels remain adequate even at end of life fluence levels because the	4-3 to 4-7	36
oss of ECC.	Not stated	Not stated		applied stresses are low Non-significant because wrought SS is not susceptible to thermal aging	4-3 to 4-7	37
oss of ECC.	Not stated	Enhance current practices by selecting plant- specific management comprising (More)		embrittlement This item was not the subject of the NRC review.	5-10, 5- 16, 5-17	38
oss of ECC.	Not stated	Not stated	*	significant because it is <5 x 10^20 n/ cm^2 for low stressed components & <10^20 n/cm^2 for	4-14 to 4- 20	39
oss of ECC.	Not stated	Not stated		high-stressed components Non-significant because corrosion rates are very low	4-21, 4-22	40
oss of ECC.	Not stated	Not stated			4-23, 4-24	41
oss of ECC.	Not stated	Non-significant because cyclic stresses are minimal or absent such that ASME (More)		NRC recommendation: Not	4-8 to 4- 10	42

_

Document: IR:	90-03, BWR Vessel Internals Industry Report
Reviewed by:	O, Chopra/D. Gavenda, ANL

	wed by: O. Ch System	opra/D. Gavenda, ANL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
43	BWR Vessel Internals	Core Spray Sparger	Not stated	SS	Not stated	EMBR/IR	Loss of fracture toughness
44	BWR Vessel	Core Spray Sparger	Not stated	SS	Not stated	EMBR/TE	Loss of fracture toughness
		Core Spray Sparger	Not stated	SS	Not stated	CORR/IGSCC	Crack initiation &
45	BWR Vessel Internals	Core Spray Sparger					growth
46	BWR Vessel Internals	Core Spray Sparger	Not stated	SS	Not stated	CORR/IASCC	Crack initiation & growth
47	BWR Vessel	Core Spray Sparger	Not stated	SS	Not stated	CORR	Loss of material
	Internals BWR Vessei	Core Spray Sparger	Not stated	SS	Not stated	ERO/CORR	Wall thinning, loss o
40	internais	Cole Spiay Spager	Notonica				material
49	BWR Vessel Internals	Core Spray Sparger	Not stated	SS	Not stated	FAT	Cumulative fatigue damage
50	BWR Vessel Internals	Control Rod Drive (CRD) Housing	Not stated	SS	Not stated	EMBR/IR	Loss of fracture toughness
- 51	BWR Vessel	Control Rod Drive	Not stated	ss	Not stated	EMBR/TE	Loss of fracture
	internals	(CRD) Housing					toughness
52	BWR Vessel Internals	Control Rod Drive (CRD) Housing	Not stated	SS	Not stated	CORR/IGSCC	Crack initiation & growth
53	BWR Vessel Internals	Control Rod Drive (CRD) Housing	Not stated	SS	Not stated	CORRIASCC	Crack initiation & growth
54	4 BWR Vessel	Control Rod Drive	Not stated	ss	Not stated	CORR	Loss of material
5	Internals 5 BWR Vessel Internals	(CRD) Housing Control Rod Drive (CRD) Housing	Not stated	SS	Not stated	ERO/CORR	Wall thinning, loss material
54	6 BWR Vessel Internals	Control Rod Drive (CRD) Housing	Not stated	SS	Not stated	FAT	Cumulative fatigue damage
					<i>,</i>		

 Document:
 IR 90-03, BWR Vessel Internals Industry Report

 Reviewed by:
 O. Chopra/D. Gavenda, ANL

 Effect of Aging on Component Function Contrib to Failure
 Reported progs

Effect of Aging on Component Func Loss of ECC.	Not stated	Not stated	Rel.progs	Report Recommendations	Page No.	
				Non-significant because even though neutron irradiation decreases fracture toughness in SS components, the fracture toughness		4
				levels remain adequate even at end of life fluence levels because the applied stresses are low		
Loss of ECC.	Not stated	Not stated		Non-significant because wrought SS is not susceptible to thermal aging embrittlement	4-3 to 4-7	4
Loss of ECC.	Not stated	Recommendations of NRC Bulletin 80- 13		NRC Bulletin 80-13 recommends visual inspection during refueling outages; analytical evaluation; & repair	5-10, 5-17	4
	Not stated	Not stated		Total fast neutron fluence within the license renewal term is non- significant because it is <5 x 10^20 n/cm ² for low stressed components & <10^20 n/ cm ² for high-stressed components	4-14 to 4- 20	4
Loss of ECC.	Not stated	Not stated		Non-significant because corrosion rates are very low	4-21, 4-22	47
Loss of ECC.	Not stated	Not stated		Non-significant because SS is resistant to E/C, and/or low flow rate, and implementation of HWC which requires oxygen addition in the feedwater line to limit E/C	4-23, 4-24	48
Loss of ECC.	Not stated	Non-significant because cyclic stresses are minimal or absent such that ASME (More)		NRC recommendation: Not acceptable without detailed information. Evaluations based on ASME Sect. III, of all safety-related internal components should show a usage of <0.7 for the 60-yr lifetime of the plant	4-8 to 4- 10	49
Loss of pressure boundary, prevent CR insertion.	Not stated	Not stated	<u></u>	Non-significant because even though neutron irradiation decreases fracture toughness in SS components, the fracture toughness levels remain adequate even at end of life fluence levels because the applied stresses are low	4-3 to 4-7	50
Loss of pressure boundary, prevent CR nsertion.	Not stated	Not stated		Non-significant because wrought SS is not susceptible to thermal aging embrittlement	4-3 to 4-7	51
Loss of pressure boundary, prevent CR nsertion.	Not stated	ASME Sect. XI, Subsect. IWB			5-10, 5-18	52
Loss of pressure boundary, prevent CR nsertion.	Not stated	Not stated		Total fast neutron fluence within the	4-14 to 4- 20	53
loss of pressure boundary, prevent CR Insertion.	Not stated	Not stated	···		4-21, 4-22	54
oss of pressure boundary, prevent CR nsertion. oss of pressure boundary, prevent CR	Not stated	Not stated		Non-significant because SS is resistant to E/C, and/or low flow rate, and implementation of HWC which requires oxygen addition in the feedwater line to limit E/C	4-23, 4-24	55
isertion.	Not stated	ASME Sect. XI Subsect. IWB & recommendations of NP-5181M & NP- 5836M			5-4 to 5- 10	56

Document: IR 9	0-03, BWR Vessel Internals In	dustry Report
Reviewed by:	O. Chopra/D. Gavenda, ANL	
	·	

	System	Structure/Comp	Subcomponent	Materials	TALL AND A	LEMPS #D	Lines of fraction
	BWR Vessel Internals	Intermediate Range Monitor/ Source Range Monitor(IRM/SRM) Dry Tubes	Not stated	SS	Not stated	EMBR/IR	Loss of fracture toughness
58	BWR Vessei Internals	Intermediate Range Monitor/ Source Range Monitor(IRM/SRM) Dry Tubes	Not stated	SS	Not stated	EMBR/TE	Loss of fracture toughness
59	BWR Vessel Internals	Intermediate Range Monitor/ Source Range Monitor(IRM/SRM) Dry Tubes	Not stated	SS	Not stated	CORR/IGSCC	Crack initiation & growth
60	BWR Vessel Internals	Intermediate Range Monitor/ Source Range Monitor(IRM/SRM) Dry Tubes	Not stated	SS	Not stated	CORR/IASCC	Crack initiation & growth
61	BWR Vessel Internals	Intermediate Range Monitor/ Source Range Monitor(IRM/SRM) Dry Tubes	Not stated	SS	Not stated	CORR	Loss of material
62	BWR Vessel Internals	Intermediate Range Monitor/Source Range Monitor(IRM/SRM) Dry Tubes	Not stated	SS	Not stated	ERO/CORR	Wall thinning, loss material
63	BWR Vessel Internals	Intermediate Range Monitor/ Source Range Monitor(IRM/SRM) Dry Tubes	Not stated	SS	Not stated	FAT	Cumulative fatigue damage
64	BWR Vessel Internals	Jet Pump	Not stated	SS, (CASS), Alloy 600, X750	Not stated	EMBR/IR	Loss of fracture toughness
65	BWR Vessel Internals	Jet Pump	Not stated	SS, (CASS), Alloy 600, X750	Not stated	EMBR/TE	Loss of fracture toughness
66	BWR Vessel Internals	Jet Pump	Not stated	SS, (CASS), Alloy 600, X750	Not stated	CORR/IGSCC	Crack initiation & growth
67	BWR Vessel Internals	Jet Pump	Not stated	SS, (CASS), Alloy 600, X750	Not stated	CORRIASCC	Crack initiation & growth
68	BWR Vessel Internals	Jet Pump	Not stated	SS, (CASS), Alloy 600, X750	Not stated	CORR	Loss of material

•

Document: IR 90-03, BWR Vessel Internals Industry Report Reviewed by: O. Chopra/D. Gavenda, ANL Effect of Aging on Component Function Contrib to Failure

Effect of Aging on Component F Loss of pressure boundary.			Rel.progs	Report Recommendations	Page No.	
	Not stated	Not stated		Non-significant because even though neutron irradiation decreases fracture toughness in SS components, the fracture toughness levels remain adequate even at end of life fluence levels because the applied stresses are low		5
Loss of pressure boundary.	Not stated	Not stated		Non-significant because wrought SS is not susceptible to thermal aging embrittlement	4-3 to 4-7	58
Loss of pressure boundary.	Not stated	Recommendations of GESIL 409		Recommendations of GESIL 409, leakage monitoring, & replacement with crevice-free design and resistant material	5-10, 5-19	59
Loss of pressure boundary.	Not stated	Recommendations of GESIL 409		Recommendations of GESIL 409, leakage monitoring, & replacement with crevice-free design and resistant material	5-10, 5-19	60
Loss of pressure boundary.	Not stated	Not stated		Non-significant because corrosion rates are very low	4-21, 4-22	61
Loss of pressure boundary.	Not stated	Not stated		Non-significant because SS is resistant to E/C, and/or low flow rate, and implementation of HWC which requires oxygen addition in the feedwater line to limit E/C	4-23, 4-24	62
oss of pressure boundary.	Not stated	Non-significant because cyclic stresses are minimal or absent such that ASME (More)		NRC recommendation: Not	4-8 to 4- 10	63
oose part damage.	Not stated	Not stated			4-3 to 4-7	64
oose part damage.	Not stated	Not stated		Non-significant because wrought SS & Ni-alloys are not susceptible to thermal aging embrittlement; CASS components are not subjected to stress levels of sufficient magnitude	4-3 to 4-7	65
oose part damage.	Not stated	Periodic inspection, monitoring pump performance by plant instrumentation, (More)			5-10, 5- 20, 5-21	66
oose part damage.	Not stated	Not stated			4-14 to 4- 20	67
oose part damage.	Not stated	Not stated			4-21, 4-22	68

Page 23B

Document: IR 90	0-03, BWR Vessel Internals Industry Report
Reviewed by:	O. Chopra/D. Gavenda, ANL

em	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
	BWR Vessel Internals	Jet Pump	Not stated	SS, (CASS), Alloy 600, X750	Not stated	ERO/CORR	Wall thinning, loss material
70	BWR Vessel	Jet Pump	Not stated	SS, (CASS), Alioy	Not stated	FAT	Cumulative fatigue
	Internais			600, X750			damage
	BWR Vessel	Low Power Range Monitor (LPRM)	Not stated	SS	Not stated	EMBR/IR	Loss of fracture toughness
	internals						
	BWR Vessel Internals	Low Power Range Monitor (LPRM)	Not stated	SS	Not stated	EMBR/TE	Loss of fracture toughness
73	BWR Vessel Internals	Low Power Range Monitor (LPRM)	Not stated	SS	Not stated	CORR/IGSCC	Crack initation & growth
74	BWR Vessel Internals	Low Power Range Monitor (LPRM)	Not stated	SS	Not stated	CORRIASCC	Crack initation & growth
75	BWR Vessel	Low Power Range Monitor (LPRM)	Not stated	ss	Not stated	CORR	Loss of material
76	BWR Vessel Internals	Low Power Range Monitor (LPRM)	Not stated	SS	Not stated	ERO/CORR	Wall thinning, loss material
77	BWR Vessel Internals	Low Power Range Monitor (LPRM)	Not stated	SS	Not stated	FAT	Cumulative fatigue damage
78	BWR Vessel Internals	Orificed Fuel Support	Not stated	SS,CASS	Not stated	EMBR/IR	Loss of fracture toughness
79	BWR Vessei Internals	Orificed Fuel Support	Not stated	SS,CASS	Not stated	EMBR/TE	Loss of fracture toughness
80	BWR Vessel Internals	Orificed Fuel Support	Not stated	SS,CASS	Not stated	CORR/IGSCC	Crack initiation & growth
81	BWR Vessel Internals	Orificed Fuel Support	Not stated	SS,CASS	Not stated	CORR/IASCC	Crack initiation & growth
	BWR Vessel	Orificed Fuel	Not stated	SS,CASS	Not stated	CORR	Loss of material

Document: IR 90-03, BWR Vessel Internals Industry Report	
Reviewed by: O. Chopra/D. Gavenda, ANL	
Effect of Aging on Component Function Contrib to Failure	Reported progs

Effect of Aging on Component Fu Loose part damage.	Not stated		Rel.progs	Report Recommendations	Page No.	-
	NOT STATED	Not stated		Non-significant because SS & Ni- alloys are resistant to E/C, and/or low flow rate, and implementation of HWC which requires oxygen addition in the feedwater line to limit E/C		4 6
Loose part damage.	Not stated	Periodic inspection, monitoring pump performance by plant instrumentation, (More)		NRC recommendation: Not acceptable without detailed information. Evaluations based on ASME Sect. III, of all safety-related internal components should show a usage of <0.7 for the 60-yr lifetime o the plant	5-4 to 5- 10	70
Loss of pressure boundary.	Not stated	Not stated		Non-significant because even though neutron irradiation decreases fracture toughness in SS components, the fracture toughness levels remain adequate even at end of life fluence levels because the applied stresses are low	1	7.
Loss of pressure boundary.	Not stated	Not stated		Non-significant because wrought SS is not susceptible to thermal aging embrittlement		72
	Not stated	Non-significant because LPRMs are replaced due to limited operating life		NRC recommendation: Demonstrate how LPRMs can be qualified in view of Millstone Unit 1 experience		73
Loss of pressure boundary.	Not stated	Not stated		Total fast neutron fluence within the license renewal term is non- significant because it is <5 x 10^20 n/ cm^2 for low stressed components & <10^20 n/ cm^2 for high-stressed components	4-14 to 4- 20	74
Loss of pressure boundary.	Not stated	Not stated		Non-significant because corrosion rates are very low	4-21, 4-22	75
Loss of pressure boundary.	Not stated	Not stated		Non-significant because SS is resistant to E/C, and/or low flow rate, and implementation of HWC which requires oxygen addition in the feedwater line to limit E/C	4-23, 4-24	76
oss of pressure boundary.	Not stated	Non-significant because LPRMs are replaced due to limited operating life		NRC recommendation: Not acceptable without detailed information. Evaluations based on ASME Sect. III, of all safety-related internal components should show a usage of <0.7 for the 60-yr lifetime of the plant	4-8 to 4- 10	77
Tow blockage, loose part damage.	Not stated	Not stated		Non-significant because even though neutron irradiation decreases fracture toughness in SS components, the fracture toughness levels remain adequate even at end of life fluence levels because the applied stresses are low	4-3 to 4-7	78
low blockage, loose part damage.	Not stated	Not stated		Non-significant because wrought SS is not susceptible to thermal aging embrittlement: CASS components are not subjected to stress levels of sufficient magnitude	4-3 to4-7	79
low blockage, loose part damage.	Not stated	Not stated		Non-significant because made of CASS, and/or subjected to low	4-11 to 4- 20	80
low blockage, loose part damage.	Not stated	Not stated		stresses Non-significant for low-alloy steels subjected to neutron fluences typical of BWR vessel; & for Ni alloys because total fluence is <10^20 or <5*10^20 n/cm^2, for components subjected to high or low stresses.	4-14 to 4- 20	81
iow blockage, loose part damage.	Not stated	Not stated		Alan and a second second second second second second second second second second second second second second s	4-21, 4-22	82

	wed by: O. Chor System	ora/D. Gavenda, ANL Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects Wall thinning, loss of
	BWR Vessel Internals	Orificed Fuel Support	Not stated	SS,CASS	Not stated	ERO/CORR	material
84	BWR Vessel Internals	Orificed Fuel Support	Not stated	SS,CASS	Not stated	FAT	Cumulative fatigue damage

Document: IR 90-03, BWR Vessel Internals industry Report

Document: IR 90-04, PWR Pressure Vessel Industry Report

n i	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
1	PWR Pressure Vessel	Closure Head	Dome	SA302-Gr B, SA533-Gr B	Not stated	EMBR/IR	Loss of fracture toughness
_	PWR Pressure Vessel	Closure Head	Dome	SA302-Gr B, SA533-Gr B	Not stated	CORR/IGSCCUnres olved	Crack initiation & growth
3	PWR Pressure Vessel	Closure Head	Dome	SA302-Gr B, SA533-Gr B	Not stated	CORR	Loss of material, corrosion product buildup
4	PWR Pressure Vessel	Closure Head	Dome	SA302-Gr B, SA533-Gr B	Not stated	CORR/BA	Loss of material
5	PWR Pressure Vessel	Closure Head	Dome	SA302-Gr B, SA533-Gr B	Not stated	ERO/CORR	Wall thinning, los material
6	PWR Pressure	Closure Head	Dome	SA302-Gr B, SA533-Gr B	Not stated	WEAR	Fretting
7	Vessel PWR Pressure Vessel	Closure Head	Dome	SA302-Gr B, SA533-Gr B	Not stated	CREEP	Change in dimension
8	Vessel PWR Pressure Vessel	Closure Head	Dome	SA302-Gr B, SA533-Gr B	Not stated	EMBR/TE	Loss of fracture toughness
9	PWR Pressure Vessel	Closure Head	Dome	SA302-Gr B, SA533-Gr B	Not stated	FATUnresolved	Cumulative fatig damage
10	PWR Pressure Vessel	Closure Head	Flange	SA336, SA508	Not stated	EMBR/IR	Loss of fracture toughness
11	I PWR Pressure Vessel	Closure Head	Range	SA336, SA508	Not stated	CORR/IGSCCUnres	s Crack initiation growth
	2 PWR Pressure Vessel	Ciosure Head	Fiange	SA336, SA508	Not stated	CORR	Loss of materia

.

Document: IR 90-03, BWR Vessel internals industry Report Reviewed by: O. Chopra/D. Gavenda, ANL Effect of Aging on Component Function Contribute Failure

Effect of Aging on Component Functi		Reported progs	Rei.progs	Report Recommendations	Page No.	Item
Flow blockage, loose part damage.	Not stated	Not stated		Non-significant because SS is resistant to E/C, and/or low flow rate, and implementation of HWC which requires oxygen addition in the feedwater line to limit E/C	4-23, 4-24	
Flow blockage, loose part damage.	Not stated	Non-significant because cyclic stresses are minimal or absent such that ASME (More)		NRC recommendation: Not acceptable without detailed information. Evaluations based on ASME Sect. III, of all safety-related internal components should show a usage of <0.7 for the 60-yr lifetime of the plant	4-8 to 4- 10	84

,

 Document:
 IR 90-04.
 PWR Pressure Vessel Industry Report

 Reviewed by:
 Omesh K. Chopra, ANL

 Effect of Aging on Component Function Contrib to Failure
 Reported processes

Effect of Aging on Component F Loss of pressure boundary.	Not stated	Not stated	Rel.progs	Report Recommendations	Page No.	<u>. iter</u>
	NOT STATED	NOT STATED		Non-significant because neutron	4-2 to4-6	
				fluence is low & is <10^17 n/cm^2		
			i i	the level above which a surveillance	1	
Loss of pressure boundary.	Nick shoke of			program is required in Appendix H o 10CFR 50	1	
Loss of pressure boundary.	Not stated	Non-significant		NRC recommendation: Low-	4-11 to 4-	
·		because LAS & SS		temperature sensitization of SS	18	
		cladding (>5%	}	cladding is possible. Evaluate the		
		ferrite) are not		effects of oxygen injection during	1	
	1	susceptible (More)	1	cooldown. SCC of low alloy steel is		
				unlikely in typical PWR environment,	.]	
		_		it may not be true under crevice conditions.		
Loss of pressure boundary.	Not stated	Not stated		Non significant because cladding is	4-21 to 4-	
				resistant to CORR, removal of	24	1 .
				cladding results in very low corrosion		
				rates		
oss of pressure boundary.	Not stated	Implementation of		Recommendations of Generic Letter	5-22 to 5-	
		Generic Letter 88 05		88 05 are current & effective	24	
				program to monitor & control primary		
oss of pressure boundary.	Alek etchi d			coolant leakage		
coss of pressure boundary.	Not stated	Not stated		Non significant because SS or Ni	4-25	5
				alloy cladding are resistant to		
				ERO/CORR, single phase & low		
oss of pressure boundary.	Not stated			flow, & control of water chemistry		
	Not stated	Not stated		Non significant because not subject	4-26, 4-27	e
oss of pressure boundary.	Not stated	Not stated		to relative motion		
		Not Stated		Non significant because operating	4-20	7
oss of pressure boundary.	Not stated	Not stated		temp. <427 C (<800 F)		
		, not out to		Non significant because of proper	4-18 to 4-	8
				material selection & relatively low operating temp.	20	
oss of pressure boundary.	Not stated	Fatigue usage factor		NRC recommendation: Until an	4-7 to 4-	9
		is anticipated to be		agreement is reached on the draft	11	9
		<1 for entire license		staff discussion paper on fatigue,		
		renewal term		the issue is unresolved		
oss of pressure boundary.	Not stated	Not stated		Non significant because neutron	4-2 to 4-6	10
				fluence is low & is <10^17 n/cm^2		10
				the level above which a surveillance		
				program is required in Appendix H of		
				10CFR 50	ŀ	
oss of pressure boundary.	Not stated	Non significant		NRC recommendation: Low-	4-11 to 4-	11
		because LAS & SS		temperature sensitization of SS	18	
		cladding (>5%		cladding is possible. Evaluate the		
		ferrite) are not		effects of oxygen injection during		
		susceptible (More)		cooldown. SCC of low alloy steel is		
				unlikely in typical PWR environment,	. 1	
				it may not be true under crevice conditions.	1	
oss of pressure boundary.	Not stated	Not stated			4-21 to 4-	12
				resistant to CORR, removal of	24	
				cladding results in very low corrosion		1
	1	· I		Irates		

-

Document: IR 90	0-04, PWR Pressure Vesse	I Industry Report
Reviewed by:	Omesh K. Chopra, ANL	

6111	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
13	PWR Pressure	Closure Head	Flange	SA336, SA508	Not stated	CORR/BA	Loss of material
	Vessel						
-		Closure Head	Flange	SA336, SA508	Not stated	ERO/CORR	Wall thinning, loss of
14	PWR Pressure	Closure Head	riange	34330, 34300	101 544.00		material
	Vessel						
1							
15	PWR Pressure	Closure Head	Flange	SA336, SA508	Not stated	WEAR	Fretting
	Vessel						
	D14/D D	Closure Head	Flance	SA336, SA508	Not stated	CREEP	Change in
16	PWR Pressure Vessel	Closule nead	Flange	07000, 07000			dimension
17	PWR Pressure	Closure Head	Flange	SA336, SA508	Not stated	EMBR/TE	Loss of fracture
_''	Vessel			,			toughness
18	PWR Pressure	Closure Head	Flange	SA336, SA508	Not stated	FATUnresolved	Cumulative fatigue
	Vessel						damage
	0000	Oleanne Llacad	Liffing Lugo	SA302 Gr B. SA533	Not stated	EMBR/IR	Loss of fracture
19	PWR Pressure	Closure Head	Lifting Lugs	Gr B	I TOL DUCIDO		toughness
	Vessel						l °
i							
20	PWR Pressure	Closure Head	Lifting Lugs	SA302 Gr B, SA533	Not stated	CORR/IGSCC	Crack initiation &
	Vessel			Gr B	Not stated	CORR	growth Loss of material
21	PWR Pressure	Closure Head	Lifting Lugs	SA302 Gr B, SA533	NOISTATED	CONN	Logs of matorial
	Vessel	Olympic Used	Liffing Lugo	Gr B SA302 Gr B, SA533	Not stated	CORR/BA	Loss of material
22	PWR Pressure	Closure Head	Lifting Lugs	Gr B	NOTSIZIEG		
0.2	Vessel PWR Pressure	Closure Head	Lifting Lugs	SA302 Gr B, SA533	Not stated	ERO/CORR	Wall thinning, loss
23	Vessel	CIUSUIE HEAD		Gr B			material
24	PWR Pressure	Closure Head	Lifting Lugs	SA302 Gr B, SA533	Not stated	WEAR	Fretting
24	Vessel			Gr B			
25	PWR Pressure	Closure Head	Lifting Lugs	SA302 Gr B, SA533	Not stated	CREEP	Change in
	Vessel			Gr B		ELIDD CE	dimension Loss of fracture
26	PWR Pressure	Closure Head	Lifting Lugs	SA302 Gr B, SA533	Not stated	EMBR/TE	toughness
	Vessel			Gr B			100grillioss
	PWR Pressure	Closure Head	Lifting Lugs	SA302 Gr B, SA533	Not stated	FATUnresolved	Cumulative fatigue
21	Vessel	Cicable ridud	Lining Lage	Gr B			damage
	10330.						
28	PWR Pressure	Shroud Support	Not stated	SA212 Gr B, SA516	Not stated	EMBR/IR	Loss of fracture
	Vessel	Ring		Gr 70			toughness
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PWR Pressure	Shroud Support	Not stated	SA212 Gr B, SA516	Not stated	CORR/IGSCC	Crack initiation &
20	Vessel	Ring		Gr 70			growth
30	PWR Pressure	Shroud Support	Not stated	SA212 Gr B, SA516	Not stated	CORR	Loss of material
	Vessel	Ring		Gr 70	L		
31	PWR Pressure	Shroud Support	Not stated	SA212 Gr B, SA516	Not stated	CORR/BA	Loss of material
	Vessel	Ring		Gr 70	Not stated	ERO/CORR	Wall thinning, loss
32	PWR Pressure	Shroud Support	Not stated	SA212 Gr B, SA516 Gr 70	14UL SLOUGU		material
	Vessel	Ring Shroud Support	Not stated	SA212 Gr B, SA516	Not stated	WEAR	Fretting
33	PWR Pressure Vessel	Ring	1101 30000	Gr 70			
	PWR Pressure	Shroud Support	Not stated	SA212 Gr B, SA516	Not stated	CREEP	Change in
ىر.	Vessel	Ring		Gr 70			dimension
31	5 PWR Pressure	Shroud Support	Not stated	SA212 Gr B, SA516	Not stated	EMBR/TE	Loss of fracture
	Vessel	Ring		Gr 70	1		toughness
	1						
		1	1	1	1	1	1

.

Document: IR 90-04, PWR Pressure Vessel Industry Report Reviewed by: Ornesh K. Chopra, ANL Effect of Aging on Component Function Contrib to Failure Reported progs

Effect of Aging on Component Function Loss of pressure boundary.	Not stated	Implementation of	Rel.progs	Report Recommendations Recommendations of Generic Letter	Page No.	
,		Generic Letter 88 05		Recommendations of Generic Letter 88 05 are current & effective program to monitor & control primary coolant leakage	24	1:
Loss of pressure boundary.	Not stated	ASME Sect. XI, Subsect. IWB		ASME Sect. XI, Subsect. IWB, examination category B P is current & effective program to manage effects of ERO/CORR	5-24, 5-25	14
Loss of pressure boundary.	Not stated	ASME Sect. XI, Subsect. IWB		ASME Sect. XI, Subsect. IWB, examination category B P is current & effective program to manage effects of WEAR	5-25, 5-26	15
Loss of pressure boundary.	Not stated	Not stated		Non significant because operating temp. <427 C (<800 F)	4-20	16
Loss of pressure boundary.	Not stated	Not stated	· · · · · · · · · · · · · · · · · · ·	Non significant because of proper material selection & relatively low operating temp.	4-18 to 4- 20	17
Loss of pressure boundary.	Not stated	Fatigue usage factor is anticipated to be <1 for entire license renewal term	<u> </u>	NRC recommendation: Until an agreement is reached on the draft staff discussion paper on fatigue, the issue is unresolved	4-7 to 4- 11	18
Damage to reactor vessel & internals.	Not stated	Not stated		Non significant because neutron fluence is low & is <10^17 n/cm^2 the level above which a surveillance program is required in Appendix H of 10CFR 50	4-2 to 4-6	19
Damage to reactor vessel & internals.	Not stated	Not stated		Non significant because not subjected to corrosive environment	4-11 -18	20
Damage to reactor vessel & internals.	Not stated	Not stated		Non significant because not subjected to corrosive environment	4-21 -24	21
Damage to reactor vessel & internals.	Not stated	Not stated		Not susceptible to potential boric acid leak	4-21 -24	22
Damage to reactor vessel & internals.	Not stated	Not stated		Non significant because not in contact with coolant environment	4-25	23
Damage to reactor vessel & internals.	Not stated	Not stated			4-26, 4-27	24
Damage to reactor vessel & internals.	Not stated	Not stated			4-20	25
Damage to reactor vessel & internals.	Not stated	Not stated		Non significant because of proper	4-18 to 4- 20	26
Damage to reactor vessel & internals.	Not stated	Fatigue usage factor is anticipated to be <1 for entire license renewal term		NRC recommendation: Until an	4-7 to 4- 11	27
Prevent control rod insertion.	Not stated	Not stated			4-2 to 4-6	28
Prevent control rod insertion.	Not stated	Not stated			4-11 -18	29
Prevent control rod insertion.	Not stated	Not stated			4-21 -24	30
Prevent control rod insertion.	Not stated	Not stated		A1.4	4-21 -24	31
revent control rod insertion.	Not stated	Not stated			4-25	32
revent control rod insertion.	Not stated	Not stated	······		4-26, 4-27	33
revent control rod insertion.	Not stated	Not stated	<u> </u>		4-20	34
revent control rod insertion.	Not stated	Not stated		Non significant because of proper	4-18 to 4- 20	35

Document: IR 9	0-04, PWR Pressure Vessel Industry Report	t
Reviewed by:	Omesh K. Chopra, ANL	

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	CATI Jac alizant	Cumulative tatigue
36	PWR Pressure Vessel	Shroud Support Ring	Not stated	SA212 Gr B, SA516 Gr 70	Not stated	FATUnresolved	damage
37	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SA182 Types 304 & 316	Not stated	EMBR/IR	Loss of fracture toughness
38	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SA182 Types 304 & 316	Not stated	CORR/IGSCC Unresolved	Crack initiation & growth
39	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SA182 Types 304 & 316	Not stated	CORR	Loss of material corrosion product
40	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SA182 Types 304 & 316	Not stated	CORR/BA	buildup Loss of materia.
41	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SA182 Types 304 & 316	Not stated	ERO/CORR	Wall thinning loss o material
42	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SA182 Types 304 & 316	Not stated	WEAR	Fretting
43	PWR Pressure	Control Rod Drive Mechanism Housing	Not stated	SA182 Types 304 & 316	Not stated	CREEP	Change in dimension
44	Vessel PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SA182 Types 304 & 316	Not stated	EMBR/TE	Loss of fracture toughness
45	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SA182 Types 304 & 316	Not stated	FATUnresolved	Cumulative fatigue damage
46	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SB 166	Not stated	EMBR/IR	Loss of fracture toughness
47	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SB 166	Not stated	CORR/IGSCC Unresolved	Crack initiation & growth
48	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SB 166	Not stated	CORR	Loss of material, corrosion product buildup
4	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SB 166	Not stated	CORR/BA	Loss of material
5(	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SB 166	Not stated	ERO/CORR	Wall thinning, loss ( material
5	1 PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SB 166	Not stated	WEAR	Fretting
5	2 PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SB 166	Not stated	CREEP	Change in dimension
5	Vessel 3 PWR Pressure Vessel	Control Rod Drive Mechanism Housin	Not stated	SB 166	Not stated	EMBR/TE	Loss of fracture toughness

Document: IR 90-04, PWR Pressure Vessel Industry Report Reviewed by: Ornesh K. Chopra, ANL Effect of Aging on Component Function Contrib to Failure Re

Effect of Aging on Component F Prevent control rod insertion.	Not stated		Rel.progs	Report Recommendations	Page No.	. Iter
	Not stated	Fatigue usage factor is anticipated to be <1 for entire license renewal term		NRC recommendation: Until an agreement is reached on the draft staff discussion paper on fatigue,	4-7 to 4- 11	3
Loss of pressure boundary.	Not stated	Not stated		the issue is unresolved Non significant because neutron fluence is low & is <10^17 n/cm^2 the level above which a surveillance program is required in Appendix H o 10CFR 50	4-2 to 4-6	3
Loss of pressure boundary.	Not stated	Implementation of RG 1.44 to avoid sensitization; control of halogens & (More)	· · · ·	NRC recommendation: Evaluate the effects of oxygen injection during cooldown	e 5-20 to 5- 22	3
Loss of pressure boundary.	Not stated	Not stated	<u> </u>	Non significant because SS is resistant to CORR	4-21 to 4- 24	3
Loss of pressure boundary.	Not stated	Implementation of Generic Letter 88 05		Recommendations of Generic Letter 88 05 are current & effective program to monitor & control primary coolant leakage	24	40
loss of pressure boundary.	Not stated	Not stated		Non significant because SS is resistant to ERO/CORR, single phase & low flow, & control of water tchemistry	4-25	4
oss of pressure boundary.	Not stated	Not stated		Non significant because not subject to relative motion	4-26, 4-27	42
	Not stated	Not stated		Non significant because operating temp. <538 C (<1000 F)	4-20	43
oss of pressure boundary.	Not stated	Not stated		Non significant because of proper material selection & relatively low operating temp.	4-18 to 4- 20	44
oss of pressure boundary.	Not stated	ASME Sect. III, Subsect. NB fatigue analysis; ASME Sect. XI, Subsect. IWB (More)		NRC recommendation: Until an agreement is reached on the draft staff discussion paper on fatigue, the issue is unresolved	5-14 to 5- 19	45
oss of pressure boundary.	Not stated	Not stated		Non significant because neutron fluence is low & is <10^17 n/cm^2 the level above which a surveillance program is required in Appendix H of 10CFR 50	4-2 to 4-6	46
oss of pressure boundary.		ASME Sect. XI, Subsect. IWB, examination category B O & plant specific (More)		NRC recommendation: Alloy 600 should be further evaluated; evaluate the potential of cracking of Inconel 182 based on recent experience of Arkansas Nuclear One Unit 1 described in LER 90 021 00	5-20 to 5- 22	47
oss of pressure boundary.	Not stated	Not stated		Non significant because Ni alloy is resistant to CORR	4-21 to 4- 24	48
oss of pressure boundary.	Not stated	implementation of Generic Letter 88 05		Recommendations of Genenc Letter 88 05 are current & effective program to monitor & control primary coolant leakage	5-22 to 5- 24	49
oss of pressure boundary:	Not stated	Not stated			4-25	50
oss of pressure boundary.	Not stated	Not stated			4-26, 4-27	51
oss of pressure boundary.	Not stated	Not stated			4-20	52
iss of pressure boundary.	Not stated	Not stated		Non significant because of proper	4-18 to 4- 20	- <b>5</b> 3

Page 27B

Document: IR 9	0-04, PWR Pressure Vessel In	dustry Report
Reviewed by:	Omesh K. Chopra, ANL	
	Oh	Cubecman

em	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
54	PWR Pressure Vessel	Control Rod Drive Mechanism Housing	Not stated	SB 166	Not stated	FAT Unresolved	Cumulative fatigue damage
55	PWR Pressure Vessel	Refueling Seal Ledge	Not stated	SA212 Gr B, SA516 Gr 70, SA533 Gr B	Not stated	EMBR/IR	Loss of fracture toughness
56	PWR Pressure Vessel	Refueling Seal Ledge	Not stated	SA212 Gr B, SA516 Gr 70, SA533 Gr B	Not stated	CORR/IGSCC Unresolved	Crack initiation & growth
57	PWR Pressure Vessel	Refueling Seal Ledge	Not stated	SA212 Gr B, SA516 Gr 70, SA533 Gr B	Not stated	CORR	Loss of material, corrosion product buildup
58	PWR Pressure Vessel	Refueling Seal Ledge	Not stated	SA212 Gr B, SA516 Gr 70, SA533 Gr B	Not stated	CORR/BA	Loss of material
59	PWR Pressure Vessel	Refueling Seal Ledge	Not stated	SA212 Gr B, SA516 Gr 70, SA533 Gr B	Not stated	ERO/CORR	Wall thinning, loss ( material
60	PWR Pressure Vessel	Refueling Seal Ledge	Not stated	SA212 Gr B, SA516 Gr 70, SA533 Gr B	Not stated	WEAR	Fretting
61	PWR Pressure Vessel	Refueling Seal Ledge	Not stated	SA212 Gr B, SA516 Gr 70, SA533 Gr B	Not stated	CREEP	Change in dimension
62	PWR Pressure Vessel	Refueling Seal Ledge	Not stated	SA212 Gr B, SA516 Gr 70, SA533 Gr B	Not stated	EMBR/TE	Loss of fracture toughness
63	PWR Pressure Vessel	Refueling Seal Ledge	Not stated	SA212 Gr B, SA516 Gr 70, SA533 Gr B	Not stated	FATUnresolved	Curnulative fatigue damage
64	PWR Pressure Vessel	Closure Head Stud Assembly	Not stated	SA 540 B23 or B24, SA 320 L43	Not stated	EMBR/IR	Loss of fracture toughness
65	PWR Pressure Vessel	Closure Head Stud Assembly	Not stated	SA 540 B23 or B24, SA 320 L43	Not stated	CORR/IGSCC	Crack initiation & growth
66	PWR Pressure Vessei	Closure Head Stud Assembly	Not stated	SA 540 B23 or B24, SA 320 L43	Not stated	CORR	Loss of material, corrosion product buildup
67	PWR Pressure Vessel	Closure Head Stud Assembly	Not stated	SA 540 B23 or B24, SA 320 L43	Not stated	CORR/BA	Loss of material
6	3 PWR Pressure Vessel	Closure Head Stud Assembly	Not stated	SA 540 B23 or B24 SA 320 L43	Not stated	ERO/CORR	Wall thinning, loss material
6	9 PWR Pressure Vessel	Closure Head Stud Assembly	Not stated	SA 540 B23 or B24 SA 320 L43	Not stated	WEAR	Fretting
	0 PWR Pressure Vessel	Closure Head Stud Assembly		SA 540 B23 or B24 SA 320 L43		CREEP	Change in dimension
7	1 PWR Pressure Vessel	Closure Head Stud Assembly	Not stated	SA 540 B23 or B24 SA 320 L43	, Not stated	EMBR/TE	Loss of fracture toughness

Document: IR 90-04, PWR Pressure Vessel Industry Report Reviewed by: Omesh K. Chopra, ANL Effect of Aging on Component Function Contrib to Failure Reported

Effect of Aging on Component Loss of pressure boundary.	Not stated	ASME Sect. III.	Rel.progs	Report Recommendations	Page No.	-
Loss of pressure boundary.	Not stated	Subsect. NB fatigue analysis; ASME Sect. XI, Subsect. IWB (More)		NRC recommendation: Until an agreement is reached on the draft staff discussion paper on fatigue, the issue is unresolved	5-14 to 5- 19	5
		Not stated		Non significant because neutron fluence is low & is <10^17 n/cm^2 the level above which a surveillance program is required in Appendix H o 10CFR 50	4-2 to 4-6	5
Loss of pressure boundary.	Not stated	Non significant because LAS & SS cladding (>5% ferrite) are not susceptible (More)		NRC recommendation: Low- temperature sensitization of SS cladding is possible. Evaluate the effects of oxygen injection during cooldown. SCC of low alloy steel is unlikely in typical PWR environment it may not be true under crevice conditions	4-11 to 4- 18	56
Loss of pressure boundary.	Not stated	Not stated		Non significant because cladding is resistant to CORR, removal of cladding results in very low corrosion rates	4-21 to 4- 24	57
Loss of pressure boundary.	Not stated	Not stated		Not susceptible to potential boric acid leak	4-21 -24	58
Loss of pressure boundary.	Not stated	Not stated		Non significant because SS or Ni alloy cladding are resistant to ERO/CORR, single phase & low flow, & control of water chemistry	4-25	59
oss of pressure boundary.	Not stated	Not stated		Non significant because not subject to relative motion	4-26, 4-27	60
Loss of pressure boundary.	Not stated	Not stated		Non significant because operating temp. <427 C (<800 F)	4-20	61
oss of pressure boundary.	Not stated	Not stated		Non significant because of proper material selection & relatively low operating temp.	4-18 to 4- 20	62
oss of pressure boundary.	Not stated	Fatigue usage factor is anticipated to be <1 for entire license renewal term		NRC recommendation: Until an agreement is reached on the draft staff discussion paper on fatigue, the issue is unresolved	4-7 to 4- 11	63
oss of pressure boundary.	Not stated	Not stated		Non significant because neutron fluence is low & is <10^17 n/cm^2 the level above which a surveillance program is required in Appendix H of 10CFR 50	4-2 to 4-6	64
oss of pressure boundary.	Not stated	ASME Sect. XI, Subsect. IWB & Reg. Guide 1,65		ASME Sect. XI, Subsect. IWB, examination category B G 1 & guidelines of Reg. Guide 1.65 are current & effective programs	5-20 to 5- 22	65
oss of pressure boundary.	Not stated	Not stated		Non significant because not	4-21 to 4- 24	66
oss of pressure boundary.	Not stated	Implementation of Generic Letter 88 05		Recommendations of Generic Letter 88 05 are current & effective program to monitor & control primary coolant leakage	5-22 to 5- 24	67
oss of pressure boundary.	Not stated	Not stated			4-25	68
oss of pressure boundary.	Not stated	ASME Sect. XI, Subsect. IWB			5-25, 5-26	69
oss of pressure boundary.	Not stated	Not stated			4-20	70
oss of preșsure boundary.	Not stated	Not stated		Non significant because of proper	4-18 to 4- 20	71

,

_

Document: IR 90	-04, PWR Pressure Vessel Industry Report
Reviewed by:	Omesh K. Chopra, ANL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
72	PWR Pressure Vessel	Closure Head Stud Assembly	Not stated	SA 540 B23 or B24. SA 320 L43	Not stated	FAT Unresolved	Cumulative fatigue damage
73	PWR Pressure Vessel	Vessel	Flange	SA336, SA508	Not stated	EMBR/IR	Loss of fracture toughness
74	PWR Pressure Vessel	Vessel	Flange	SA336, SA508	Not stated	CORR/IGSCC	Crack initiation & growth
75	PWR Pressure Vessel	Vessel	Flange	SA336, SA508	Not stated	CORR	Loss of material, corrosion product buildup
76	PWR Pressure Vessel	Vessel	Flange	SA336, SA508	Not stated	CORR/BA	Loss of material
77	PWR Pressure Vessel	Vessel	Flange	SA336, SA508	Not stated	ERO/CORR	Wall thinning, loss o material
78	PWR Pressure Vessel	Vessel	Flange	SA336, SA508	Not stated	WEAR	Fretting
79	PWR Pressure Vessel	Vessel	Flange	SA336, SA508	Not stated	CREEP	Change in dimension
80	PWR Pressure Vessel	Vessel	Flange	SA336, SA508	Not stated	ÉMBR/TE	Loss of fracture toughness
81	PWR Pressure Vessel	Vessel	Flange	SA336, SA508	Not stated	FAT	Cumulative fatigue damage
82	PWR Pressure Vessel	Vessel	Upper (Nozzle) Shell	SA302 Gr B, SA533 Gr B, SA336, SA508		ÉMBR/IR	Loss of fracture toughness
83	PWR Pressure Vessel	Vessei	Upper (Nozzle) Shell	SA302 Gr B, SA533 Gr B, SA336, SA508		CORR/IGSCC	Crack initiation & growth
84	PWR Pressure Vessel	Vessel	Upper (Nozzle) Shell	SA302 Gr B, SA533 Gr B, SA336, SA508		CORR	Loss of material, corrosion product buildup
85	PWR Pressure Vessel	Vessel	Upper (Nozzle) Shell	SA302 Gr B, SA533 Gr B, SA336, SA508		CORR/BA	Loss of material
86	Vessel PWR Pressure Vessel	Vessel	Upper (Nozzie) Shel	SA302 Gr B, SA533 Gr B, SA336, SA508	Not stated	ÉRO/CORR	Wall thinning, loss of material
87	PWR Pressure Vessel	Vessel	Upper (Nozzie) Shel	SA302 Gr B, SA533 Gr B, SA336, SA508	Not stated	WEAR	Fretting

.

 Document:
 IR 90-04, PWR Pressure Vessel Industry Report

 Reviewed by:
 Omesh K. Chopra, ANL

 Effect of Aging on Component Function Contrib to Failure
 Reported progs

Effect of Aging on Component Loss of pressure boundary.	Not stated	ASME Sect. III,	Rel.progs	Report Recommendations	Page No.	_
Loss of pressure boundary.	Not stated	Subsect. NB fatigue analysis; ASME Sect. XJ, Subsect. IWB (More)		NRC recommendation: Until an agreement is reached on the draft staff discussion paper on fatigue, the issue is unresolved	5-14 to 5- 19	7
		Not stated		Non significant because neutron fluence is low & is <10^17 n/cm^2 the level above which a surveillance program is required in Appendix H o 10CFR 50	4-2 to 4-6	7:
Loss of pressure boundary.	Not stated	Non significant because LAS & SS cladding (>5% ferrite) are not susceptible (More)		NRC recommendation: Low- temperature sensitization of SS cladding is possible. Evaluate the effects of oxygen injection during cooldown. SCC of low alloy steel is unlikely in typical PWR environment it may not be true under crevice conditions.	4-11 to 4- 18	74
Loss of pressure boundary.	Not stated	Not stated		Non significant because not subjected to corrosive environment	4-21 to 4- 24	75
Loss of pressure boundary.	Not stated	Implementation of Generic Letter 88 05		Recommendations of Generic Letter 88 05 are current & effective program to monitor & control primary coolant leakage	24	76
Loss of pressure boundary.	Not stated	ASME Sect. XI, Subsect. IWB		ASME Sect. XI, Subsect. IWB, examination category B P is current & effective program to manage effects of ERO/CORB	5-24, 5-25	77
Loss of pressure boundary.	Not stated	ASME Sect. XI, Subsect. IWB		ASME Sect. XI, Subsect. IWB, examination category B P is current & effective program to manage effects of WEAR	5-25, 5-26	78
oss of pressure boundary.	Not stated	Not stated		Non significant because operating temp. <427 C (<800 F)	4-20	79
loss of pressure boundary.	Not stated	Not stated	·	Non significant because of proper material selection & relatively low	4-18 to 4- 20	80
oss of pressure boundary.	Not stated	Fabgue usage factor is anticipated to be <1 for entire license renewal term		operating temp. NRC recommendation: Until an agreement is reached on the draft staff discussion paper on fatigue, the issue is unresolved	4-7 to 4 - 1	81
oss of pressure boundary.	Not stated	Non significant because fluence is low & is <10^17 n/cm^2 the level above (More)		NRC recommendation: Fluence level 10^17 n/cm^2 is the level above which a surveillance program is required & not the threshold for irradiation damage; & definition of bettline should be consistent with the regulations	4-2 to 4-6	82
oss of pressure boundary.	Not stated	Non significant because LAS & SS cladding (>5% ferrite) are not susceptible (More)			4-11 to 4- 18	83
oss of pressure boundary.	Not stated	Not stated		Non significant because cladding is	4-21 to 4- 24	84
oss of pressure boundary.	Not stated	Not stated			4-21 -24	85
oss of pressure boundary.	Not stated	Not stated			4-25	86
oss of pressure boundary.	Not stated	Not stated		Non significant because not subject a to relative motion	4-26, 4-27	87

•

Page 29B

Document: IR 90-04, PWR Pressure Vessel Industry Report Reviewed by: Omesh K. Chopra, ANL

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects Change in
	PWR Pressure Vessel	Vessel	Upper (Nozzle) Sheli	SA302 Gr B, SA533 Gr B, SA336, SA508	Not stated	CREEP	dimension
89	PWR Pressure Vessel			SA302 Gr B, SA533 Gr B, SA336, SA508		EMBR/TE	Loss of fracture toughness
90	PWR Pressure Vessel	Vessel	Upper (Nozzle) Shell	SA302 Gr B, SA533 Gr B, SA336, SA508	Not stated	FAT	Cumulative fatigue damage
91	PWR Pressure Vessel	100000	Intermediate & Lower Shell	SA302 Gr B, SA533 Gr B, SA336, SA508	Not stated	EMBR/IR	Loss of fracture toughness
92	PWR Pressure Vessel	Vessel	Intermediate & Lower Shell	SA302 Gr B, SA533 Gr B, SA336, SA508		CORR/IGSCC	Crack initiation & growth
93	PWR Pressure Vessel	Vessel	Intermediate & Lower Shell	SA302 Gr B, SA533 Gr B, SA336, SA508		CORR	Loss of material, corrosion product buildup
94	PWR Pressure	Vessel	Intermediate &	SA302 Gr B, SA533		CORR/BA	Loss of material
95	Vessel PWR Pressure Vessel	Vessel	Lower Shell Intermediate & Lower Shell	Gr B, SA336, SA508 SA302 Gr B, SA533 Gr B, SA336, SA508	Not stated	ERO/CORR	Wall thinning, loss material
96	S PWR Pressure	Vessel	Intermediate & Lower Shell	SA302 Gr B, SA533 Gr B, SA336, SA508		WEAR	Fretting
97	Vessel 7 PWR Pressure Vessel	Vessel	Intermediate & Lower Shell	SA302 Gr B, SA533 Gr B, SA336, SA504	Not stated	CREEP	Change in dimension
98	B PWR Pressure Vessel	Vessel	Intermediate & Lower Shell	SA302 Gr B, SA533 Gr B, SA336, SA503		EMBR/TE	Loss of fracture toughness
- 99	9 PWR Pressure Vessel	Vessel	Intermediate & Lower Shell	SA302 Gr B, SA533 Gr B, SA336, SA50		FAT	Cumulative fatigue damage
10	0 PWR Pressure Vessel	Primary Coolant Nozzles* (* Includes safety injection nozzles on some vessels)	Not stated	SA336, SA508	Not stated	EMBR/IR	Loss of fracture tough <b>ness</b>
10	1 PWR Pressure Vessel	Primary Coolant Nozzles" ("Includes safety injection nozzles on some vessels)	Not stated	SA336, SA508	Not stated	CORR/IGSCC	Crack initiation & growth
10	2 PWR Pressure Vessel	Primary Coolant Nozzles" (* Includes safety injection nozzles on some vessels)	Not stated	SA336, SA508	Not stated	CORR	Loss of material, corrosion product buildup

Document: IR 90-04, PWR Pressure Vessel industry Report Reviewed by: Omesh K. Chopra, ANL Effect of Aging on Component Europian Contribute Esilum

Effect of Aging on Component F			Rel.progs	Report Recommendations	Page No.	
Loss of pressure boundary.	Not stated	Not stated		Non significant because operating temp. <427 C (<800 F). No significant effect of irradiation	4-20	8
Loss of pressure boundary.	Not stated	Not stated		Non significant because of proper	4-18 to 4-	8
		No. Oldiod		material selection & relatively low operating temp.	20	
Loss of pressure boundary.	Not stated	Fatigue usage factor		NRC recommendation: Until an	4-7 to 4-	9
		is anticipated to be	1	agreement is reached on the draft	11	
		<1 for entire license		staff discussion paper on fatigue,		
		renewal term	1	the issue is unresolved		
Loss of pressure boundary.	Not stated	Appendices G & H		NRC recommendation: Definition of		9
		of 10CFR50 & RG		beltline should be consistent with the	13	
	1	1.99 & 1.154.		regulations. Effectiveness of ISI of		
		Recom. of NUREG	1	vessel components should be		
	4	0244, SRP (More)	1	addressed & should incorporate		
·	1		1	requirements of ASME Sect. XI, Appendices VII & VIII		
oss of pressure boundary.	Not stated	Non significant		NRC recommendation: Low-	4-11 to 4-	92
Loss of pressure boundary.	NOT STATED	because LAS & SS		temperature sensitization of SS	18	
		cladding (>5%		ciadding is possible. Evaluate the		
	1	ferrite) are not		effects of oxygen injection during		ľ
		susceptible (More)	1	cooldown. SCC of low alloy steel is		
		,		unlikely in typical PWR environment,		
				it may not be true under crevice		
				conditions.		
Loss of pressure boundary.	Not stated	Not stated		Non significant because cladding is	4-21 to 4-	93
				resistant to CORR, removal of	24	
				cladding results in very low corrosion		
			l	rates		l
Loss of pressure boundary.	Not stated	Not stated		Not susceptible to potential boric acid leak	4-21 -24	94
oss of pressure boundary.	Not stated	Not stated		Non significant because SS or Ni	4-25	95
				alloy cladding is resistant to ERO/		
				CORR, single phase & low flow, &		
				control of water chemistry		
Loss of pressure boundary.	Not stated	Not stated		Non significant because not subject to relative motion	4-26, 4-27	
Loss of pressure boundary.	Not stated	Not stated		Non significant because operating	4-20	97
				temp. <427 C (<800 F). No		
	high shake d		<u> </u>	significant effect of irradiation	4-18 to 4-	98
Loss of pressure boundary.	Not stated	Not stated	1	material selection & relatively low	20	1 30
				operating temp.	20	
Loss of pressure boundary.	Not stated	Fatigue usage factor		NRC recommendation: Until an	4-7 to 4-	99
cost of procedure boundary.		is anticipated to be		agreement is reached on the draft	11	
		<1 for entire license		staff discussion paper on fatigue,		ł
		renewal term	1	the issue is unresolved		
Loss of pressure boundary.	Not stated	Non significant		NRC recommendation: Fluence level	4-2 to 4-6	100
		because fluence is		10^17 n/cm^2 is the level above		
		low & is <10^17		which a surveillance program is		
		n/cm^2 the level	1	required & not the threshold for		
		above (More)		irradiation damage; & definition of		
				beltiine should be consistant with the		
				regulations		
Loss of pressure boundary.	Not stated	Non significant		NRC recommendation: Low-	4-11 to 4-	10
		because LAS & SS	1	temperature sensitization of SS cladding is possible. Evaluate the	18	1
		cladding (>5%) (ferrite) are not	1	effects of oxygen injection during		
		susceptible (More)		cooldown. SCC of low alloy steel is		
				unlikely in typical PWR environment,	l ·	ļ
				it may not be true under crevice	1	
				conditions.		
Loss of pressure boundary.	Not stated	Not stated	1	Non significant because cladding is	4-21 to 4-	102
-		1		resistant to CORR, removal of	24	1
				cladding results in very low corrosion	4	1
			1	rates	l	1
		1				1
			1	1	1	1
		1 1	I I	I	1	I

.

Document: IR 9	90-04, PWR Pressure Vessel Ir	ndustry Report
Reviewed by:	Omesh K. Chopra, ANL	
Item System	Structure/Comp	Subcompon

	System	Structure/Comp	Subcomponent	Materials	Manufacturer	ARD mechanism	ARD effects
103	PWR Pressure Vessel	Primary Coolant Nozzles* (* Includes safety injection nozzles on some vessels)	Not stated	SA336, SA508	Not stated	CORR/BA	Loss of material
104	PWR Pressure Vessel	Primary Coolant Nozzles* (* Includes safety injection nozzles on some vessels)	Not stated	SA336, SA508	Not stated	ERO/CORR	Wall thinning, loss material
05	PWR Pressure Vessel	Primary Coolant Nozzles" (* Includes safety injection nozzles on some vessels)	Not stated	SA336, SA508	Not stated	WEAR	Fretting
	PWR Pressure Vessel	Primary Coolant Nozzles" (* Includes safety injection nozzles on some vessels)	Not stated	SA336, SA508	Not stated	CREEP	Change in dimension
07	PWR Pressure Vessel	Primary Coolant Nozzles* (* Includes safety injection nozzles on some vessels)	Not stated	SA336, SA508	Not stated	EMBR/TE	Loss of fracture toughness
08	PWR Pressure Vessel	Primary Coolant Nozzles" (* Includes safety injection nozzles on some vessels)	Not stated	SA336, SA508	Not stated	FAT Unresolved	Cumulative fatigue damage
09	PWR Pressure Vessel	Leakage Monitoring Tubes	Not stated	SA 312 Type 316	Not stated	EMBR/IR	Loss of fracture toughness
110	PWR Pressure Vessel	Leakage Monitoring Tubes	Not stated	SA 312 Type 316	Not stated	CORR/IGSCC	Crack initiation & growth
111	PWR Pressure Vessel	Leakage Monitoring Tubes	Not stated	SA 312 Type 316	Not stated	CORR	Loss of material, corrosion product buildup
112	PWR Pressure Vessel	Leakage Monitoring Tubes	Not stated	SA 312 Type 316	Not stated	CORR/BA	Loss of material
113	PWR Pressure Vessel	Leakage Monitoring Tubes	Not stated	SA 312 Type 316	Not stated	ERO/CORR	Wall thinning, loss of material
	PWR Pressure Vessel	Leakage Monitoring Tubes	Not stated	SA 312 Type 316	Not stated	WEAR	Fretting
	PWR Pressure Vessel	Leakage Monitoring Tubes	Not stated	SA 312 Type 316	Not stated	CREEP	Change in dimension
116	PWR Pressure Vessel	Leakage Monitoring Tubes	Not stated	SA 312 Type 316	Not stated	EMBR/TE	Loss of fracture toughness
117	PWR Pressure Vessel	Leakage Monitoring Tubes	Not stated	SA 312 Type 316	Not stated	FAT	Cumulative fatigue damage
118	PWR Pressure Vessel	Leakage Monitoring Tubes	Not stated	SB 166, SB 167	Not stated	EMBR/IR	Loss of fracture toughness
119	PWR Pressure Vessel	Leakage Monitoring Tubes	Not stated	SB 166, SB 167	Not stated	CORR/IGSCC	Crack initiation & growth