UCRL-ID-114839

Softwar e Reliability and
Safety in Nuclear Reactor
Protection Systems

Prepared by
J. Dennis L awrence

Prepared for
U.S. Nuclear Regulatory Commission

BN FESSP

Fission Energy and Systems Safety Program

Lawrence Livermore National Laboratory

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful ness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

This work was supported by the United States Nuclear Regulatory Commission under a Memorandum of
Understanding with the United States Department of Energy.

UCRL-ID-114839

Softwar e Reliability and
Safety in Nuclear Reactor
Protection Systems

Manuscript date: June 11, 1993

Prepared by
J. Dennis L awrence

L awrence Livermore National Laboratory
7000 East Avenue
Livermore, CA 94550

Prepared for
U.S. Nuclear Regulatory Commission

ABSTRACT

Planning the development, use and regulation of computer systemsin nuclear reactor protection systemsin such a
way as to enhance reliability and safety isacomplex issue. Thisreport is one of a series of reports from the
Computer Safety and Reliability Group, Lawrence Livermore National Laboratory, that investigates different
aspects of computer software in reactor protection systems. There are two central themes in the report. First,
software considerations cannot be fully understood in isolation from computer hardware and application
considerations. Second, the process of engineering reliability and safety into a computer system requires activities to
be carried out throughout the software life cycle. The report discusses the many activities that can be carried out
during the software life cycle to improve the safety and reliability of the resulting product. The viewpoaint is
primarily that of the assessor, or auditor.

CONTENTS

O 1 11 0T [F (o o] o OSSOSO PRTPRRRRR 1
Lo L. PUIMPOSEettiittet ettt sttt h bt et h Rt e e e e R e s e e e et e ae R e e R e R e e R e e Rt ARt R e R e R e e e e e e ae et ene s 1
S oo oS TP P PP T SRRSO 1
1.3, REPOIT OrQANIiZALIONc.eeueeiuereiiertieeiese ettt sttt b h bbb st b et b et b et s b e e b e s e b e s e be et ne bt nbene 2

2. TEIMINOIOOY ...veveteeeuerteueetee ettt st et sttt et se et seebe s e st s b e st eb et eb e e ebeseeb e seeb e 1o eb e Heeb e seeb e e R eh e eben e eb e s e eb et ebeneebeneebeseebeseenenes 3
2.1, SyYStEMS TEMINOIOGYeeiveuerreueereeeteneete st se ettt e bt se bttt b et s b et b et b et b e st e b e se e b e neebeseebesbe bt see st s be st bene b 3
2.2. Software Reliability and Safety TermMiNOlOgYcccreereiriiiriiierieieres e 3

2.2.1. Faults, Errors, and FailUMES..........covi ettt ettt et e et s saeeente e saeeereesbessnteenseeean 3
2.2.2. Reliability and SAfety MEBSUIES.........coiueirieeirieiirieereee ettt 4
2.2.3. SAEY TEIMINOIOGY .. cveutitiirierieteseete sttt sttt b et b et b et b et se et bttt b e erne 5
2.3, LITE CYCIEMOUEIS ...ttt bbb bbbt e bt b et b et bbb 6
2.3. 1. Waaerfall MOOEL ..ot et 7
2.3.2. Phased Implementation MOE! ..o 7
2.3.3. SPIFAl MOUE ... bbb bbbt bbbt e b b 7
2.4. Fault and Failure ClassifiCation SCNEMES.........c.ci ittt 7
2.4.1. FaUIt ClasSifiCaliONS......ccuciieeireeiirieiirte sttt ettt bbb bbbt bt b et b eb 12
2.4.2. Falure ClasSifiCaliONScoureuirieirieirieesieesi ettt bbbttt bbb 14
2.5, SOftWAre QUAITTIES ..ottt sttt st et e e n et et eaeeaeeaeebesbeseeseenbeneeseeneensene 15

3. Life Cycle Software Reliability and Safety ACHVITIEScciviiirieireereereeseseee et 17

3.1, Planning ACHVITIEScviuiieiieteeet ettt bbbttt b bbbt bRt b et bbb 17
3.1.1. Software Project Management Plan............oooiriireineeneeseeesieesee bbb seene i 19
3.1.2 Software Quality ASSUFENCE PLAN ..ot 21
3.1.3. Software Configuration Management Planccoeoiirriine e 23
3.1.4. Software Verification and Validation Plan............ccoeoiiineneneceerieseeese e 26
3.1.5. SOftWAre SAFELY Plac.coiiiiieeeerieeereee ettt ettt 30
3.1.6. Software DevelopMENt PLaN ...t 33
3.1.7. SOftware INTEGration PlaNcociieiieierie et 35
3.1.8. Software INSAllation Plan.........c.ciiiiieie et 36
3.1.9. Software MaiNteNaNCe PlaN..........coieiririiieie ettt 37
3.1.10. SOftware TraiNiNg PLaNcoiiiireiieeere bbbt 38

3.2, REQUIFEMENES ACHIVITIESeueieiietiiet ettt sttt 38
3.2.1. Software Requirements SPECIfiCaIONcccoeririiiriireree e 38
3.2.2. Requirements Safety ANBIYSIS......coiueirieiriei ittt bbb 43

3.3, DESIGN ACHVITIES ..ttt b e e b e e b e bt e h e bt b et b et b st b seeb e st ekt seeb e n e bt nnene e 44
3.3.1. Hardware and Software ArChitECLUIEcoueiriiiriiirieeeee et 45
3.3.2. Software DeSigN SPECITICALIONcerieuirieirieiirieesiee sttt 45
3.3.3. Software Design Safety ANBIYSIScoicuiriirieirieireert et 47

34, IMPIEMENLELiON ACHIVITIES ...ttt b e et st se b e s sne e 48
4.1, COOe SAfELY ANBIYSIS....ccuiiiitiieitirieterieie ettt b et e b e bbbt bbbt b e 48

3.5, INLEGratioN ACHVITIES .. .c.eiiieiieeeiieeeee ettt b et b e eb e e b e e b e b e enesnene e 49
3.5.1. System BUild DOCUMENESccuiriiuiriitirietireeiesiei ettt b bbb bbb ene e 49
3.5.2. Integration SfElY ANBIYSIScoiiiirieirieieriee ettt bbbt 49

3.6, ValidalioN ACHIVITIES......ceitieetiietiriet ettt bbb bbbttt et 49
3.6.1. Validation Safety ANBIYSIS......coeireirieiirieierieirieer et ss bbb 50

3.7, INSLAELON ACHIVITIES.eieceieeeireei ettt b et b et b et eb e e bt e b e b e b st snene e 50
3.7. 1. OPEratioNS MAINUEL........ccoiiitiieetirieieree ettt et ettt b et bt b et eb 50

3.7.2. Installation Configuration TaDIESciiiiririee e 50

3.7.3. TraiNiNG MANUAIS.....ccooiiieieie ettt e bbb bbbt bt bbbt 50
3.7.4. MaINENANCE MANUAIS.coviiitiietiieie ettt b et b st b ettt b ettt b e bt ene e 50
3.7.5. Installation Safety ANBIYSIS......ccociiiirieiriee e e e bbb 50

3.8. Operations and Maintenance Activities—Change Safety ANalYSIS.......cccooevrirreneienecneesees s 51
4. Recommendations, GUIAEIINES, aNA ASSESSIMENL.........ciueiieeiii e et eeteesreeressareesteesresestesssesebessseeebessreeeneesrees 53
A1, Planning ACHVITIES ...c..eiiiieiteiee sttt et st b e e b e bbb bbb bbbt 53
4.1.1. Software Project Management Plan...........coiiiriiniieneeeseee st seene s 53
4.1.2. Software Quality ASSUIaNCE PlaNcoiiiriiirieircn ettt 54
4.1.3. Software Configuration Management Plan ..o 56
4.1.4. Software Verification and Validation Plan...........cccoeiiinnnenerereseeseese e 59
4.1.5. SOFtWArE SAFELY Plancc.oieeiiiieiereeesee ettt e ettt 65
4.1.6. Software DevelOPMENt PLAN ..ot 67
4.1.7. SOftware INTEGration PlaNcocireiieirierie ettt 68
4.1.8. Software INSAllation Plan.........ccciiiiiiii bbb 69
4.1.9. Software MaiNteNaNCE Plan ..ot 70

4.2, REQUITEMENES ACHIVITIES ...ttt bbbt s st b et st ettt 71
4.2.1. Software Requirements SPeCifiCatioNcccoeoereirirnienee e 71
4.2.2. Requirements Safety ANBIYSIS......ccoiciriirieirieie ettt 73

4.3, DESION ACHVITIES ..ttt bbbt b bbbt bbb e s bt e e bt ne e 74
4.3.1. Hardware/Software Architecture SPeCifiCation..........c.coveveirrievninnree e 74
4.3.2. Software DeSign SPECITICALIONcirieuirieirieirierertee et 74
4.3.3. DeSIgN SAFELY ANBIYSIS...c.ciuiiriiieierieereet et b bbbt 75

4.4, IMPIEMENEELION ACHIVITIESc.eitieieeeet ettt bttt b et 76
4.1, COUE LISHINGS. . .eutiteerteeetereete sttt sttt sttt st sttt stttk st b e st b e s b e e bbbt s bt s b et b et be e be et 76
4.4.2. COUE SAfELY ANBIYSIS... ittt ettt ettt bbbt bbb 77

A5, INLEGraliON ACHIVITIESovieiieiietiste et b bbbt b ettt b et e et ne e 78
4.5.1. System BUild DOCUMENEScoiriiuirietirietirieieriei ettt b bbb e 78
4.5.2. Integration SafELY ANBIYSISceiiirieiriee ettt ettt 78

A.6. Validation ACHVITIES......couiieierieie ettt s e b s e bbbt bt b et sttt et 78
4.6.1. Vaidation Safety ANBIYSIS.....coiiirieirieirieiriere sttt bbb 78

A7, INSAlBEION ACHIVITIES......eeuiiiieieieeteet ettt bbb bbbt b et b et e b e s 79
4.7.1. Installation Safety ANBIYSIS......ccociiiirieiree ettt 79
Appendix: TechniCal BaCKGIrOUNG.coiiiiriie ittt et sttt st bbb 81
A.1. Software Fault ToleranCe TEChNIGUES.........ccoi ettt sttt 81
A.1.1. Fault Tolerance and REAUNGANCYcccoeriririeirieienieie ettt s s s 82
A.1.2. General ASPECES Of RECOVENYc.oiuiiriiiiieieiereete sttt st s be s b s 82
A.1.3. Software Fault Tolerance TEChNIQUESuoviirieericerieerie e e 84

A.2. Reliability and Safety Analysis and Modeling TEChNIQUES..........coreereirieerieereese et 87
A.2.1. Reliability BIOCK DIBOIaMScciueeriiiriiisiiieiesie sttt sttt sb 87
A.2.2. FAUIL TIEE ANAIYSIS. .ottt b e ettt et b et b et bt b et b et et seebeseebeseebeneene e 88
A.2.3. EVENE TIEE ANAIYSIS. v ittt et b et b bbbt b ettt sttt 93
A.2.4. Failure Modes and EffeCtS ANAYSIS......ccviiriiiiiriee et 93
A.2.5. MAKOV MOUEIS......cooieiiiii ettt b st st st se b e 95
A.2.6. Pl NELIMOOEIS. ..ottt ettt b e st st st se b e 97
A.3. Reliability GrOWEN MOGEIS ..ot 101
A3 DUBNE MOEL......oeciiiiiee bbbttt bbb et e b seene s 103
A.B.2. MUSBIMOGE ...t bbbttt b et b et 103
A.3.3. LittleWOoOd MOTE!ccueieeiirieieieereeste ettt st st et s seene s 104
A.3.4. MUSa-OKUMOLO MOUE!cooiiiiiiiiiiiriesee ettt st et s 104

LS (= (= 0101 PO PTSTPTSRPSTPRN 107
SEANAAIAS ...ttt bbb bR R bt E R e R e bt bbbt b 107
200 I AN Lo =S g o [= oo o 108
(2] ol 1T To = o] RO O STPTSTPTSPPORPRT 113

vi

Figures

Figure 2-1. Documents Produced During Each Life Cycle Stage.........cooeriririiiinene e 8
Figure 2-2. Waterfall Life CyCle MOOE ..ot e 10
Figure 2-3. Spiral Life CYCIE IMOUE ..ottt se e e e e eneas 11
Figure 3-1. Software Planning ACHVITIEScccuiiiiiieiere sttt bbb bbb bbb e e 18
Figure 3-2. Outline of a Software Project Management Plan ..o e 19
Figure 3-3. Outline of a Software Quality ASSUraNCE Plancoooiiiiieeee e 22
Figure 3-4. Outline of a Software Configuration Management Plan............cooeoeerireieinienerene e 24
Figure 3-5. Verification and Validation ACHVITIES.........ccoceriririiiiiie e e 28
Figure 3-6. Outline of a Software Verification and Validation Plan...........cocooeviienineiiininncneese e 30
Figure 3-7. Outline of a Software Safety Plan..........c.oioiiiiie e e 30
Figure 3-8. Outline of a Software Devel OPMENt Plan ... e 34
Figure 3-9. Outline of a Software INtegration Planc.oiiiorie e e 35
Figure 3-10. Outline of a Software INStallation Plan............cocieeeer e 37
Figure 3-11. Outline of a Software MaintenanCe Plan ... e 37
Figure 3-12. Outline of a Software RequiremMents Plan............cocoiiiiiiiene e 39
Figure A-1. Reliability Block Diagram of @ Simple SYySteM..........coiiiiiiiiiieee e e 89
Figure A-2. Reliability Block Diagram of Single, Duplex, and Triplex Communication Line..........c.cccceeevenuenn 89
Figure A-3. Reliability Block Diagram of Simple System with Duplexed Communication Line............c.ccccceve. 90
Figure A-4. Reliability Block Diagram that Cannot Be Constructed from Serial and Parallel Parts.................... 90
Figure A-5. SIMPIE FAUIT TIEB... ..ttt b e bbb bbb e e b se e e e e e e e e eneas 0
Figure A-6. AND Node Evaluation iN @FaUlt TIEE........coi ittt st 91
Figure A-7. OR Node Evaluation iN @ FaUIt TIEEcciiiiiiiee et s e 91
Figure A-8. Example of @ SOftWare FalIt TIEE........coi it et e 92
Figure A-9. SIMPIE EVENT THEE ...ttt et b e b bbb e e et e b e se e e e e e e e e eneas 93
Figure A-10. A Simple Markov Model of a System with Three CPUS............ccocrrineninene e 95
Figure A-11. Markov Model of a System with CPUS and MEMOFIES.........cccceirerirereniinene e 96
Figure A-12. Simple Markov Model with Varying Faillure Rates............ccoeirriniininenisee e 97
Figure A-13. Markov Model of a Simple System with Transient Faults ... 97
Figure A-14. AN UNMArKed PEtri INELc.ooiiiiii et e bt e e e ene s 99
Figure A-15. Example of aMarked Petri NEL ..o e 99
Figure A-16. The Result Of FiriNg FIQUIE A-15 ...ttt ettt s b s 100
Figure A-17. A Petri Net for the Mutual EXclusion Problem............cccoiiiinieeeeeeeeeesee e 100
Figure A-18. Petri Net for a Railr0ad CrOSSING........coeovereerieieireee sttt sbe e s b b e e 101
Figure A-19. Execution Time Between Successive Failures of an Actual System.........ccccooeorvrininenncnene 102
Tables
Table 2-1. Persistence Classes and Fallt SOUMCES...........coviireririeirieeseese e 12
Table A-1. Failure Rate CalCUIBLION...........ccoiviirieiiteee et 104

vii

ABBREVIATIONSAND ACRONYMS

ANS|
CASE
ccB
cl
cM
CPU
ETA
FBD
FLBS
FMEA
FMECA
FTA
1&C
110
|EEE
MTTF
PDP
PERT
QA
RAM
ROM
SCM
SCMP
SPMP
SQA
SQAP
SRS
Ssp
TMR
UCLA
UPS
V&V
WBS

American National Standards | nstitute
Computer-Assisted Software Engineering
Configuration Control Board
Configuration Item

Configuration Management

Central Processing Unit

Event Tree Analysis

Functional Block Diagram

Functional Level Breakdown Structure
Failure Modes and Effects Analysis
Failure Modes, Effects and Criticality Analysis
Fault Tree Analysis

Instrumentation and Control

I nput/Output

Ingtitute of Electrical and Electronic Engineers
Mean Time To Failure

Previously Developed or Purchased
Program Education and Review Technique
Quality Assurance

Random Access Memory

Read Only Memory

Software Configuration Management
Software Configuration Management Plan
Software Project Management Plan
Software Quality Assurance

Software Quality Assurance Plan
Software Requirements Specification
Software Safety Plan

Triple Modular Redundancy

University of Californiaat Los Angeles
Uninterruptable Power Supply
Verification and Validation

Work Breakdown Structure

viii

EXECUTIVE SUMMARY

The development, use, and regulation of computer systems in nuclear reactor protection systems to enhance
reliability and safety isacomplex issue. Thisreport is one of a series of reports from the Computer Safety and
Reliability Group, Lawrence Livermore National Laboratory, which investigates different aspects of computer
software in reactor protection systems.

There are two central themesin this report. First, software considerations cannot be fully understood in isolation
from computer hardware and application considerations. Second, the process of engineering reliability and saf ety
into a computer system requires activities to be carried out throughout the software life cycle. These two themes
affect both the structure and the content of this report.

Reliability and safety are concerned with faults, errors, and failures. A fault is atriggering event that causes
things to go wrong; a software bug is an example. The fault may cause a change of state in the computer, which is
termed an error. The error remains latent until the incorrect state is used; it then is termed effective. It may then
cause an externally-visible failure. Only the failure is visible outside the computer system. Preventing or correcting
the failure can be done at any of the levels: preventing or correcting the causative fault, preventing the fault from
causing an error, preventing the error from causing afailure, or preventing the failure from causing damage. The
techniques for achieving these goals are termed fault prevention, fault correction, and fault tolerance.

Reliability and safety are related, but not identical, concepts. Reliability, as defined in this report, is ameasure
of how long a system will run without failure of any kind, while safety is a measure of how long a system will run
without catastrophic failure. Thus safety is directly concerned with the consequences of failure, not merely the
existence of failure. As aresult, safety is asystem issue, not simply a software issue, and must be analyzed and
discussed as a property of the entire reactor protection system.

Faults and failures can be classified in several different ways. Faults can be described as design faults,
operational faults, or transient faults. All software faults are design faults; however, hardware faults may occur in
any of the three classes. Thisisimportant in a safety-related system since the software may be required to
compensate for the operational faults of the hardware. Faults can aso be classified by the source of the fault;
software and hardware are two of the possible sources discussed in the report. Others are: input data, system state,
system topology, people, environment, and unknown. For example, the source of many transient faults is unknown.

Failures are classified by mode and scope. A failure mode may be sudden or gradual; partial or complete. All
four combinations of these are possible. The scope of a failure describes the extent within the system of the effects
of the failure. This may range from an internal failure, whose effect is confined to asingle small portion of the
system, to a pervasive failure, which affects much of the system.

Many different life cycle models exist for developing software systems. These differ in the timing of the various
activities that must be done in order to produce a high-quality software product, but the actual activities must be
donein any case. No particular life cycle is recommended here, but there are extensive comments on the activities
that must be carried out. These have been divided into eight categories, termed sets of activitiesin the report. These
sets are used merely to group related activities; there is no implication that the activitiesin any one set must be all
carried out at the same time, or that activitiesin “later” sets must follow those of “earlier” sets. The eight categories
are asfollows:

» Planning activitiesresult in the creation of a number of documents that are used to control the development
process. Eleven are recommended here: a Software Project Management Plan, a Software Quality Assurance
Plan, a Software Configuration Management (CM) Plan, a Software Verification and Validation (V&V) Plan, a
Software Safety Plan, a Software Development Plan, a Software Integration Plan, a Software Installation Plan, a
Software Maintenance Plan, a Software Training Plan, and a Software Operations Plan. Many of these plans are
discussed in detail, relying on various ANSI/IEEE standards when these exist for the individual plans.

» The second set of activities relate to documenting the requirements for the software system. Four documents are
recommended: the Software Requirements Specification, a Requirements Safety Analysis, aV&V

Requirements Analysis, and a CM Requirements Report. These documents will fully capture all the
requirements of the software project, and relate these requirements to the overall protection system functional
requirements and protection system safety requirements.

e Thedesign activities include five recommended documents. The Hardware and Software Architecture will
describe the computer system design at afairly high level, giving hardware devices and mapping software
activities to those devices. The Software Design Specification provides the complete design on the software
products. Design analyses include the Design Safety Analysis, the V&V Design Analysis, and the CM Design
Report.

» Implementation activities include writing and analyzing the actual code, using some programming language.
Documents include the actual code listings, the Code Safety Analysis, the V&V Implementation Analysis and
Test Report, and the CM Implementation Report.

e Integration activities are those activities that bring software, hardware, and instrumentation together to form a
complete computer system. Documents include the System Build Documents, the Integration Safety Analysis,
the V&V Integration Analysis and Test Report, and the CM Integration Report.

« Validation isthe process of ensuring that the final complete computer system achieves the original goals that
were imposed by the protection system design. The final system is matched against the original requirements,
and the protection system safety analysis. Documents include the Validation Safety Analysis, the V&V
Validation and Test Report, and the CM Validation Report.

e Installation isthe process of moving the completed computer system from the developer’s site to the
operational environment, within the actual reactor protection system. The completion of installation provides
the operator with a documented operational computer system. Seven documents are recommended: the
Operations Manual, the Installation Configuration Tables, Training Manuals, Maintenance Manuals, an
Installation Safety Analysis, aV&V Installation Analysis and Test Report, and a CM Installation Report.

e The operations and maintenance activities involve the actual use of the computer system in the operating
reactor, and making any required changes to it. Changes may be required due to errors in the system that were
not found during the development process, changes to hardware or requirements for additional functionality.
Safety analyses, V&V analyses, and CM activities are all recommended as part of the maintenance process.

Three general methods exist that may be used to achieve software fault tolerance; n-version programming,
recovery block, and exception handling. Each of these attempts to achieve fault tolerance by using more than one
algorithm or program module to perform a calculation, with some means of selecting the preferred result. In n-
version programming, three or more program modul es that implement the same function are executed in parallel,
and voting is used to select the “ correct” one. In recovery block, two or more modules are executed in series, with an
acceptance algorithm used after each module is executed to decide if the result should be accepted or the next
module executed. In exception handling, a single module is executed, with corrections made when exceptions are
detected. Serious questions exist as to the applicability of the n-version programming and the recovery-block
techniques to reactor protection systems, because of the assumptions underlying the techniques, the possibility of
common-mode failures in the voting or decision programs, and the cost and time of implementing them.

One means of ng system reliability or safety isto create a mathematical model of the system and analyze
the properties of that model. This can be very effective providing that the model captures all the relevant factors of
the reality. Reliability models have been used for many years for electronic and mechanical systems. The use of
reliability models for softwareisfairly new, and their effectiveness has not yet been fully demonstrated. Fault tree
models, event tree models, failure modes and effects analysis, Markov models, and Petri net models all have
possibilities. Of particular interest are reliability growth models, since software bugs tend to be corrected asthey are
found. Reliability Growth models can be very useful in understanding the growth of reliability through atesting
activity, but cannot be used alone to justify software for use in a safety-related application, since such applications
require amuch higher level of reliability than can be convincingly demonstrated during a test-correct-test activity.

Softwar e Reliability and
Safety in Nuclear Reactor
Protection Systems

1. INTRODUCTION

1.1. Purpose

Reliability and safety are related, but not identical,
concepts. Reliability can be thought of asthe
probability that a system failsin any way whatever,
while safety is concerned with the consequences of
failure. Both are important in reactor protection
systems. When a protection system is controlled by a
computer, the impact of the computer system on
reliability and safety must be considered in the reactor
design. Because softwareis an integral part of a
computer system, software reliability and software
safety become a matter of concern to the organizations
that develop software for protection systems and to the
government agencies that regulate the developers. This
report is oriented toward the assessment process. The
viewpoint is from that of a person who is assessing the
reliability and safety of a computer software system
that isintended to be used in areactor protection
system.

1.2. Scope

Software is only one portion of a computer system.
The other portions are the computer hardware and the
instrumentation (sensors and actuators) to which the
computer is connected. The combination of software,
hardware, and instrumentation is frequently referred to
as the Instrumentation and Control (1&C) System.
Nuclear reactors have at least two 1& C systems—one
controls the reactor operation, and the other controls
the reactor protection. The latter, termed the Protection
Computer System, is the subject of this report.

This report assumes that the computer system as a
whole, as well as the hardware and instrumentation
subsystems, will be subject to careful development,
analysis, and assessment in a manner similar to that
given here for the software. That is, it is assumed that

there will be appropriate plans, requirements and
design specifications, procurement and installation,
testing and analysis for the complete computer system,
aswell asthe hardware, software, and instrumentation
subsystems. The complete computer system and the
hardware and instrumentation subsystems are
discussed here only asthey relate to the software
subsystem.

Thereport is specifically directed toward enhancing
the reliability and safety of computer controlled reactor
protection systems. Almost anything can affect safety,
so it isdifficult to bound the contents of the report.
Consequently material isincluded that may seem
tangential to the topic. In these cases the focusis on
reliability and safety; other aspects of such material are
summarized or ignored. More complete discussions of
these secondary issues may be found in the references.

Thisreport isone of a series of reports prepared by the
Computer Safety and Reliability Group, Fission
Energy and System Safety Program, Lawrence
Livermore National Laboratory. Aspects of software
reliability and safety engineering that are covered in
the other reports are treated briefly in this report, if at
all. The reader is referred to the following additional
reports:

1. Robert Barter and Lin Zucconi, “Verification and
Vadidation Techniques and Auditing Criteria for
Critical System-Control Software,” Lawrence
Livermore National Laboratory, Livermore, CA
(February 1993).

2. George G. Preckshat, “Real-Time Systems
Complexity and Scalability,” Lawrence Livermore
National Laboratory, Livermore, CA (August
1992).

Section 1. Introduction

3. George G. Preckshot and Robert H. Wyman,
“Communications Systemsin Nuclear Power
Plants,” Lawrence Livermore Nationa
Laboratory, Livermore, CA (August 1992).

4. George G. Preckshot, “ Real-Time Performance,”
Lawrence Livermore National Laboratory,
Livermore, CA (November 1992).

5. Debra Sparkman, “Techniques, Processes, and
Measures for Software Safety and Reliability,”
Lawrence Livermore National Laboratory,
Livermore, CA (April 1992).

6. Lloyd G. Williams, “Formal Methodsin the
Development of Safety Critical Software
Systems,” SERM-014-91, Software Engineering
Research, Boulder, CO (April 1992).

7. Lloyd G. Williams, “ Assessment of Formal
Specifications for Safety-Critical Systems,”
Software Engineering Research, Boulder, CO
(February 1993).

8. Lloyd G. Williams, “Considerations for the Use of
Formal Methods in Software-Based Safety
Systems,” Software Engineering Research,
Boulder, CO (February 1993).

9. LinZucconi and Booker Thomas, “ Testing
Existing Software for Safety-Related
Applications,” Lawrence Livermore National
Laboratory, Livermore, CA (January 1993).

1.3. Report Organization

Section 2 contains background on several topics
relating to software reliability and software safety.
Terms are defined, life cycle models are discussed
briefly, and two classification schemes are presented.

Section 3 provides detail on the many life cycle
activities that can be done to improve reliability and
safety. Development activities are divided into eight

sets of activities: planning, requirements specification,
design specification, software implementation,
integration with hardware and instrumentation,
validation, installation and operations, and
maintenance. Each set of activities includes a number
of tasks that can be undertaken to enhance reiability
and safety. Because the report is oriented towards
assessment, the tasks are discussed in terms of the
documents they produce and the actions necessary to
create the document contents.

Section 4 discusses specific motivations,
recommendations, guidelines, and assessment
guestions. The motivation sections describe particular
concerns of the assessor when examining the safety of
software in areactor protection system.
Recommendations consist of actions the developer
should or should not do in order to address such
concerns. Guidelines consist of suggestions that are
considered good engineering practice when developing
software. Finally, the assessment sections consist of
lists of questions that the assessor may use to guide the
assessment of a particular aspect of the software
system.

From the viewpoint of the assessor, software
development consists of the organization that does the
development, the process used in the devel opment, and
the products of that devel opment. Each is subject to
analysis, assessment and judgment. This report
discusses al three aspects in various places within the
framework of the life cycle. Process and product are
the primary emphasis.

Following the main body of the report, the appendix
provides information on software fault tolerance
techniques and software reliability models. A
bibliography of information relating to software
reliability and safety is also included.

Section 2. Terminology

2. TERMINOLOGY

This section includes discussions of the basic
terminology used in the remainder of the report. The
section begins with a description of the terms used to
describe systems. Section 2.2 provides careful
definitions of the basic terminology for reliability and
safety. Section 2.3 contains brief descriptions of
several of the life cycle models commonly used in
software development, and defines the various
activities that must be carried out during any software
development project. Section 2.4 describes various
classification schemes for failures and faults, and
provides the terms used in these schemes. Finaly,
Section 2.5 discusses the terms used to describe
software qualities that are used in following sections.

2.1. Systems Terminology

The word system is used in many different waysin
computer science. The basic definition, given in IEEE
Standard 610.12, is “acollection of components
organized to accomplish a specific function or set of
functions.” In the context of a nuclear reactor, the word
could mean, depending on context, the society using
the reactor, the entire reactor itself, the portion devoted
to protection, the computer hardware and software
responsible for protection, or just the software.

In this report the term system, without modifiers, will
consistently refer to the complete application with
which the computer is directly concerned. Thus a
“system” should generally be understood as a “ reactor
protection system.” When portions of the protection
system are meant, and the meaning isn’t clear from
context, a modifier will be used. Reference could be
made to the computer system (a portion of the
protection system), the software system (in the
computer system), the hardware system (in the
computer system) and so forth. In some cases, the term
“application system” is used to emphasize that the
entire reactor protection system is meant.

A computer system isitself composed of subsystems.
These include the computer hardware, the computer
software, operators who are using the computer
system, and the instruments to which the computer is
connected. The definition of instrument is taken from
ANSI/ISA Standard S5.1: “a device used directly or
indirectly to measure and/or control avariable. The
term includes primary elements, final control elements,
computing devices and electrical devices such as
annunciators, switches, and pushbuttons. Theterm

does not apply to parts that are internal components of
an instrument.”

Since this report is concerned with computer systems
in general, and software systems in particular,
instruments are restricted to those that interact with the
computer system. There are two types: sensors and
actuators. Sensors provide information to the software
on the state of the reactor, and actuators provide
commands to the rest of the reactor protection system
from the software.

2.2. Software Reliability and Safety
Terminology

2.2.1. Faults, Errors, and Failures

The words fault, error, and failure have a plethora of
definitionsin the literature. This report uses the
following definitions, specialized to computer systems
(Laprie 1985; Randell 1978; Siewiorek 1982).

A fault is a deviation of the behavior of a computer
system from the authoritative specification of its
behavior. A hardware fault is aphysical changein
hardware that causes the computer system to change its
behavior in an undesirable way. A software fault isa
mistake (also called a bug) in the code. A user fault
consists of a mistake by a person in carrying out some
procedure. An environmental fault is a deviation from
expected behavior of the world outside the computer
system; electric power interruption is an example. The
classification of faultsis discussed further in
Subsection 2.4.1.

An error isan incorrect state of hardware, software, or
data resulting from afault. An error is, therefore, that
part of the computer system state that isliable to lead
to failure. Upon occurrence, afault creates alatent
error, which becomes effective when it is activated,
leading to afailure. If never activated, the latent error
never becomes effective and no failure occurs.

A failure isthe external manifestation of an error. That
is, afailureisthe external effect of the error, as seen
by a (human or physical device) user, or by another
program.

Some examples may clarify the differences among the
three terms. A fault may occur in acircuit (awire
breaks) causing a bit in memory to alwaysbeal (an

Section 2. Terminology

error, since memory is part of the state) resultingin a
failed calculation.

A programmer's mistake is afault; the consequenceis
alatent error in the written software (erroneous
instruction). Upon activation of the module where the
error resides, the error becomes effective. If this
effective error causes adivide by zero, afailure occurs
and the program aborts.

A maintenance or operating manual writer's mistake is
afault; the consequenceisan error in the
corresponding manual, which will remain latent as
long as the directives are not acted upon.

The view summarized here enables fault pathology to
be made precise. The creation and action mechanisms
of faults, errors and failures may be summarized as
follows.

1. A fault creates one or more latent errorsin the
computer system component where it occurs.
Physical faults can directly affect only the
physical layer components, whereas other types of
faults may affect any component.

2. Thereisawaysatime delay between the
occurrence of afault and the occurrence of the
resulting latent error(s). This may be measured in
nanoseconds or years, depending on the situation.
Some faults may not cause errors at al; for
example, abug in aportion of aprogram that is
never executed. It is convenient to consider thisto
be an extreme case in which an infinite amount of
time elapses between fault and latent error.

3. The properties governing errors may be stated as
follows:

a A latent error becomes effective onceit is
activated.

b. Anerror may cycle between itslatent and
effective states.

c. Aneffective error may, and in general does,
propagate from one component to another. By
propagating, an error creates other (new)
errors.

From these properties it may be deduced that an
effective error within a component may originate
from:

» Activation of alatent error within the same
component.

» Aneffective error propagating within the
same component or from another component.

4. A component failure occurs when an error affects
the service delivered (as a response to requests) by
the component. There is dways atime delay
between the occurrence of the error and the
occurrence of the resulting failure. This may vary
from nanoseconds to infinity (if the failure never
actually occurs).

5. These properties apply to any component of the
computer system. In ahierarchical system, failures
at one level can usefully be thought of as faults by
the next higher level.

Most reliability, availability, and safety analysis and
modeling assume that each fault causes at most a
singlefailure. That is, failures are statistically
independent. Thisis not always true. A common-mode
failure occurs when multiple components of a
computer system fail due to asingle fault. If common
mode failures do occur, an analysis that assumes that
they do not will be excessively optimistic. Therearea
number of reasons for common mode failures (Dhillon
1983):

e Environmental causes, such asdirt, temperature,
moisture, and vibrations.

e Equipment failure that results from an unexpected
external event, such asfire, flood, earthquake, or
tornadoes.

e Design deficiencies, where some failures were not
anticipated during design. An example is multiple
telephone circuits routed through a single
equipment box. Software design errors, where
identical softwareis being run on multiple
computers, is of particular concern in this report.

e Operationa errors, due to factors such asimproper
maintenance procedures, carelessness, or improper
calibration of equipment.

e Multipleitems purchased from the same vendor,
where al of the items have the same
manufacturing defect.

e Common power supply used for redundant units.

» Functional deficiencies, such as misunderstanding
of process variable behavior, inadequately
designed protective actions, or inappropriate
instrumentation.

2.2.2. Reliability and Safety Measures

Reliability and safety measurements are inherently
statistical, so the fundamental quantities are defined
statistically. The four basic terms are reliability,
availability, maintainability, and safety. These and
other related terms are defined in the following text.
Note that the final three definitions are qualitative, not
guantitative (Siewiorek 1982; Smith 1972). Most of
these definitions apply to arbitrary systems. The
exception is safety; since this concept is concerned
with the consequences of failure, rather than the smple
fact of failure, the definition applies only to a system
that can have major impacts on people or equipment.
More specifically, safety appliesto reactors, not to
components of areactor.

« Therdliability, R(t), of asystemisthe
conditional probability that the system has
survived the interval [0, t], given that it was
operating at time 0. Reliability is often givenin
terms of the failure rate (also referred to asthe
hazard rate), A (t), or the mean timeto failure,
mttf . If the failure rate is constant,
mttf =1/ A . Reliability is ameasure of the
success with which the system conforms to some
authoritative specification of its behavior, and
cannot be measured without such a specification.

» Theavailability, A(t), of asystemisthe
probability that the system is operational at the
instant of time t. For nonrepairable systems,
availability and reliability are equal. For repairable
systems, they are not. Asagenera rule,

0<R(t) < At)<1.

+ Themaintainability, M(t), of asystemisthe
conditional probability that the system will be
restored to operational effectiveness by timet,
given that it was not functioning at time 0.
Maintainability is often given in terms of the
repair rate, U(t), or mean timeto repair, mittr. If
the repair rate is constant, mttr =1/ .

+ Thesafety, St), of asystem isthe conditional
probability that the system has survived the
interval [0, t] without an accident, given that it
was operating without catastrophic failure at time
0.

* Thedependability of a system isameasure of its
ability to commence and complete a mission
without failure. It is therefore a function of both
reliability and maintainability. It can be thought of
as the quality of the system that permits the user to
rely onit for service.

Section 2. Terminology

e The capability of a system is ameasure of its
ability to satisfy the user's requirements.

» System effectiveness is the product of capability,
availability and dependability. System cost
effectiveness is the quotient of system
effectiveness and cost.

2.2.3. Safety Terminology

Safety engineering has special terminology of its own.
The following definitions, based on those developed
by the IEEE Draft Standard 1228, are used in this
report. They are reasonably standard definitions, but
specialized to computer software in afew places.

* An accident isan unplanned event or series of
events that result in death, injury, illness,
environmental damage, or damage to or loss of
equipment or property. (The word mishap is
sometimes used to mean an accident, financial loss
or public relations 10ss.)

A system hazard is an application system
condition that is a prerequisite to an accident. That
is, the system states can be divided into two sets.
No state in the first set (of nonhazardous states)
can directly cause an accident, while accidents
may result from any state in the second set (of
hazardous states). Note that a system canbein a
hazardous state without an accident occurring—it
isthe potential for causing an accident that creates
the hazard, not necessarily the actuality.

Thetermrisk is used to designate a measure that
combines the likelihood that a system hazard will
occur, the likelihood that the hazard will cause an
accident and the severity of the worst plausible
accident. The simplest measure isto simply
multiply the probability that a hazard occurs, the
probability that a hazard will cause an accident
(given that the hazard occurs), and the worst-case
severity of the accident.

o SHfety-critical software is software whose
inadvertent response to stimuli, failure to respond
when required, response out-of-sequence, or
response in unplanned combination with others
can result in an accident. This includes software
whose operation or failure to operate can lead to a
hazardous state, software intended to recover from
hazardous states, and software intended to
mitigate the severity of, or recover from, an
accident.

» Theterm safety is used to mean the extent to
which a system is free from system hazard. Thisis

Section 2. Terminology

aless precise definition than that given in Section
2.2.2, which is generaly preferred in this report.

Itis also useful to consider the word “critical” when
used to describe systems. A critical systemisasystem
whose failure may have very unpleasant consequences
(mishaps). The results of failure may affect the
developers of the system, its direct users, their
customers or the general public. The conseguences
may involve loss of life or property, financial loss,
legal liability (such asjail), regulatory threats, or even
the loss of good will (if that is extremely important).
The term safety critical refersto a system whose
failure could cause an accident.

A good brief discussion of accidentsisfound in
Leveson 1991:

Despite the usual oversimplification of the
causes of particular accidents (* human
error” isoften theidentified culprit despite
the all-encompassing nature and relative

usel essness of such a categorization),
accidents are caused almost without
exception by multiple factors, and the relative
contribution of each isusually not clear. An
accident may be thought of as a set of events
combining together in random fashion or,
alternatively, as a dynamic mechanism that
begins with the activation of a hazard and
flows through the system as a series of
seguential and concurrent eventsin a logical
seguence until the systemis out of control and
alossis produced (the “ domino theory”).
Either way, major incidents often have more
than one single cause, and it is usually
difficult to place blame on any one event or
component of the system. The high frequency
of complex, multifactorial accidents may arise
from the fact that the simpler potentials have
been anticipated and handled. But the very
complexity of events leading to an accident
implies that there may be many opportunities
to intervene or interrupt the sequence.

A second characteristic of accidents is that
they often involve problems in subsystem
interfaces. It appearsto be easier to deal with
failures of components than failuresin the
interfaces between components. This should
not be a surprise to software engineers,
consider the large number of operational
software faults that can be traced back to
requirements problems. The software

requirements are the specific representation
of the interface between the software and the
processes or devices being controlled.

A third important characteristic claimed for
accidentsisthat they are intimately
intertwined with complexity and coupling.
Perrow has argued that accidents are
“normal” in complex and tightly coupled
systems. Unless great careis taken, the
addition of computers to control these systems
islikely to increase both complexity and
coupling, which will increase the potential for
accidents.

2.3. LifeCycle Models

Many different software life cycles have been
proposed. These have different motivations, strengths,
and weaknesses. The life cycle models generally
require the same types of tasks to be carried out; they
differ in the ordering of these tasksin time. No
particular life cycle is assumed here. Thereisan
assumption that the activities that occur during the
developer’slife cycle yield the products indicated in
Figure 2-1. Each of thelife cycle activities produces
one or more products, mostly documents, that can be
assessed. The development process itself is subject to
assessment.

The ultimate result of software development, as
considered in thisreport, is a suite of computer
programs that run on computers and control the reactor
protection system. These programs will have
characteristics deemed desirable by the developer or
customer, such as reliability, performance, usability,
and functionality. This report is only concerned with
reliability and safety; however, that concern does “ spill
over” into other qualities.

The development model used here suggests one or
more audits of the products of each set of life cycle
activities. The number of audits depends, among other
things, on the specific life cycle model used by the
developer. The audit will assess the work done that
relates to the set of activities being audited. Many
reliability, performance, and safety problems can be
resolved only by careful design of the software
product, so must be addressed early in thelife cycle,
no matter which life cycleis used. Any errors or
oversights can require difficult and expensive retrofits,
so are best found as early as possible. Consequently, an
incremental audit process is believed to be more cost

effective than a single audit at the end of the
development process. In thisway, problems can be
detected early in the life cycle and corrected before
large amounts of resources have been wasted.

Three of the many life cycle models are described
briefly in subsections 2.3.1. through 2.3.3. No
particular life cycle model is advocated. Instead, a
model should be chosen to fit the style of the
development organization and the nature of the
problem being solved.

2.3.1. Waterfall Model

The classic waterfall model of software development
assumes that each phase of the life cycle can be
completed before the next phase is begun (Pressman
1987). Thisisillustrated in Figure 2-2. The actua
phases of the waterfall model differ anong the various
authors who discuss the model; the figure shows
phases appropriate to reactor protection systems. Note
that the model permits the developer to return to
previous phases. However, thisis considered to be an
exceptional condition to the normal forward flow,
included to permit errorsin previous stages to be
corrected. For example, if arequirementserror is
discovered during the implementation phase, the
developer is expected to halt work, return to the
requirements phase, fix the problem, change the design
accordingly, and then restart the implementation from
the revised design. In practice, one only stops the
implementation affected by the newly discovered
requirement.

The waterfall model has been severely criticized as not
being realistic to many software development
situations, and thisis frequently justified. It remains an
excellent model for those situations where the
requirements are known and stable before development
begins, and where little change to requirementsis
anticipated.

2.3.2. Phased Implementation Model

This model assumes that the development will take
place as a sequence of versions, with arelease after
each version is completed. Each version hasits own
life cycle model. If new requirements are generated
during the development of a version, they will
generaly be delayed until the next version, so a
waterfall model may be appropriate to each version.
(Marketing pressures may modify such delays.)

Thismodel is appropriate to commercial products that
are evolving over long periods of time, or for which

Section 2. Terminology

external regquirements change slowly. Operating
systems and language compilers are examples.

2.3.3. Spiral Modd

The spiral model was developed at TRW (Boehm
1988) in an attempt to solve some of the perceived
difficulties with earlier models. This model assumes
that software devel opment can be modeled asa
sequence of activities, as shown in Figure 2-3. Each
time around the spiral (phase), the product is
developed to a more complete degree. Four broad steps
are required:

1. Determine the objectives for the phase. Consider
alternatives to meeting the objectives.

2. Evduate the alternatives. |dentify risks to
completing the phase, and perform arisk anaysis.
Make a decision to proceed or stop.

3. Develop the product for the particular phase.
4. Planfor the next phase.

The products for each phase may match those of the
previous models. In such circumstances, the first loop
around the spiral resultsin a concept of operations; the
next, a requirements specification; the next, adesign;
and so forth. Alternately, each loop may contain a
complete development cycle for one phase of the
product; here, the spiral model looks somewhat like the
phased implementation model. Other possibilities
exist.

The spiral model is particularly appropriate when
considerable financial, schedule, or technical risk is
involved in the product development. Thisis because
an explicit risk analysisis carried out as part of each
phase, with an explicit decision to continue or stop.

2.4. Fault and Failure Classification
Schemes

Faults and failures can be classified in severa different
ways. Those that are considered useful in safety-
related applications are described briefly here. Faults
are classified by persistence and by the source of the
fault. There is some interaction between these, in the
sense that not all persistence classes may occur for all
sources. Table 2-1 provides the interrel ationship.

Failures are classified by mode, scope, and the effect
on safety. These classification schemes consider the
effect of afailure, both on the environment within
which the computer system operates, and on the
components of the system.

Life Cycle

Section 2. Terminology

Software Developer Activities

(%]
()
IS Planning Requirements Design Implementation
5 Activities Activities Activities Activities
<
Software Requirements Design Code
Management Plan Specification Specification Listings
Software Hardware &
Development Plan Software

Software QA
Plan

Integration Plan
Installation Plan
Maintenance Plan
Training Plan

Operations Plan

Software
Safety Plan

Software V&V
Plan

Software CM Plan

Conformance Review

Requirements
Safety Analysis

V&V Require-
ments Analysis
Report

CM Require-
ments Report

Conformance Review.

Architecture

Design Safety
Analysis

V&YV Design
Analysis
Report

CM Design
Report

Conformance Review

Code Safety
Analysis

V&V Implemen-
tation Analysis
& Test Report

CM Implemen-
tation Report

Conformance Review

=
=]
E
<
o
£
c
c
<
o

IRequirements

Design Audit

Software Audit Activities

Figure 2-1. Documents Produced During Each Life Cycle Stage

c
o
g
c
[}
IS
Q.
o
£

Software Developer Activities

Section 2. Terminology

L n
R .
= Integration Validation Installation Operation &
02 Activities Activities Activities Maintenance
= O Activities
a4 <
System Build Operations
Documents Manuals
Installation
Configuration
Tables
3 3 &| Maintenance |3
o aa | Manuals x
() [} [} [0}
g 2 c e
g & IS 3
= E E| Training £
1O g 2] Manuals I
: s 5 5
S O O O
Integration Validation Installation Change
Safety Safety Safety Safety
Analysis Analysis Analysis Analysis
V&YV Integration V&YV Validation V&YV Installation V&V Change
Analysis & Test Analysis Test Analysis & Test Report
Report & Report Report
CM Integration CM Validation CM Installation CM Change
Report Report Report Report

c
o
©

g

)

@
2
£

Validation

Software Audit Activities

c
o
=
©
@
—
%]
c

Figure2-1. Documents Produced During Each Life Cycle Stage (continued)

Section 2. Terminology

Pre-Development

Requirements
Specification

AN

Software
Design

Software

Implementation

Integration

Validation

Installation

AN

Figure2-2. Waterfall Life Cycle M odel

10

Operation and
Maintenance

Section 2. Terminology

A

Cumulative
cost

R

Progress
through
steps

Evaluate alternatives,
identify, resolve risks

Determine
objectives,
alternatives,
constraints

Risk
analysis —
—~

Risk
analysis - —
>

-
-

-
-

Risk
analysis - —
o

Risk
analysis _ -

-

_ - Prototype 1

Operational
Prototype 2 Prototype 3 prototype

~ Commitment
Review

partition ; !

Requirements plan | Concept of
Life-cycle plan | operation

Software

requirements Software Detailed
. proqluct design
Development | Requirements design /' _ _ _ T _ _

plan | validation

Code

Integration
and test
plan

Design validation
and verification

| Integration

| and test
Acceptance |

test

I
Plan next phases

Implementation |

Develop, verify
next-level product

(Boehm 1988)

Figure 2-3. Spiral Life Cycle Modél

11

Section 2. Terminology

Table 2-1. Persistence Classes and Fault Sour ces

Design Operational Transient

Hardware component X X X
Software component X

Input data X X

Permanent state X X

Temporary state X X

Topological X

Operator X X X
User X X X
Environmental X X X
Unknown X

2.4.1. Fault Classifications

Faults and failures can be classified by several more-
or-less orthogonal measures. Thisisimportant,
because the classification may affect the depth and
method of analysis and problem resolution, aswell as
the preferred modeling technique.

Faults can be classified by the persistence and source
of the fault. Thisis described in the two subsections of
this section. Terms defined in each subsection are used
in other subsections.

2.4.1.1. Fault Persistence

Any fault fallsinto one of the following three classes
(Kopetz 1985):

A design fault is afault that can be corrected by
redesign. Most software and topological faults fall
into this class, but relatively few hardware faults
do. Design faults are sometimes called removable
faults, and are generally modeled by reliability
growth models (See Appendix A.3.). One design
fault can cause many errors and failures before it
is diagnosed and corrected. Design faults are

12

usually quite expensive to correct if they are not
discovered until the product isin operation.

An operational fault is afault where some portion
of the computer system breaks and must be
repaired in order to return the system to a state that
meets the design specifications. Examples include
electronic and mechanical faults, database
corruption, and some operator faults. Operational
faults are sometimes called non-removabl e faullts.
When calculating fault rates for operational faults,
it is generally assumed that the entity that has
failed isin the steady-state portion of itslife, so
operational fault rates are constant. As with design
faults, an operational fault may cause many errors
before being identified and repaired.

A transient fault is afault that does cause a
computer system failure, but is no longer present
when the system isrestarted. Frequently the basic
cause of atransient fault cannot be determined.
Redesign or repair has no effect in this case,
although redesign can affect the frequency of
transient faults. Examples include power supply
noise and operating system timing errors. While
an underlying problem may actually exist, no
action istaken to correct it (or the fault would fall

into one of the other classes). In some computer
systems, 50-80% of all faults are transient. The
frequency of operating system faults, for example,
istypically dependent on system load and
composition.

The class of transient faults actually includes two
different types of event; they are grouped together here
sinceit is generally impossible to distinguish between
them. Some events are truly transient; a classic (though
speculative) example is acosmic ray that flipsasingle
memory bit. The other typeisan event that really isa
design or operational fault, but thisis not known when
it occurs. That is, it looks like the first type of transient
event. If the causeis never discovered, no real harmis
donein placing it in this class. However, if the cause is
eventually determined, the event should be classified
properly; this may well require recal culation of
reliability measures.

A computer system is constructed according to some
specification. If the system fails, but till meetsthe
specification, then the specification waswrong. Thisis
adesign fault. If, however, the system ceases to meet
the specification and fails, then the underlying fault is
an operational fault. A broken wire is an example. If
the specification is correct, but the system fails
momentarily and then recovers on its own, the fault is
transient.

Many electronic systems, and some mechanical
systems, have athree stage life cycle with respect to
fault persistence. When the device isfirst constructed,
it will have afairly high fault rate due to undetected
design faults and “burn-in" operational faults. This
fault rate decreases for aperiod of time, after that the
device entersits normal life period. During this
(hopefully quite long) period, the failurerateis
approximately constant, and is due primarily to
operational and transient faults, with perhaps afew
remaining design faults. Eventually the device begins
to wear out, and enters the terminal stage of itslife.
Here the fault rate increases rapidly as the probability
of an operational fault goes up at an increasing rate. It
should be noted that in many cases the end of the
product’s useful life is defined by thisincrease in the
fault rate.

The behavior described in the last paragraph resultsin
afailure rate curve termed the “bathtub” curve. It was
originally designed to model electronic failure rates.
There is a somewhat anal ogous situation for software.
When a software product isfirst released, there may be
many failuresin the field for some period of time. As

Section 2. Terminology

the underlying faults are corrected and new releases
are sent to the customers, the failure rate should
decrease until amore-or-less steady state is reached.
Over time, the maintenance and enhancement process
may perturb the software structure sufficiently that
new faults are introduced faster than old ones are
removed. The failure rate may then go up, and a
complete redesign isin order.

While this behavior looks similar to that described for
electronic systems, the causal factors are quite
different. One should be very careful when attempting
to extrapolate from one to the other.

2.4.1.2. Source of Faultsin Computer Systems

Fault sources can be classified into a number of
categories; ten are given here. For each one, the source
is described briefly, and the types of persistence that
are possible is discussed.

* A hardwarefault isafault in a hardware
component, and can be of any of the three
persistence types. Application systems rarely
encounter hardware design faults. Transient
hardware faults are very frequent in some systems.

* A software fault isabug in a program. In theory,
all such are design faults. Dhillon (1987) classifies
software faults into the following eight categories:

— Logic faults

— Interface faults

— Data definition faults
— Database faults

— Input/output faults
— Computational faults
— Data handling faults
— Miscellaneous faults

* Aninput data fault is amistake in the input. It
could be a design fault (connecting a sensor to the
wrong device is an example) or an operational
fault (if a user suppliesthe wrong data).

* A permanent state fault isafault in state data that
isrecorded on non-volatile storage media (such as
disk). Both design and operational faults are
possible. The use of adata structure definition that
does not accurately reflect the relationships among
the dataitemsis an example of adesign fault. The
failure of a program might cause an erroneous
value to be stored in afile, causing an operational
fault in thefile.

Section 2. Terminology

e A temporary state fault isafault in state data that
isrecorded on volatile media (such as main
memory). Both design and operational faults are
possible. The primary reason to separate this from
permanent state faultsisto allow for the
possibility of different failure rates.

e A topological fault isafault caused by a mistake
in computer system architecture, not with the
component parts. All such faults are design faults.
Notice that the failure of acableis considered a
hardware operational fault, not atopological fault.

e An operator fault is a mistake by the operator.
Any of the three types are possible. A design fault
occursif the instructions provided to the operator
are incorrect; thisis sometimes called a procedure
fault. An operational fault would occur if the
instructions are correct, but the operator
misunderstands and doesn't follow them. A
transient fault would occur if the operator is
attempting to follow the instructions, but makes an
unintended mistake. Hitting the wrong key on a
keyboard is an example. (One goal of display
screen design is to reduce the probability of
transient operator errors.)

e A user fault differs from an operator fault only
because of the different type of person involved;
operators and users can be expected to have
different fault rates.

* Anenvironmental fault is afault that occurs
outside the boundary of the computer system, but
that affects the system. Any of the three typesis
possible. Failure to provide an uninterruptible
power supply (UPS) would be a design fault,
while failure of the UPS would be an operational
fault. A voltage spike on a power lineisan
example of an environmentally induced transient
fault.

e An unknown fault is any fault whose source class
is never identified. Unfortunately, in some
computer systems many faults occur whose source
cannot be identified. All such faults are transient
(more or less by definition), and this category may
well include a plurality of system faults. Another
problem is that the underlying problem may be
identified at alater time (possibly months later),
so there is a certain impermanence about this
category. It generally happens that some
information is available about the source of the
fault, but not sufficient information to allow the
source to be completely identified. For example, it

14

might only be known that thereisafaultina
communication system.

Table 2-1 shows which persistence classes may occur
for each of the ten fault sources.

2.4.2. Failure Classifications

Three aspects of classifying failures are given below;
there are others. These are particularly relevant to later
discussion in this report.

2.4.2.1. FailureModes

Different failure modes can have different effects on a
computer system. The following definitions apply
(Smith 1972).

* A sudden failureisafailure that could not be
anticipated by prior examination. That is, the
failure is unexpected.

* A gradual failureisafailure that could be
anticipated by prior examination. That is, the
system goes into a period of degraded operation
before the failure actually occurs.

* A partial failureisafailure resulting in deviations
in characteristics beyond specified limits but not
such as to cause complete lack of the required
function.

* A completefailureisafailureresultingin
deviationsin characteristics beyond specified
limits such as to cause complete lack of the
required function. The limits referred to in this
category are special limits specified for this
purpose.

* A catastrophic failureis afailure that is both
sudden and complete.

* A degradation failureisafailure that is both
gradual and partial.

2.4.2.2. The Scope of Failures

Failures can be assigned to one of three classes, depending

on the scope of their effects (Anderson 1983).

e Afailureisinternal if it can be adequately
handled by the device or processin which the
failure is detected.

e Afailureislimitedif it is not internal, but if the
effects are limited to that device or process.

e Afailureispervasiveif it resultsin failures of
other devices or processes.

2.4.2.3. TheEffectsof Failureson Safety

Finally, it is possible to classify application systems by
the effect of failures on safety.

* A systemisintrinsically safeif the system hasno
hazardous states.

* A systemistermed fail safe if a hazardous state
may be entered, but the system will prevent an
accident from resulting from the hazard. An
example would be afacility in areactor that forces
a controlled shutdown in case a hazardous state is
entered, so that no radiation escapes.

* A system controls accidents if a hazardous state
may be entered and an accident may occur, but the
system will mitigate the consequences of the
accident. An example is the containment shell of a
reactor, designed to preclude aradiation release
into the environment if an accident did occur.

* A system giveswarning of hazards if afailure
may result in a hazardous state, but the system
issues awarning that allows trained personnel to
apply procedures outside the system to recover
from the hazard or mitigate the accident. For
example, areactor computer protection system
might notify the operator that a hazardous state
has been entered, permitting the operator to “hit
the panic button” and force a shutdown in such a
way that the computer system is not involved.

» Findly, asystem isfail dangerous, or creates an
uncontrolled hazard, if system failure can cause an
uncontrolled accident.

2.5. Software Qualities

A large number of factors have been identified by
various theoreticians and practitioners that affect the
quality of software. Many of these are very difficult to
quantify. The discussion here is based on IEEE 610.12,
Evans 1987, Pressman 1987, and Vincent 1988. The
latter two references based their own discussion on
McCall 1977. The discussion concentrates on defining
those terms that appear important to the design of
reactor protection computer systems. Quotationsin this
section come from the references listed above.

Access Control. Theterm “access control” relates to
“those attributes of the software that provide for
control of the accessto software and data.” In a
reactor protection system, thisrefersto the ability
of the utility to prevent unauthorized changesto
either software or data within the computer

Section 2. Terminology

system, incorrect input signals being sent to the
computer system by intervention of a human
agent, incorrect commands from the operator, and
any other forms of tampering. Access control
should consider both inadvertent and malicious
penetration.

Accuracy. Accuracy refers to “those attributes of the
software that provide the required precision in
calculations and outputs.” In some situations, this
can require a careful error analysis of numerical
algorithms.

Auditability. Auditability refers to the “ ease with
which conformance to standards can be checked.”
The careful development of project plans,
adherence to those plans, and proper record
keeping can help make audits easier, more
thorough and less intrusive. Sections 3 and 4
discuss thistopic in great depth.

Completeness. Completeness properties are “those
attributes of the software that provide full
implementation of the functions required.” A
software design is completeif al requirements are
fulfilled in the design. A software implementation
is complete if the code fully implements the
design.

Consistency. Consistency is defined as “the degree of
uniformity, standardization and freedom from
contradictions among the documents or parts of a
system or component.” Standardized error
handling is an example of consistency.
Requirements are consistent if they do not require
the system to carry out some function, and under
the same conditions to carry out its negation. An
inconsistent design might cause the system to send
incompatible signals to one or more actuators,
causing the protection system to attempt
contradictory actions. An example would be
starting a pump but not opening the intake value.

Correctness. Correctness refers to the “ extent to
which a program satisfies its specifications and
fulfills the user’s mission objectives.” Thisisa
broader definition than that given for
completeness. It isworth noting that some of the
documents referenced at the beginning of the
section essentially equate correctness with
completeness, while others distinguish between
them. The |EEE Standard 610.12 gives both forms
of definition.

Expandability. Expandability attributes are “those
attributes of the software that provide for
expansion of data storage requirements or

Section 2. Terminology

computational functions.” The word
“extendibility” is sometimes used as a synonym.

Generality. Generdlity is“the degree to which a

system or component performs a broad range of
functions.” Thisis not necessarily adesirable
attribute of areactor protection system if the
generality encompasses functionality beyond
simply protecting the reactor.

Softwar e | nstrumentation. Instrumentation refers to

“those attributes of the software that provide for
measurement of usage or identification of errors.”
A well-instrumented system can monitor its own
operation, and detect errorsin that operation.
Software instrumentation can be used to monitor
the hardware operation aswell asitsown
operation. A hardware device such as a watch-dog
timer can be used to help monitor the software
operation. If instrumentation is required for a
computer system, it may have a considerable
effect on the system design, so must be considered
as part of that design.

Modularity. Modularity attributes are “those attributes

of the software that provide a structure of highly
independent modules.” To achieve modularity, the
protection computer system should be divided into
discrete hardware and software componentsin
such away that a change to one component has
minimal impact on the remaining modul es.
Modularity is measured by cohesion and coupling
(Yourdon 1979).

Operability. Operability refersto “those attributes of

the software that determine operation and
procedures concerned with the operation of the
software.” This quality is concerned with the man-
machine interface, and measures the ease with
which the operators can use the system. Thisis
particularly a concern during off-normal and
emergency conditions when confusion may be
high and mistakes may be unfortunate.

16

Robustness. Robustness refers to “the degree to which

a system or component can function correctly in
the presence of invalid inputs or stressful
environmental conditions.” This quality is
sometimes referred to as “error tolerance” and
may be implemented by fault tolerance or design
diversity.

Simplicity. Simplicity attributes are “those attributes

that provide implementation of functionsin the
most understandable manner.” It can be thought of
as the absence of complexity. Thisis one of the
more important design qualities for a reactor
computer protection system, and is quite difficult
to quantify. See Preckshot 1992 for additional
information on complexity and scalability.

A particularly important aspect of complexity is
the distinction between functional complexity and
structural complexity. The former refersto a
system that attempts to carry out many disparate
functions, and is controlled by limiting the goals
of the system. The latter refers to the method of
carrying out the functions, and may be controlled
by redesigning the system to carry out the same
functionsin asimpler way.

Testability. Testability refersto “the degree to which a

system or component facilitates the establishment
of test criteriaand the performance of teststo
determine whether those criteria have been met.”

Traceability. Traceability attributes are “those

attributes of the software that provide athread
from the requirements to the implementation with
respect to the specific development and
operational environment.”

Section 3. Activities

3. LIFE CYCLE SOFTWARE RELIABILITY
AND SAFETY ACTIVITIES

Much has been written about software engineering and
how awell-structured development life cycle can help
in the production of correct maintainable software
systems. Many standard software engineering activities
should be performed for any software project, so are
not discussed in this report. Instead, the report
concentrates on the additional activities required for a
software project in which safety is a prime concern.
Refer to a general text, such as Macro 1990 or
Pressman 1987, for general information on software
engineering.

Any software development project can be discussed
from anumber of different viewpoints. Examples
include the customer, the user, the devel oper, the
project manager, the general manager, and the
assessor. The viewpoint that is presumed will have a
considerable effect on the topics discussed, and
particularly on the emphasis placed on different
aspects of those topics. The interest here isthe
viewpoint of the assessor. Thisis aperson (or group of
people) who evaluates both the development process
and the products of that process for assurance that they
meet some externally-imposed standard. In this report,
those standards will relate to the reliability of the
software products and the safety of the applicationin
which the software is embedded. The assessor may be
a person in the development organization charged with
the duty of assuring reliability and safety, a personin
an independent auditing organization, or an employee
of aregulatory agency. The difference among these
assessors should be the reporting paths, not the
technical activities that are carried out. Consequently
no distinction is made here among the different types
of assessor.

Since this report is written from the viewpoint of the
assessor, the production of documentsis emphasized in
this report. The documents provide the evidence that
required activities have actually taken place. Thereis
some danger that the software developer will
concentrate on the creation of the documents rather
than the creation of safe reliable software. The assessor
must be constantly on guard for this activity. The
software runs the protection system, not the
documents. There is heavy emphasis below on
planning: creating and following the plansthat are
necessary to the devel opment of software where safety
isaparticular concern.

17

The documents that an assessor should expect to have
available, and their contents, is the subject of this
section of the report. The process of ng these
documentsis discussed in Section 4.

3.1. Planning Activities

Fundamental to the effective management of any
engineering project is the planning that goes into the
project. Thisis especialy true where extreme
reliability and safety are of concern. While there are
general issues of avoiding cost and schedule overruns,
the particular concern hereis safety. Unless a
management plan exists, and is followed, the
probability is high that some safety concerns will be
overlooked at some point in the project lifetime, or
lack of time or money near the end of the devel opment
period will cause safety concernsto be ignored, or
testing will be abridged. It should be noted that the
time/money/safety tradeoff isavery difficult
management issue requiring very wise judgment. No
project manager should be allowed to claim “ safety” as
an excuse for unconscionable cost or schedule
overruns. On the other hand, the project manager
should also not be allowed to compromise safety in an
effort to meet totally artificial schedule and budget
constraints.

For a computer-based safety system, a number of
documents will result from the planning activity. These
are discussed in this section, insofar as safety isan
issue. For example, a software management plan will
generaly involve non-safety aspects of the
development project, which go beyond the discussion
in Section 3.1.1.

Software project planning cannot take placein
isolation from the rest of the reactor development. Itis
assumed that a number of documents are available to
the software project team. At minimum, the following
must exist:

» Hazardsanalyss. Thisidentifies hazardous
reactor system states, sequences of actions that can
cause the reactor to enter a hazardous state,
seguences of actions intended to return the reactor
from a hazardous state to a nonhazardous state,
and actions intended to mitigate the consequences
of an accident.

Section 3. Activities

e Highlevel reactor system design. Thisidentifies
those functions that will be performed by the
protection system, and includes a specification of
those safety-related actions that will be required of
the software in order to prevent the reactor from
entering a hazardous state, move the reactor from
a hazardous state to a non-hazardous state, or
mitigate the consequences of an accident.

* Interfacesbetween the protection computer
system and therest of thereactor protection
system. That is, what signals must be obtained
from sensors and what signals must be provided to

Software, design production,
integration, test, and documentation

Cost

Worl
breakdown

structure Technical

— requirements

Software organization and
project; controls and
environment

estimation |

g:esource

allocation

o

/ Program
customer
interfaces

N

[Personnel
experience

actuators by the computer system. Interfaces also
include display devices intended for man-machine
interaction.

Planning a software development project can be a
complex processinvolving a hierarchy of activities.
The entire process is beyond the scope of this report.
Figure 3-1, reprinted from Evans 1983 (copyright 1983
by Michael Evans, Pamela Piazza, and James Dolkas.
Reprinted by permission of John Wiley & Sons), gives
ahint as to the activitiesinvolved. Planning is
discussed in detail in Pressman 1987.

Financial and
resource planning

/ /7
A\
Schedule
)/\ (Methodolo
Project
reviews

/ Contract
customer
constraints /

(Evans 1983)

Figure 3-1. Software Planning Activities

18

The result of the planning activity will be a set of
documents that will be used to oversee the
development project. These may be packaged as
separate documents, combined into a fewer number of
documents, or combined with similar documents used
by the larger reactor project. For example, the
developer might choose to include the software V&V
plan in the software project management plan, or to
include the software configuration management planin
a project-wide configuration management plan. Such
packaging concerns are beyond the scope of this
report. Since some method is necessary in order to
discuss documents, the report assumes that separate
documents will exist. The documents resulting from
planning include the following minimum set;
additional documents may be required by the
development organization as part of their standard
business procedures, or by the assessor due to the
nature of the particular project.

e Software Project Management Plan

» Software Quality Assurance Plan

» Software Configuration Management Plan

» Software Verification and Validation Plan

» Software Safety Plan

» Software Development Plan

e Software Integration Plan

» Software Installation Plan

» Software Maintenance Plan

e Software Training Plan

» Software Operations Plan

The actual time at which these documents will be
produced depends on the life cycle used by the
software developer. The Software Project Management
Plan will always need to be done early in the life cycle,
since the entire management effort is dependent on it.
However, documents such as the Software Operations

Plan might be delayed until the software system is
ready to install.

3.1.1. Software Project Management Plan

The software project management plan (SPMP) isthe
basic governing document for the entire devel opment
effort. Project oversight, control, reporting, review, and
assessment are al carried out within the scope of the
SPMP.

One method of organizing the SPMP isto use IEEE
Standard 1058; this is done here. Other methods are

19

Section 3. Activities

possible, provided that the topics discussed below are
addressed. The plan contents can be roughly divided
into several categories: introduction and overview,
project organization, managerial processes, technical
processes, and budgets and schedules. A sample table
of contents, based on |EEE 1058, is shown in Figure 3-
2. Those aspects of the plan that directly affect safety
are discussed next.

1. Introduction
11
12
13.

Project Overview

Project Deliverables

Evolution of the SPMP
1.4. Reference Materials
1.5. Definitionsand Acronyms

2. Project Organization
2.1. Process Model
2.2. Organizational Structure
2.3. Organizational Boundaries and Interfaces
2.4. Project Responsihilities

3. Managerial Process
3.1
3.2
3.3
3.4. Monitoring and Controlling Mechanisms
3.5. Staffing Plan

4. Technical Process
4.1. Methods, Tools and Techniques
4.2. Software Documentation

Management Objectives and Priorities
Assumptions, Dependencies and Constraints
Risk Management

4.3. Project Support Functions

5. Work Packages, Schedule and Budget
5.1
5.2.
5.3.
5.4. Budget and Resource Allocation
5.5. Schedule

6. Additional Components

Work Packages
Dependencies
Resource Requirements

Index
Appendices

Figure 3-2. Outline of a Softwar e Project
Management Plan

Section 3. Activities

A combination of text and graphics may be used to
create and document the SPMP. PERT charts,
organization charts, matrix diagrams or other formats
are frequently useful.

3.1.1.1. Project Organization

This portion of the SPM P addresses organizational
issues; specifically, the process model, organizational
structure, boundaries and interfaces, and project
responsibilities. The following items should be
discussed in this portion of the plan.

* Process Model. Define the relationships among
major project functions and activities. The
following specifications must be provided:

— Timing of major milestones.

— Project baselines.

— Timing of project reviews and audits.
— Work products of the project.

— Project deliverables.

» Organization Structure. Describe the internal
management structure of the project.

— Linesof authority.

— Responsibility for the various aspects of the
project.

— Linesof communication within the project.

— The means by which the SPMP will be
updated if the project organization changes.

Note that the SPMP should be under
configuration control; see Section 3.1.3.

» Organization Boundaries. Describe the
administrative and managerial boundaries, and
interfaces across those boundaries, between the
project and the following external entities.

— The parent organization.

— The customer organization.

— Any subcontractor organizations.

— Theregulatory and auditor organizations.

— Support organizations, including quality
assurance, verification and validation, and
configuration management.

» Project responsibilities. State the nature of each
major project function and activity, and identify
by name the individuals who are responsible for

them. Give the method by which these names can
be changed during the life of the project.

3.1.1.2. Project Management Procedures

This section of the SPMP will describe the
management procedures that will be followed during
the project development life cycle. Topics that can
affect safety are listed here; the development
organization will normally include additional
information in order to completely describe the
management procedures. The following aspects of the
SPMP fall into the category of management
procedures.

* Project Priorities. Describe the priorities for
management activities during the project. Topics
include:

— Relative priorities among safety requirements,
functional requirements, schedule and budget.

— Frequency and mechanisms for reporting.

* Project Assumptions, Dependencies and
Constraints. State:

— The assumptions upon which the project is
based.

— Theexternal events upon which the project is
dependent.

— The constraints under which the project will
be conducted.

* Risk Management. |dentify and assess the risk
factors associated with the project. All of the items
listed here may have an impact on safety; this
impact must be described here, with a method for
managing that risk.

— Financial risks.

— Schedulerisks.

— Contractual risks.

— Technology change risks.
— Size and complexity risks.
— Scale-uprisks.

» Monitoring and Controlling Methods. Describe
reporting requirements, report formats,
information flows, and review and audit
mechanisms.

— Internal reporting—within the devel opment
organization.

— External reporting—to auditors and
regulators.

» Staffing. Specify the numbers and types of
personnel required in order to achieve areliable
software system that meets saf ety requirements.

Skill levels required.

Start times and duration of needs.

Training requirements.

3.1.1.3. Project Technical Procedures

This section of the SPMP will describe management
aspects of the technical procedures that will be
followed during the project development life cycle.
Topicsthat can affect safety are listed here; the
development organization will normally include
additional information in order to completely describe
the technical procedures. In some cases, these
procedures may be documented in other documents,
and this portion of the SPMP will merely reference
those documents. In particular, the technical aspects of
the development effort are described in the Software
Development Plan; see Section 3.1.5. The differenceis
one of emphasis: the SPMP is directed at the project
management personnel, while the Software
Development Plan is directed at the project technical
personnel. The following topics should be discussed.

* Methods, Tools, and Techniques. Specify all of
the methods, tools, and techniques that will be
used to develop the product. The following list is
meant to be indicative.

Computing systems to be used for software
development.

Development methods.
Programming languages.

Computer-assisted software engineering
(CASE) tools.

Technical standards to be followed.

Company development procedures.

Company programming style.

» Software Documentation. Describe all of the
technical documentation that will be required for
the project. The documents listed below are
considered mandatory; additional documents may
be included at the option of the development
organization or auditing organization. Additional
documents may be required by other plans. In

21

Section 3. Activities

particular, the Verification and Validation Plan
and the Configuration Management Plan will
require documents that describe assessments done
for each life cycle phase. Discuss milestones,
baselines, reviews, and sign-offs for each
document.

Software Development Plan.

Software Requirements Specification.
— Requirements Safety Analysis.
Hardware/Software Architecture.
Software Design Specification.
Design Safety Analysis.

Unit Development Folders.

Code Safety Analysis.

System Build Specification.
Integration Safety Analysis.
Validation Safety Analysis.
Installation Procedures.
Operations Manuals.

Installation Configuration Tables.
Installation Safety Analysis.
Change Safety Analysis.

e Project Support Functions. Describe all technical
support functions for the project. In many cases,
these will have their own plans, and the SPMP
may simply refer to those. Describe (either here or
in the supporting plans) responsibilities, resource
requirements, schedules, and budgets for each
supporting activity. Support functions include:

Software quality assurance.

Software configuration management.

Software verification and validation
(including testing).

Software safety management.

Software reviews and audits.

3.1.2 Softwar e Quality Assurance Plan

Quality assurance (QA) isdefined by IEEE as“a
planned and systematic pattern of all actions necessary
to provide adequate confidence that the item or product
conforms to established technical requirements.”
Software quality assurance (SQA) is the portion of

Section 3. Activities

general quality assurance that applies to a software
product. The SQA plan describes how the quality of
the software will be assured by the development
organization. It may exist as a separate document, or
be part of the general reactor QA plan. Here, thefirst is
assumed to provide specificity to the discussion.

There will be considerable overlap between the SQA
Plan and the other project plans. The SQA Plan will
generaly reference such documents, and limit the
discussion in the SQA Plan itself to matters of
particular concern to SQA activities. For example, the
section on code control may reference the Software
Configuration Management Plan, and describe the
methods by which the SQA organization will ensure
that this plan is followed.

The description hereis based on ANSI/IEEE standard
730.1, Software Quality Assurance Plans. The use of
this standard is discussed in a draft IEEE guide, 730.2,
Guide for Software Assurance Planning. A sample
table of contents for a SQA plan is shown in Figure 3-
3. It is based on the |EEE standard. The developer
need not follow this sample, provided that the
requirements listed below are included in his own plan.
Concernsthat are unlikely to directly affect safety are
not discussed in thislist of requirements.

1. SQA Organization. Describe the organizational
structure of the SQA effort. Major topics to
discussinclude:

— Major SQA organizational elements and
linkages between them.

— Organizational independence or dependence
of the SQA organization from the
development organization.

2. SQA Management Tasks. Describe the major
tasks that will be required for the SQA activity.

— Describe that portion of the software life
cycle subject to quality assurance oversight.

Describe the tasks to be performed for quality
assurance. These tasks are discussed in detall
in Sections 3-14 of the SQA Plan.

Describe the relationships between the SQA
tasks and the project review points.

3. SQA Responsihilities. Identify the organizational
elements responsible for each SQA task.

— ldentify the persons responsible for the SQA
Plan.

22

— ldentify the person responsible for overall
software quality, by name.

4. Documentation. List the documents subject to
SQA oversight.

— List the documents. Thislist should generally
coincide with the list provided in the Software
Project Management Plan, as discussed in
Section 3.1.1.

— Discuss how each document will be reviewed
by the SQA organization for adequacy.

5. Standards, Practices, Conventions, and Metrics.
Describe all safety-related standards, practices,
conventions, and metrics that will be used during
the development process.

— ldentify thelife cycle phase to which each
standard, practices, conventions, and metrics

applies.

1. Introduction
1.1. Purpose
1.2. Scope
1.3. Definitions and Acronyms
1.4. References
2. Management
2.1. Organization
2.2. Tasks
2.3. Responsihilities
3. Documentation
4. Standards, Practices, Conventions and Metrics
5. Reviews and Audits
6. Test
7. Prablem Reporting and Corrective Action
8. Tooals, Techniques and Methodologies
9. Code Control
. Media Control
. Supplier Control
. Records Collection, Maintenance and Retention
. Training
Risk Management

Figure 3-3. Outline of a Software
Quality Assurance Plan

— Specify how compliance with each standard,
practices, conventions, and metrics will be
assured.

The following (from |IEEE 730.2) lists
standards, practices, conventions, and metrics
that may apply to the different life cycle
phases:

* Documentation standards.

* Logic structure standards.

* Coding standards.

* Commentary standards.

* Testing standards and practices.

* Product and process metrics.

Reviews and Audits. Describe the reviews and
audits to be carried out during the devel opment
process.

Identify each technical and manageria review
and audit.

Describe how each review and audit will be
carried out.

Describe how follow-up actions will be
implemented and verified.

Thefollowing (from |IEEE 730.1) listsa

minimal set of reviews and audits; the actual

set should be determined by the project

management and the SQA organization,

acting together:

* Software Requirements Review.

* Preliminary Design Review.

* Critical Design Review.

* Software Verification and Vaidation
Plan Review.

* Functiona Audit.

* Physical Audit.

* In-Process Audits.

* Manageria Reviews.

Test. Describe any safety-related tests that will be

required on the software that are not included in
the Software Verification and Validation Plan.

— ldentify all such tests.
— Describe how the tests will be carried out.

Problem Reporting and Corrective Action.
Describe how safety-related problems encountered
during development will be reported, tracked, and
resolved.

23

10.

11

12.

13.

Section 3. Activities

— ldentify responsibilities for reporting and
tracking problems.

— ldentify responsibilities for ensuring that all
safety-related problems are resolved.

Tools, Techniques, and Methodol ogies. Discuss
any special software tools, techniques, and
methodol ogies that will be used to support the
SQA activity.

— ldentify each tool, technique, and
methodology.

— ldentify responsibilities for each toal,
technique, and methodol ogy.

Code Control. Describe how source and object
code will be controlled during the project
development. (Thisis discussed further in Section
3.13)

Media Control. Describe the methods and
facilities used to identify the mediafor each
software product and documentation, including
storage, copying, and retrieval.

Supplier Control. Describe the provisions used to
assure that software provided by suppliers will
meet established project requirements.

— ldentify the methods to make sure that
suppliers receive adequate and complete
requirements.

State the methods used to assure the
suitability of previously-devel oped software
for this project.

Describe procedures to be used to provide
assurance that suppliers SQA methods are
satisfactory, and consistent with this SQA
Plan.

Risk Management. Specify the methods and
procedures employed to identify, assess, monitor,
and control areas of risk, especially those relating
to safety.

3.1.3. Software Configuration
Management Plan

Software configuration management (SCM) isthe
process by which changes to the products of the
software devel opment effort are controlled. SCM
consists of four mgjor parts: the SCM plan (SCMP),
the SCM baseline, the configuration control board and
the configuration manager. The SCMP may exist asa
document of its own, may be part of the SPMP, or may

Section 3. Activities

be part of alarger project configuration management
plan. Here, thefirst is assumed, simply as avehicle for
discussion.

This description is based on ANSI/IEEE standard 828,
Software Configuration Management Plans. The use of
this standard is discussed in another ANSI/IEEE
document, 1042, Guide to Software Configuration
Management. The latter includes, in AppendixA, an
example of a SCM plan for a safety-critical embedded
application.

See Babich 1986 for a general introduction to the topic
of SCM.

The configuration baseline identifies the development
products (termed configuration items) that will be
under configuration control. The configuration control
board (CCB) generally contains representatives from
both customer and developer organizations, and
approves all changes to the baseline. The configuration
manager makes sure the changes are documented and
oversees the process of making changesto the
baseline.

A sampletable of contentsfor a SCM plan isshown in
Figure 3-4. It is based on IEEE 828. The developer
need not follow this sample, provided that the
requirements listed below are included in his own plan.
Asusual, issuesthat are unlikely to directly affect
safety are not discussed in the list of requirements,
which follows:

1. SCM Organization. Describe the organizational
structure of the SCM effort. Major topicsto
discussinclude:

— Major CM organizational elements and
linkages between them.

— Organizationa relationships involving the
CCB.

2. SCM Responsihilities. The various responsibilities
for configuration management are described under
this heading.

— Organizational responsihilities for each
safety-related SCM task.

— Relationships between the SCM organization
and other organizations. For example, the
quality assurance organization and the
software development organization.

— Responsibilities of the CCB.

24

3. SCM Interface Control. Describe the methods that
will be used for each of the following functions
involving interfaces. All types of interfaces are
included: among organizational €lements, among
software modules, between hardware and
software, and so forth.

Identify all interface specifications and
control documents.

Describe the method used to manage changes
to interface specifications and related
documents.

Describe how it will be ensured that such
changes are actually accomplished.

Describe how the status of interface
specifications and documents will be
maintained.

1. Introduction
1.1. Purpose
1.2. Scope
1.3. Definitions and Acronyms
1.4. References
2. Management
2.1. Organization
2.2. SCM Responsihilities
2.3. Interface Control
2.4. SCM Plan Implementation
2.5. Applicable Policies, Directives and Procedures
3. SCM Activities
3.1. Configuration Identification
3.2. Configuration Control
3.3. Configuration Status Accounting
3.4. Audits and Reviews
3.5. Release Procedures
4. Tooals, Techniques and Methodologies
5. Supplier Control
5.1. Subcontractor Software
5.2. Vendor Software
6. Records Collection and Retention

Figure 3-4. Outline of a Software Configuration
Management Plan

SCM Plan Implementation. Establish the major
CM milestones. These include such items as:

— Establishment of the CCB.
— Establishment of the configuration baseline.

— The schedule for configuration reviews and
audits.

SCM Palicies, Directives, and Procedures.
Describe al policies, directives and procedures
that will be used in configuration control. Many of
the examples given in |EEE 828 are shown in the
following list.

— ldentification of levels of softwareina
hierarchical tree.

— Program and module naming conventions.
— Version level designations.
— Software product identification methods.

— ldentification of specifications, test plans and
procedures, programming manuals, and other
documents.

— Mediaidentification and file management
identification.
— Document release process.

— Turnover or release of software productsto a
library function.

— Processing of problem reports, change
requests, and change orders.

— Structure and operation of CCB.
— Release and acceptance of software products.

— Operation of software library systems,
including methods of preparing, storing, and
updating modules.

— Auditing of SCM activities.

— Levd of testing required prior to entry of
software into configuration management.

— File backup and storage procedures, including
defense against fires and natural disasters.

Configuration Identification. Identify the initial
baseline of items under configuration control.
These are theinitial configuration items, and will
generaly include many different types of things.
Thefollowing list is meant to be illustrative, not
exhaustive.

25

Section 3. Activities

— Management plans and other management
documents.

— Specifications, such as requirements and
design specifications.

— User documentation.

— Test designs, test cases, and test procedure
specifications.

— Test data and test generation procedures.
— Support software.

— Datadictionaries.

— Design graphics, such as CASE designs.
— Source, object, and executable code.

— Software libraries.

— Databases.

— Buildinstructions.

— Ingtallation procedures.

— Ingtalation configuration tables.

Configuration Control. Describe, in detail, the
process by which change takes place.

— Describe the level of authority required to
approve changes. This may vary according to
thelife cycle phase.

— ldentify the routing of change requests for
each life cycle phase.

— Describe procedures for software library
control, including access control, read and
write protection, Cl protection, archive
maintenance, change history and disaster
recovery.

— Define the authority and makeup of the CCB.
| dentify members by name and position. State
how changes to the CCB membership will be
made known.

— State control procedures for nonreleased
software, off-the-shelf software, and other
special software products.

Configuration Status Accounting. Describe the
method by which SCM reporting will take place.

— Describe how information on the status of the
various configuration items will be collected,
verified, stored and reported.

— ldentify periodic reporting requirements.

Section 3. Activities

9. Auditsand Reviews. Define the role of the SCM
organization in reviews and audits of thelife cycle
products. (The development organization may
wish to address thistopic in the V&V plan instead
of here))

— ldentify which configuration items will be
covered by each review and audit.

— State the procedures to be used for identifying
and resolving problems that are discovered in
reviews and audits.

10. Supplier Control. State how the SCM procedures
will apply to purchased and subcontractor-

developed software.

Changes to software requirements, design
specifications, and code are almost certain to occur. It
is necessary to keep track of such changes and their
potential impact on safety. The purpose of
configuration management is to manage the tracking,
to make sure that the version of a configuration item
(ClI) that is being changed is actually the current
version, and to always know the current release of Cls.
If thisis not done, there are a number of significant
dangers. (1) A safety-related change might be lost, and
not done. For example, a change to the design might
not be carried through to the code. (2) Two or more
people might be simultaneously changing the same ClI,
resulting in inconsistent changes or lost changes. The
latter can occur when the second person to finish the
change overwrites the change made by the first person.
(3) A software release may be issued containing
inconsistent versions of the various code modul es.

Developing and carefully following an SCMP helpsto
avoid the aforementioned problems. When achangeis
desired, the CCB will examine the change and decide
whether or not it should be implemented. For example,
the change might be required for safety reasons, so
should be approved. On the other hand, the suggested
change might have a negative impact on some
apparently unrelated safety issue; in this case, the
change will have to be modified or rejected.

Once the CCB has approved the change, the
configuration manager oversees the process of
implementing the change. Thisis a process issue; the
configuration manager is not involved in the technical
aspects of the change. The technical person who will
actually carry out the change will request control of the
Cl from the configuration manager. The latter makes
surethe Cl is available; that is, no other personis
currently changing it. Only one person is permitted to
work on the Cl at any onetime. OncetheCl is

26

available, it is“checked out” to the technical person,
who is now responsible for it. He will make the needed
changes. Oncethisis done, and any tests or reviews
have taken place, the Cl isreturned to the
configuration manager, who ensures that all procedures
have been followed. The new document or module
now becomes the new baseline, for use in the future for
other changes, or for constructing product rel eases.

Thisreport requiresa SCM plan to be written and
followed. At this point, only the planis at issue. The
later stages of the project life cycle will require
assessment of the actual process of configuration
management.

3.1.4. Software Verification and
Validation Plan

Verification is the process that examines the products
of each life cycle phase for compliance with the
requirements and products of the previous phase.
Validation is the process that compares the final
software product with the original system reguirements
and established standards to be sure that the customer’s
expectations are met. The combination of verification
and validation (V& V) processes generaly includes
both inspections and tests of intermediate and final
products of the development effort. Figure 3-5, taken
from |EEE Standard 1012, provides an overview of the
process. See also ANS 7-4.3.2 and ANS 10.4.

Software V&V isdiscussed in detail in Barter 1993.
That document gives a background discussion of V&V
issues, the V&V plan, and V&V activities throughout
thelife cycle. Consequently, nothing more will be
written here about the general issues.

The V&V plan can be based on ANSI/IEEE standard
1012, Verification and Validation Plans. A sample
table on contents for a software V&V plan, based on
this standard, is shown in Figure 3-6. The developer
need not follow this sample, provided that all V&V
requirements are included in the devel oper’ s own plan.
The figure assumes that the software life cycle phases
match the life cycle stages presented in Figure 2-1; the
developer will need to make modifications to match
the actual life cycle.

There can be considerable overlap between V&V
activities and Quality Assurance and Safety Analysis
activities. It isthe responsibility of the project
management to allocate responsibilitiesin away
suitable to the actual project at hand.

Management of Life Cycle V&V. The mgjor
portion of the V&V Plan will be the way in which
V&V will be carried out through the life of the
development project. If thisis done carefully, then
the V&V tasks for the remainder of the project
consists of carrying out the Plan. In general, the
following activities should be required for each
phase of thelife cycle:

— ldentify the V&V tasksfor thelife cycle
phase.

— ldentify the methods that will be used to
perform each task.

— Specify the source and form for each input
item required for each task.

— Specify the purpose, target and form for each
output item required for each task.

— Specify the schedule for each V&V task.

— ldentify the resources required for each task,
and describe how the resources will be made
available to the V&V organization.

— ldentify the risks and assumptions associated
with each V&V task. Risksinclude safety,
cost, schedule and resources.

— ldentify the organizations or individuals
responsible for performing each V&V task.

Requirements Phase V& V. The V&V Plan will
describe how the various V&V tasks will be
carried out during the requirements phase of the
life cycle. The following tasks are identified in
IEEE 1012 asaminimal set:

— Software Requirements Traceability Analysis.

— Software Requirements Evaluation.

— Software Requirements Interface Analysis.
— System Test Plan Generation.

— Acceptance Test Plan Generation.

Design Phase V&V. The V&V Plan will describe
how the various V&V tasks will be carried out
during the design phase of thelife cycle. The
following tasks are identified in IEEE 1012 as a
minimal set:

— Software Design Traceability Analysis.
— Software Design Evaluation.

— Software Design Interface Analysis.

— Component Test Plan Generation.

— Integration Test Plan Generation.

27

Section 3. Activities

— Component Test Design Generation.
— Integration Test Design Generation.
— System Test Design Generation.

— Acceptance Test Design Generation.

Implementation Phase V& V. The V&V Plan will
describe how the various V&V taskswill be
carried out during the implementation phase of the
life cycle. The following tasks are identified in
|EEE 1012 asaminimal set:

— Source Code Traceability Analysis.

— Source Code Evaluation.

— Source Code Interface Analysis.

— Source Code Documentation Analysis.

— Component Test Case Generation.

— Integration Test Case Generation.

— System Test Case Generation.

— Acceptance Test Case Generation.

— Component Test Procedure Generation.
— Integration Test Procedure Generation.

— System Test Procedure Generation.

— Acceptance Test Procedure Generation.

Integration Phase V&V. The V&V Plan will
describe how the various V&V task will be carried
out during the integration phase of the life cycle.
The following tasks are identified in IEEE 1012 as
aminimal set:

— Integration Test Execution.

Validation Phase V&V. The V&V Plan will
describe how the various V&V taskswill be
carried out during the validation phase of thelife
cycle. The following tasks are identified in |EEE
1012 asaminimal set:

— Acceptance Test Procedure Generation.
— System Test Procedure Execution.
— Acceptance Test Procedure Execution.

Installation Phase V& V. The V&V Plan will
describe how the various V&V tasks will be
carried out during the installation phase of the life
cycle. The following tasks are identified in |IEEE
1012 asaminimal set:

— Ingtalation Configuration Audit.
— Final V&V Report Generation.

Section 3. Activities

. Develooment « Concept . « Standards
Required schedulloes . gc')?csu menaten :ggg
V&YV Inputs + Concept * Interface « Interface
documentation requirements requirements
documentation documentation
e User « Interface
J L documentation design
documentation
« User
Life Cycle documentation

Phase

Concept

L

Requirements

Minimum » Concept ;
documentation
V&YV Tasks evaluation

* Requirements traceability
analysis

* Requirements evaluation

* Requirements interface

* Design traceability analysis

L

Required

V&V Outputs

* Concept phase

task reporting

* Anomaly

reports

* V&YV phase

summary report

Management of V&V

L

* Requirements

phase task

reporting

Test plan

--- System

--- Acceptance

e Anomaly
report(s)

* V&V phase
summary
report

nalysi ! _
. ?eztyslgn * Design evaluation
genefation * Interface analysis

* Test plan generation
* Test design generation

L

» Design phase task
reporting

* Test plan

--- Component

--- Integration

Test design

--- Component

--- Integration

--- System

---Acceptance

» Anomaly reports

* V&V phase
summary report

» SVVP generation

» Baseline change assessment

» Management review
* Review support

28

Figure 3-5. Verification and Validation Activities

¢ Standards

* SDD

* Source code listing(s)

* Executable code

* Interface design
document

* User
documentation

Ll

Implementation

« Source code listing(s)

* Executable code

* User documentation

Ll

* Code traceability analysis
» Code evaluation

* Interface analysis

» Documentation evaluation
« Test case generation

« Test procedure generation
Component test execution

L1

Implementation phase
task reporting

Test cases

--- Component

--- Integration

--- System

--- Acceptance

Test procedures

--- Component

--- Integration

--- System

Anomaly report(s)

* V&V phase summary
report

Test

package

* Test procedure
generation

* Integration test
execution

 System test execution

» Acceptance test
execution

L1

* Test phase task

reporting

* Test procedures

--- Acceptance

« Anomaly report(s)
* V&V phase summary

report

* Installation

Ll

Installation
and Checkout

Section 3. Activities

» Development schedules

« Concept documentation

* SRS

« Interface requirements
documentation

* SDD

« Interface design documentation

« Source code listing(s)

 Executable code

* User documentation

* SVVP

 Proposed/approved changes

« Anomaly report(s)

* SVVP

L1

Operation

Management of V&V

* Installation

configuration audit

» V&V final report
generation

L

* Installation and
checkout phase
reporting

» Anomaly report(s)
* V&V phase summary

report
* V&V final report

and
Maintenance

« SVVP revision

« Anomaly
evaluation

« Proposed change
assessment

« Phase task
reiteration

L

task

Updated SVVP

* O&M task reporting
Required phase outputs
reiterated

* Anomaly report(s)

¢ SVVP and updates
« Task reporting

Phase V&V summary reports
* Anomaly reports

ANSI/IEEE 1012

Figure 3-5. Verification and Validation Activities (cont.)

29

Section 3. Activities

1. Introduction

1.1. Purpose

1.2. Scope

1.3. Definitionsand Acronyms

1.4. References
2. Verification and Validation Overview

2.1. Organization

2.2. Master Schedule

2.3. Resource Summary

2.4. Responsibilities

2.5. Tools, Techniques and Methodologies
3. Life Cycle Veification and Validation

3.1. Management of V&V

3.2. Requirements Phase V&V

3.3. Design Phase V&V

3.4. Implementation Phase V&V

3.5. Integration Phase V&V

3.6. Vdidation Phase V&V

3.7. Instalation Phase V&V

3.8. Operation and Maintenance Phase V&V
4. Software Verification and Validation Reporting

5. Verification and Validation Administrative
Procedures

5.1. Anomaly Reporting and Resolution
5.2. Task Iteration Policy

5.3. Deviation Policy

5.4. Control Procedures

5.5. Standards, Policies and Conventions

Figure 3-6. Outline of a Software Verification and

Validation Plan

3.1.5. Software Safety Plan

The Software Safety Plan (SSP) is required for safety-

critical applications, such as reactor protection
systems, to make sure that system safety concerns are
properly considered during the software devel opment.
The discussion hereis based on an |EEE Draft

Standard, 1228, Software Safety Plans. A sample table

of contents for an SSP, based on the draft standard, is
shown in Figure 3-7. The devel oper need not follow

30

this sample, provided that the requirements listed
below are included the actual plan. In particular, the
developer may wish to include many of the Safety
Management requirements in other plans. For example,
CM activities discussed here could be included in the
developer’s SCM plan. The entire SSP could be
included within a global reactor safety plan. The
software safety organization referred to in the list
could be part of the system safety organization. The
requirements for a software safety plan are listed next.

1. Introduction
1.1. Purpose
1.2. Scope
1.3. Definitionsand Acronyms
1.4. References
2. Safety Management
2.1. Organization and Responsibilities
2.2. Resources
2.3. Staff Qualifications and Training
2.4. Software Life Cycle
2.5. Documentation Requirements
2.6. Software Safety Program Records
2.7. Software Configuration Management
Activities
2.8. Software Quality Assurance Activities
2.9. Tool Support and Approval
2.10. Previoudly Developed or Purchased Software
2.11. Subcontract Management
2.12. Process Certification

3. Safety Engineering Practices during Software
Development

3.1. Requirements Safety Analysis
3.2. Design Safety Analysis

3.3. Code Safety Analysis

3.4. Integration Test Safety Analysis
3.5. Vadlidation Test Safety Analysis
3.6. Installation Test Safety Anaysis
3.7. Change Safety Analysis

Figure 3-7. Outline of a Softwar e Safety Plan

Organization and Responsibilities. Describe the
way in which software safety activities fit within
the overall project safety activities and with the
development organization. Mgjor topicsto discuss
include:

— Organizationa relationships involving the
software safety organization.

— Lines of communication between the software
safety organization, the system safety
organization, and the software development
organization.

— Theoversight, review, and approval authority
of the software safety organization.

— Theauthority of the software safety
organi zation to enforce compliance with
safety requirements and practices.

— Thename and title of asingle individual with
overall responsibility for the conduct of the
software safety program.

— Theresponsihilities of the software safety
organization. Typical responsibilitiesinclude
the following:

* Preparation and update of the SSP.

* Acquisition and allocation of resourcesto
ensure effective implementation of the
SSP.

* Coordination of safety task planning with
other organizational components and
functions. Thisincludes software
development, system safety, software
quality assurance, software configuration
management, and software V& V.

* Coordination of all technical issues
related to software safety with other
components of the development and
support organizations and the regulators.

* Creating, maintaining, and preserving
adequate records to document the
conduct of the software safety activities.

* Participation in audits of the SSP
implementation.

* Training of safety and other personnel in
methods, tools, and techniques used in
the software safety tasks.

2. Resources. Specify the methods to be used to

ensure there are adequate resources to implement
the software safety program. Resources include
(but are not limited to) financial, schedule, safety

31

Section 3. Activities

personnel, other personnel, computer and other
equipment support, and tools.

— Specify the methods to be used to identify
resource requirements.

— Specify the methods to be used to obtain and
allocate these resources in the performance of
the saf ety tasks.

— Specify the methods to be used to monitor the
use of these resources.

Staff Qualifications and Training. Specify the
qualifications and training required for the
software safety personnel.

— Specify the personnel qualifications required
for each of the following tasks:

* Defining safety requirements.

* Designing and implementing safety-
critical portions of the protection system.

* Performing software safety analysis
tasks.

* Testing safety-critical features of the
protection system.

* Auditing and certifying SSP
implementation.

* Performing process certification.

— Define training requirements and the methods
by which training objectives will be met.

Software Life Cycle. Describe the relationship
between software safety tasks and the
development activities that will occur in the
development organization’s chosen life cycle.

Documentation Requirements. Specify the
documents that will be required as part of the
software safety program.

— Describe the method of documentation
control that will be used. (The configuration
management organization could be used for
this purpose.)

— List all safety-specific documents that will be
prepared. In particular, there must be
documents describing the results of the
various safety analyses described below in
Sections 3.2.2, 3.3.3,3.4.2,35.2, 3.6.1, 3.7.5,
and 3.8.1.

— Describe how other project documents must
be augmented to address software safety
activities. At minimum, the following topics
must be addressed:

Section 3. Activities

* Software project management.
* Software safety requirements.
* Software development standards,
practices, and conventions.
* Software test documentation.
* Software verification and validation
documentation.
* Software user and operator
documentation.
Software Safety Program Records. |dentify what
software safety program records will be generated,
maintained and preserved.

— At minimum, the following records shall be

kept.

* Results of all safety analyses.

* Information on suspected or verified
safety problems that have been detected
in pre-release or installed systems.

* Results of audits performed on software
safety program activity.

* Results of safety tests carried out on the
software system.

* Records on training provided to software
safety personnel and software
development personnel.

Specify the person responsible for preserving

software safety program records.

Specify what records will be used to ensure
that each hazard, the person responsible for its
management, and its status can be tracked
throughout the software development life
cycle.

Software Configuration Management Activities.
Describe the interactions between the software
configuration management organization and the
software safety organization.

Describe the process by which changesto
safety-critical software items are to be
authorized and controlled.

Describe the role and responsibility of safety
personnel in the change evaluation, change
approval, and change verification processes.

Describe the relationship between the
Configuration Control Board and the software
safety organization.

Describe the methods for ensuring that
configuration management of the following

32

10.

software meets the additional requirements
necessary for safety-critical software:

* Software development tools.

* Previously developed software.

* Purchased software.

* Subcontractor-devel oped software.

Software Quality Assurance Activities. Describe
the interactions between the software quality
assurance organization and the software saf ety
organization.

Tool Support and Approval. Specify the process to
be used and the criteriato be applied in approving
and controlling tool usage. This appliesto
development tools, and concerns the
appropriateness of each tool to developing safety-
critical code. The following aspects must be
addressed:

Tool approval procedures.

Installation of upgrades to previously
approved tools.

Withdrawal of previously approved tools.

Limitations imposed on tool use.

Previously Developed or Purchased Software.
State the actions that will take place to ensure that
previously developed or purchased (PDP)
software meet the safety-related requirements of
the development project.

— Definetherole of the software safety
organization in approving PDP software.

— Describe the approval process. At minimum,
the following steps should be performed for
PDP software that will be used in safety-
critical applications:

* Determine the interfaces to and
functionality of the PDP software.

* |dentify relevant documents that are
available to the obtaining organization,
and determine their status.

* Determine the conformance of the PDP
software to published specifications.

* |dentify the capabilities and limitations of
the PDP software with respect to the
safety requirements of the development
project.

* Using an approved test plan, test the
safety-critical features of the PDP

11

12.

13.

software in isolation from any other
software.

* Using an approved test plan, test the
safety-critical features of the PDP
software in conjunction with other
software with which it interacts.

* Perform arisk assessment to determine if
the use of the PDP software will result in
undertaking an acceptable level of risk
even if unforeseen hazards result in a
failure.

Subcontract Management. Specify the method for
ensuring that subcontractor software meets the
requirements of the software safety program.

Describe how subcontractors will be
controlled to ensure that they meet the
requirements of the software safety plan.

Describe how the capabilities of the
subcontractor to support the software safety
program requirements will be determined.

Describe how the subcontractor will be
monitored to ensure his adherence to the
requirements of the SSP.

Describe the process to be used to assign
responsibility for, and track the status of,
unresolved hazards identified or impacting the
subcontractor.

Process Certification. Specify the method to be
used (if any) to certify that the software product
was produced in accordance with the SSP
processes.

Safety Analyses. Specify the various safety
analyses that will be performed for each stage of
thelife cycle. These are discussed in detail below
in Sections 3.2.2, 3.3.3,3.4.2,3.5.2,3.6.1, 3.7.5,
and 3.8.1.

Specify which safety analyses will be carried
out for each life cycle stage.

Name the person responsible for each
analysis.

Describe the review procedures that will be
carried out for each analysis.

Describe the documentation that will be
required for each analysis.

33

Section 3. Activities

3.1.6. Software Development Plan

The Software Development Plan provides necessary
information on the technical aspects of the
development project, that are required by the
development team in order to carry out the project.
Some of the topics that should be discussed in this plan
were also listed for the Software Project Management
Plan discussed in Section 3.1.1. The latter document is
directed at the project management personnel, so
emphasi zes the management aspects of the
development effort. The document discussed here
emphasizes the technical aspects of the development
effort, and is directed at the technical personnel.

A sampletable of contents for a Software
Development Plan is shown in Figure 3-8. The
developer need not follow this sample, provided that
the requirements listed below are included in the actual
plan. Additional information required for development
isdiscussed in other plans. For example, testing is
discussed in the Software V&V Plan.

The reader isreferred to IEEE Standard 1074 for
information on life cycle processes.

1. Life Cycle Processes. Describe the life cycle that
will be used on this project. Discuss the various
processes that make up thislife cycle. For each
process, give the input information required in
order to carry out the process, a description of the
actions that must take place during the process,
and the output information produced by the
process. Since the output of one processis likely
to be used as input to another, a data flow diagram
would be appropriate. The processes suggested
here are based on |EEE 1074.

— Requirements Processes.

* Define, Develop, and Document
Software Requirements.

* Define and Document Interface
Requirements.

* Prioritize and Integrate Software
Requirements.

* Verify Requirements.

* Perform and Document Requirements
Safety Analysis.

— Design Processes.

* Define and Document the Software
Architecture. Thisincludes how the
software architecture will fit into the
hardware architecture.

Section 3. Activities

1. Introduction
1.1. Purpose
1.2. Scope
1.3. Definitionsand Acronyms
1.4. References
2. Life Cycle Processes
2.1. Requirements Processes
2.2. Design Processes
2.3. Implementation Processes
2.4. Integration Processes
2.5. Validation Processes
2.6. Installation Processes
2.7. Operation and Maintenance Processes
3. Methods, Tools and Techniques
3.1. Requirements Methods, Tools and Techniques
3.2. Design Methods, Tools and Techniques

3.3. Implementation Methods, Tools and
Techniques

3.4. Integration Methods, Tools and Techniques
3.5. Installation Methods, Tools and Techniques
4, Standards
5. Schedule and Milestones
6. Technica Documentation Requirements

Figure 3-8. Outline of a Software
Development Plan

* Design and Document the Database.

* Design and Document Interfaces. This
includes all interfaces between the
software components, and between
software, hardware, and instrumentation.

* Select or Develop and Document
Algorithms.
* Perform and Document Detailed Design.
* Verify the Software Design.
* Perform and Document Design Safety
Analysis.
— Implementation Processes.

* Create Unit Development Folders.

* Create Source Code.

* Create and Document Test Data.

* Generate Object Code.

* Perform and Document Unit Testing.

34

* Verify the Software Implementation.
* Perform and Document Implementation
Safety Analysis.
— Integration Processes.

* Specify and Document System Build
Methods.

* Integrate Hardware, Software and
Instrumentation.

* Create and Document Integration Test
Procedures and Test Cases.

* Perform Integration Testing.
* Verify the Software Integration.
* Perform and Document Integration
Safety Analysis.
— Validation Processes.

* Specify and Document Validation Test
Procedures and Test Cases.

* Perform and Document Validation
Testing.

* Verify the Validation Testing.

* Perform and Document Validation Safety
Analysis.

— Installation Processes.

* Specify and Document Installation

Procedures.

* Specify and Document Installation
Acceptance Procedures.

* Specify and Document Installation Test
Procedures and Test Cases.

* Specify and Document Installation
Configuration Tables.

* Verify the Installation Procedures.

* Perform and Document Installation
Safety Analysis.
— Operation and Maintenance Processes.

* Specify and Document Operation
Procedures.

* Specify and Document Regression Test
Procedures and Test Cases. Thiswill
probably consist of the installation test
procedures and test cases, augmented by
tests to cover any faults found and
repaired during operation.

Methods, Tools, and Techniques. Describe the
methods and techniques that will be used to
develop the software, and the tools that will be
used in connection with those methods and
techniques.

— Requirements. Describe the requirements
methodology and any tools that will be used
to implement it. A formal requirements
methodology is recommended for reactor
protection systems. Specify any requirements
tracking tool that will be used.

— Design. Describe the design method and any
tools that will be used to implement it. A
formal design method is recommended for
reactor protection systems. Specify any CASE
tools that will be used. Specify what
computers will be used to perform and
document the software design.

— Implementation. Describe the implementation
method and all tools that will be used in
implementation. Specify what programming
language will be used. Specify the compiler
and linker that will be used. Specify what
computers will be used for software
development and unit testing.

— Integration. Describe the integration method
and any tools that will be used to implement
the integration. Note that integration
validation procedures, methods and tools are
described in the Software V&V Plan. This
includes integration testing.

— Installation. Describe the installation method
and any tools used to assist in installation.
Note that installation validation procedures,
methods, and tools are described in the
Software V&V Plan. Thisincludes
installation testing.

3. Standards. List al international, national, and
company standards that will be followed in the
project.

4. Schedule and Milestones. List al of the technical
milestones that must be met. Describe what is
expected at each milestone.

5. Technica Documentation. List al of the technical
documents that must be produced during the
software development. Discuss milestones,
baselines, reviews, authors and sign-offs for each
document. Thislist may be al of or a subset of the
list given in Section 3.1.1.3.

3.1.7. Software Integration Plan

Software integration actually consists of three major
phases: integrating the various software modules
together to form single programs, integrating the result

35

Section 3. Activities

of thiswith the hardware and instrumentation, and

testing the resulting integrated product. During the first

phase, the various object modules are combined to

produce executable programs. These programs are then

loaded in the second phase into test systemsthat are
constructed to be as nearly identical as possible to the
ultimate target systems, including computers,
communications systems and instrumentation. The
final phase consists of testing the results, and is
discussed in another report (Barter 1993).

A sampletable of contents for a Software Integration
Plan is shown in Figure 3-9, based on IEC 880. The
developer need not follow this sample, provided that
the requirements listed below are included in his own
plan. These requirements are listed next.

1. Integration Level. Multiple levels of integration

may be necessary, depending on the complexity of

the software system that is being devel oped.
Several integration steps may be required at some
levels.

1. Introduction
1.1. Purpose
1.2. Scope
1.3. Definitions and Acronyms
1.4. References
2. |dentification of the Integration Process
2.1. Integration Level
2.2. Integration Objects and Strategies
3. Integration Marginal Conditions
3.1. Integration and Testing Environment
3.2. Priorities
3.3. Risks
3.4. Other Margina Conditions
4. Organization of Integration
4.1. Integration Network Plan
4.2. Personnel and Responsibilities
5. Integration Procedures
5.1. Required Products
5.2. Integration Instructions
5.3. Special Handling

Figure 3-9. Outline of a Software
Integration Plan

Section 3. Activities

— Describe the different levels of integration
and the scope of each integration step at each
level.

Give ageneral description of the various
objects that will beincluded in each step at
each level.

2. Integration Objects and Strategies.

— Giveacomplete list of al objects, computer
hardware, instrumentation, software, and data
that will be included in each integration step.

— Describe the strategy that will be used for
each integration step.

3. Integration and Testing Environment.

Describe the environment that will be used to
perform and test each integration step.

List the tools that will be used in each
integration step.

4. Integration Priorities. Allocate each integration
step apriority, based on schedule, dependence
along the integration products, risk, and any other
factors deemed important to the devel opment
organization.

5. Integration Risks. Risk hererefers primarily to
budget and schedule. Other forms of risk can be
considered, at the option of the development
organization.

— If any integration step involves significant
risk, describe the potential problems and the
preventive measures that will be taken to
avoid them.

6. Integration Network Plan.

— Order the integration stepsinto atime
sequence. This order is determined primarily
by the dependencies among the integration
steps. Steps at more detailed levels will
generaly be required to complete successfully
before astep at amore general level can be
performed. Other factors can influence this
order.

7. Integration Personnel and Responsibilities.

— List the personnel who will beinvolved in the
integration steps.

— Provide ameansto keep thislist up to date.
8. Integration Products.

36

— List all of the products of each integration
step.

9. Integration Instructions. Provide the technical
instructions needed to carry out each integration
step, asfollows.

— List theinputs to the integration step.

Describe the procedures for obtaining the
input items (hardware, instrumentation,
software, and data) for the step. Thisis
expected to involve the CM organization.

Describe the integration process for the step.
List the outputs of the integration step.

Discuss contingency strategies if the
integration failsto complete.

Describe the procedures for delivering the
completed integration product to the
configuration management organi zation.

Describe the procedures for delivering the
completed integration product to the V&V
organization for integration testing.

3.1.8. Software Installation Plan

Software installation is the process of installing the
finished software products in the production
environment. The Installation Plan will describe the
genera procedures for installing the software product.
For any particular installation, modifications, or
additions may be required to account for local
conditions.

A sampletable of contents for a Software Installation
Plan is shown in Figure 3-10. The developer need not
follow this sample, provided that all of the installation
requirements are included in the actual plan.
Installation testing may be included in this plan, or in
the V&V plan. The latter aternative is presumed here.

1. Installation Environment. Describe the
environment within which the software product is
expected to perform. This can include the reactor
itself, the reactor protection system, and the
protection system instrumentation and computer
hardware. This description should be limited to
those items required for successful installation and
operation.

1. Introduction
1.1. Purpose
1.2. Scope
1.3. Definitionsand Acronyms
1.4. References

2. ldentification of the Installation Environment
2.1. Application Environment
2.2. Computer Hardware
2.3. Instrumentation

3. Instalation Package
3.1. Installation Software
3.2. Installation Documents

4. Installation Procedures

Figure 3-10. Outline of a Software
Installation Plan

2. Instalation Package. Describe al of the materials
that will be included in the installation package.
Thiswill include the software products, the media
that contain them, and associated documents. If
alternatives are available, describe each. For
example, several different installation media might
be provided.

3. Installation Procedures. Describe completely the
procedure for installing the software in the
operational environment. This should be a step-
by-step procedure, written for the anticipated
customer. Anticipated error conditions should be
described, with the appropriate recovery
procedures.

3.1.9. Software Maintenance Plan

Software maintenance is the process of correcting
faultsin the software product that led to failures during
operation. Thereisarelated activity, sometimes
termed “ enhancement,” which is the process of adding
functionality to a software product. That is not
considered here. Enhancement of areactor protection
system should repeat all of the development steps
described in this report.

The software maintenance plan describes three primary
activities: reporting of failures that were detected
during operation, correction of the faults that caused
those failures, and release of new versions of the
software product. A sample table of contents for this
plan is shown in Figure 3-11. The devel oper need not

37

Section 3. Activities

follow this sample, provided that all the necessary
activities are included in his own plan.

The maintenance activity should include use of a
configuration management system to track the failure
reports, fault corrections, and new releases of code and
documents.

1. Failure Reporting. A well-designed method must
exist for collecting operational failures and
making them known to the software maintenance
organization. The essential points are that no
failures be overlooked by the customer and that no
failures be lost by the maintenance organization.
All failures must be tracked by the maintenance
organization. This includes software failures,
misunderstandings on the part of operators,
mistakes in documents, bad human factors, and
anything else that causes the protection to fail or
potentially to fail.

— Failure detection includes all procedures by
which the existence of the failureis recorded
by the customer. Thiswill generally include
reporting forms.

Failure reporting includes the procedures used
to inform the maintenance organization of the
failures. It includes transmission of the failure
reports from the customer to the maintenance

1. Introduction
1.1. Purpose
1.2. Scope
1.3. Definitionsand Acronyms
1.4. References
2. Failure Reporting Procedures
2.1. Failure Detection
2.2. Failure Reporting
2.3. Failure Tracking
3. Fault Correction Procedures
3.1. Fault Detection
3.2. Fault Repair
3.3. Testing Correction
3.4. Regression Testing
4. Re-release Procedures

Figure 3-11. Outline of a Software
Maintenance Plan

Section 3. Activities

organization, and entry of these reportsinto a
failure tracking system. The latter should be
under configuration control.

Failure tracking consists of the procedures
used to make sure that the failureis assigned
to some person or group for analysis and fault
detection. The failure tracking system should
permit management to always know who is
responsible for handling the failure and any
causative faults.

2. Fault Correction. Every failure is caused by one or
more faults. These may be an incorrect
requirements specification, adesign error, or a
coding error. The fault must be found and
corrected. Thisincludes correction of any related
documentation if that is necessary. The plan will
describe the method to be used in finding and
correcting the fault

Fault detection includes all activities required
to find the fault or faults that caused the
failure.

Fault repair consists of al activitiesand
procedures involved in correcting the fault.

Because the failure was not discovered during
any of the previous test activities, the
acceptance test will need to be modified to
take the new failure into account.

Regression testing is the process of testing the
newly modified software product to make
sure that no new faults have been placed into
the software

3. Rerelease. Procedures must be defined to create
new versions of the software product, releasing
these to the customers and ensuring that the newly
corrected software product is correctly installed.

3.1.10. Software Training Plan

The training plan will describe the procedures that will
be used to train the operators of the software system. In
this case, reactor operators will need to be trained in
use of the protection system software. It isalso
possible that training will be required for managers and
for maintenance personnel.

The actual training requirements depend to a great
extent on the actual software product, development
organi zation, mai ntenance organization, and customer
(utility). Conseguently, no attempt is made here to
outline the contents of the training plan.

38

3.2. Requirements Activities

Perhaps the most critical technical tasksin any
software development project are those tasks that relate
to the understanding and documentation of the
software requirements. Thisis especially true for a
project, such as areactor protection system, in which
safety isavital concern. There are several risksif the
software requirements are not fully documented. Some
requirements may be omitted, others may be
misunderstood, still others may be interpreted
differently by different developers. Any of these can
create a hazard in a safety-critical application.

Software requirements are concerned with what the
software must do in the context of the entire
application, and how the software will interact with the
remainder of the application. These two aspects are
captured here in the Software Requirements
Soecification. In actual usage, the aspects may be split
into two documents, if so desired by the development
organization. It is also possible to record the
requirements specifications in some type of computer
database, using a requirements tracking system or a
CASE toal.

In the discussion here, four documents are described.
Taken together, they span the documentation, analysis,
and review of the various requirements activities. The
development organization may choose to combine
some of the documents, or to have additional
documents. Thisis not of great importance aslong as
the information discussed below isincluded in some
document. The documents are;

» Software Requirements Specification.
* Requirements Safety Analysis.

* V&V Requirements Analysis Report.
» CM Requirements Report.

The V&V and CM reports are described in detail in the
V&V and CM plans, so are not discussed here.

3.2.1. Software Requirements
Specification

The SRSisrequired for a safety-critical application, to
make sure that all safety-related system requirements
are made known to the software developers. These
requirements come from the overall application system
design, and reflect the requirements placed on the
software by the application system. In areactor
protection system, this means that the protection

system design must be known and documented, and
the demands that the system makes on the computer
system must be known. A hazard analysis of the
protection system should be available.

The discussion hereis based on | EEE 830, Software
Requirements Specification. Topics have been added
that relate specifically to real-time safety-critical
systems. A sample table of contents of an SRSis
shown in Figure 3-12. The developer need not follow

this outline, provided that the requirements for an SRS

that are listed below areincluded. In particular, the
developer is encouraged to use some form of
automated (or semi-automated) requirements tracking
system, or to use a CASE system.

1. Project Perspective. Describe the way in which the

software system fits within the larger reactor
protection system. This section can be thought of
as an overview of the software project, showing
how it fits within the larger protection system.

— Describe briefly the functions of each
component of the protection system, to the

extent required for the software developersto

understand the context of the software
requirements.

— ldentify the principal external interfaces of
the software system. A context diagram,
showing the connections between the
protection system and the software system,
can be quite helpful.

— Describe the computer hardware and
instrumentation that will be used, if thisis
known and imposed by outside authority. Be
sure that no unnecessary constraints are
imposed on the software design.

2. Project Functions. Describe briefly the functions

of the various parts of the software system. Do not

gointo great detail here—that is reserved for

Section 3 of the SRS. Instead, think of this section

as a self-contained management overview.

— For the sake of clarity, the functions listed
here should be organized so that they can be
understood to the customer, assessor, and
regulator.

— Block diagrams, data flow diagrams, finite

state diagrams, and other graphical techniques

can be helpful, but are not mandatory.
3. User Characteristics. Describe the general

characteristics of the users of the software system.

These will include the reactor operators and

Section 3. Activities

1. Introduction

1.1. Purpose

1.2. Scope

1.3. Definitions and Acronyms
1.4. References

2. General Description

2.1. Project Perspective
2.2. Project Functions
2.3. User Characteristics
2.4. General Constraints
2.5. Assumptions and Dependencies
2.6. Impacts
2.6.1. Equipment Impacts
2.6.2. Software Impacts
2.6.3. Organizationa Impacts
2.6.4. Operational Impacts

3. Specific Requirements

3.1. Functiona Requirements for Software
Components
3.2. Performance Requirements
3.2.1. Modes of Operation
3.2.2. Timing Requirements
3.2.3. Flexihility Requirements
3.3. Interface Requirements
3.3.1. Operator Interfaces
3.3.2. Instrumentation Interfaces
3.3.3. Software Interfaces
3.3.4. Hardware Interfaces
3.4. Reliahility Requirements
3.4.1. Availability
3.4.2. Reliability
3.4.3. Safety.
3.4.4. Maintainability
3.4.5. Backup
3.4.6. Recovery and Restart
3.4.7. Software and Hardware Diagnostic
Capabilities
3.4.8. Fault Tolerance
3.5. Design Constraints
3.5.1. Standards Compliance
3.5.2. Hardware Limitations
3.5.3. Software Limitations
3.6. Security Reguirements
3.7. Database Requirements
3.8. Operations Requirements

Figure 3-12. Outline of a Software
Requirements Specification

Section 3. Activities

software maintainers, and may include reactor
management personnel, depending on the specific
requirements imposed by the overall protection
system.

— For each class of user, give those
characteristics that will be required in order to
design the software system. This can include
educational level, experience with nuclear
reactors, experience with real-time computer
systems, and general technical ability.

General Constraints. Give ageneral description of
outside factors that will limit the designer’s
options. The following list istypical, not
exhaustive:

— Regulatory and other legal policies.

— Hardware limitations.

— Interfaces to other applications.

— Audit functions.

— Use of specific operating systems, compilers,
programming languages, and database
products.

— Use of specific communications protocols.

— Critical safety considerations.

— Critical security considerations.

Assumptions and Dependencies. List each of the
factors that can affect the requirements or design if
they change. These are not design constraints, but
more general assumptions. For example;

— Business conditions.

— Anticipated changesin laws or regulations.
— Availability of specific hardware or software.
— Possible changes in the computer industry.

Impacts. Provide warnings about anticipated
impacts of the new software system. For a new
reactor, this section of the SRS is probably not
applicable. However, if an existing protection
system is being replaced by a new computer-based
protection system, impacts should be described.
The purpose is to provide ample time to prepare
for the new system.

— Summarize any changes that will be required
to existing equipment, new equipment that
must be installed, and building modifications
that may need to be made.

— Discuss any additions or modifications that
will be needed to existing applications and

40

support software in order to adapt them to the
new software system.

— Describe any organizational impacts required
by the new software system. This can include
reorganizations, increase or decrease in staff
levels, upgrade of staff skills, and changesto
interfaces with regulators.

— Summarize any operational changes that will
be required, such as operational procedures,
rel ationships between the reactor protection
system and the reactor operators, staff
procedures, data retention and retrieval
procedures, reporting channels and methods,
failure consequences, and recovery
procedures and processing time requirements.

Functional Requirements. This large section of the
SRS describes what the software system must do.
The section can be subdivided in a manner that
makes the functional requirements clear. For
example, functions that relate to particular
protection system activities could be grouped
together, or functions that relate to particular
protection system components.

— Each functional requirement should be
individually numbered, for reference by
designers and assessors.

— Each functional requirement should be stated
in asingle positive sentence. Additional
sentences may beincluded if necessary to
fully describe the requirement.

— Itisfrequently useful to state what is not
required, so that the designers do not provide
unwanted functionality.

— Itisdesirableto use aformal language to
describe the functions. This can be the only
language used, or English can be used as a
supplement. The formal language may, for
example, be alanguage such as Z, which is
based on mathematical logic (Stepney 1987).
An English description may be required in
addition to the formal specification in order to
ensure that the latter is comprehensible to
developers, managers, users, and auditors.

General Interface Requirements. The Software
Interface Specification should identify the
reliability and safety requirements associated with
each system interface. The list given next, from
Redmill 1988, appliesto all interfaces. Separate
lists are given below for instrumentation and
operator interfaces.

10.

— Functions provided and required by the
system and its processes.

— Sequences of interactions.

— Input/output files for batch transfer to and
from other systems.

— Nature of the information transferred.

— Definition of printed or microfilm outputs.
— Formats.

— Auvailable options.

— Timing.

— Calor.

— Frequency of demands.

— Accuracy.

— Message error rates and types.

— Electrical and mechanica interface
requirements.

— Input checking.

— Presentation formats.

— Information density.

— Alerting signals.

— Backup and error correction.

— Security requirements.

Operator Interface Requirements. Define all of the

requirements for communication between the
software system and the operators.

— Be careful to define only the requirement, not
the design. In particular, do not specify the
appearance of operator screens unless that
appearanceis really arequirement.

— Thefollowing aspects of operator interfaces
should be considered if they apply to the
application (Redmill 1988):

* Positioning and layout of controls and
displays

* Human reaction and decision times

* Useof colors, bold face, underlining and
blinking on displays

* Menu techniques

* Default values

* Responsetimes

* Help facility

* Comfort signals

Instrumentation Interface Requirements. In areal-
time system, instrumentation can be divided into
two classes: sensors and actuators.

— For each sensor, describe the values that may
be received from the sensor. Give ranges,

41

Section 3. Activities

units, precision, error bounds (including
whether the bounds are a function of range),
meaning, calibration, and any other
significant facts about the sensor. If an analog
to digital converter is used, giveits resolution.

— For each actuator, describe the values that
may be sent to the actuator. Give ranges,
units, digital to analog resolution, precision,
meaning, calibration, and any other
significant facts about the actuator. (Many
actuators will be simple on/off actuators, and
most of the foregoing list will not apply.)

11. Software Interface Requirements. If the software

system will communicate with any other
application software system, define al the
interfaces between the systems. This
communication may bein terms of subroutine
calls, remote procedure calls, communication
messages, or some other means. All such are
referred to as “ messages’ here.

— For each message, describe the source and
destination of the message, the message
contents and format, the meaning of the
message, expected return messages,
transmission method and medium, error
conditions, expected frequency and size, and
areasonable upper limit to frequency and
size. An upper limit to frequency, for
example, could be afrequency that is
exceeded less than 0.01% of the time.

— Interactions between the application program
and the operating system are not usually
considered to be interfaces that must be
defined here. There may be rare exceptions,
however, in particular cases.

— Thefollowing aspects of communication
system interfaces should be considered if they
apply to the application (Redmill 1988):

* Handshaking

* Error checks

* Input and output communication ports

* Communication protocols and procedures
* Interrupts

* Exception handling and error recovery

* Message formats

* Message throughput

See Preckshot 1992a for more information on

communication systems.

Section 3. Activities

12. Hardware Interface Requirements. If the software
system must communicate directly with the
computer hardware, define all the interfaces
between the software and hardware systems. As
above, the term “message” is used.

13.

For each message, describe the software and
hardware elements of the message, the
method of message transmittal, the reason
such message is required, transmission
medium, error conditions, and expected and
upper limit to frequency and size of the

message.

Performance Requirements. Specify both static
and dynamic numerical performance
requirements.

Static requirements include the number of
terminals to support and number of
simultaneous users to support.

Dynamic requirements include numbers of
transactions per unit of time, task switching
time, amount of data to be processed in
certain time periods, and amount of time that
may have elapsed between asignal being
present at a particular sensor and aresulting
signal arriving at an actuator.

Modes of operation refer to the basic
configurations in which the system must
operate and in which the system would
exhibit differing performance characteristics.
Examplesinclude: fully operational test and
the partial loss of aparticular protection
system component.

Timing requirements must be specified
numericaly, and are usually given in terms of
response time. Thisisthe elapsed time
between the receipt of an input signal from an
operator or sensor and the arrival of a
resulting output signal to an operator or
actuator.

Timing requirements may depend on the
mode of operation. If so, individual timing
requirements for each mode of operation must
be given.

Describe the required adaptability (flexibility)
of the software system. This can include the
ability to switch between modes of operation,
operating environments, planned changes or
improvements, and the use of new hardware.
Theintent isto provide information to the
designers as to where flexibility will be

42

important so as to minimize future design
changes.

14. Reliability Regquirements. A number of topics
relating to the general subject of reliability are
collected together here.

— Auvailahility isthe percent of time that the

software system will be available for use. It
should be stated numerically. Different
availability requirements may exist for the
different modes of operation. State any
assumptions that are used in deriving the
availability number.

Reliability is a measure of the length of time
the software system can be expected to
operate before failing, under the assumption
that the computer hardware does not fail. The
usual measure is mean timeto fail, or failure
rate. Different reliability requirements may
exist for the different modes of operation.
State any assumptions that are used in
deriving the reliability numbers.

Safety (in this section) is ameasure of the
length of time the software system can be
expected to run before failing in such away
as to cause a system hazard. The usual
measure is the probability that the system will
fail catastrophically per demand. Different
safety requirements may exist for the different
modes of operation. See also the requirements
discussed for a software safety plan, Section
3.1.5, and the later discussions on safety
analysesin Sections 3.2.2, 3.3.3, 3.4.2, 3.5.2,
3.6.1,3.7.5,and 3.8.1.

Maintainability is a measure of the length of
timeit will take to restore afailed application
to usable status. This may be merely arestart
of the software system; the measure does not
usually include the amount of time required to
identify and fix bugs. The usual measureis
mean time to repair. In this context, the
requirement is the amount of time the system
is permitted to be not working beforeit is
restored to operation, and may differ for the
different modes of operation.

Specify any backup, recovery, and restart
requirements. Any special requirements, such
asreinitialization or reconfiguration, should
be described.

If the application requires the ability to
diagnose hardware or software failures,

identify these requirements. Acceptable
responses to undesired events should be
characterized. Undesired events, such as
hardware failure and operator errors, should
be described and the required software system
responses should be stated.

If the application must not only detect
failures, but aso recover from them and
continue to operate, the fault tolerance
requirements should be given. Note that no
system can recover from all errors.

Identify the reliability and safety requirements
associated with each mode of operation. The
following list identifies potential modes of
operation that should be considered (Redmill
1988); not all will necessarily apply to
reactors:

* System generation.
* |nstallation of new software.

* Norma operation. There may be several
different normal modes.

* Degraded operation.

* Emergency operation.

* Automatic operation.

* Semi-automatic operation.

* Manua operation.

* Periodic processing (such as daily or
hourly).

* Maintenance.

* Housekeeping.

* Shutdown.

* Errorisolation.

* Error recovery.

* Backup.

All aspects of fault, error and failure handling

should be covered (Redmill 1988):

* Hardware/software failure.

Failure detection.

Failure identification.

Failure isolation.

Remedial procedures.

Redundancy.

Fail-safe operation.

* System recovery procedures.
+ Fallback procedures.

+ Reconstruction of obliterated or
incorrectly altered data.

+ 4+ + + + o+

43

Section 3. Activities

+ Repair of redundant channels.
* Information collection.
+ Separate sources.
+ Separate channels.
* Information processing.
+ Weak signal levels.
Data storage.
Analysis techniques (correlation).
Noise reduction.
Error handling.
* Human errors or violations.
+ Security standards.
+ Control aspects.
+ Procedural aspects.
+ Management aspects.

15. Design Congtraints. List al guides, standards, and
regulations that apply to the design.

+ 4+ 4+

— List any laws and regulations, company
policies, departmental standards, and national
and international standards that may affect the
design of the software system.

— If the application must run on certain
hardware configurations, or in conjunction
with particular software products, list them
here.

16. Security Requirements. Specify the requirements
for protecting the software system from accidental
or malicious access, use, modification,
destruction, or disclosure.

— Thismay include access restrictions,
cryptographic techniques, the use of history
logs, restrictions on the use of terminals or
communications lines, physical isolation, and
similar matters.

17. Database Requirements. Specify the requirements
for any database that is to be developed as part of
the software system. Be careful not to overspecify;
list only items for which thereis an identified
external requirement.

18. Operationa Requirements. Specify the normal and
special operations required by the user. This can
include the different modes of operation listed
earlier.

3.2.2. Requirements Safety Analysis

A safety analysis should be performed for any real-
time system for which safety is a consideration. The

Section 3. Activities

purpose of the analysisisto identify any errors or
deficiencies that could contribute to a hazard and to
identify system safety considerations that are not
addressed in the software requirements specification.
Four analyses are recommended here; additional
analyses may be required, depending on the nature and
sensitivity of the application. The safety analysis and
the reporting of the results of the analysis could be
included in the project’ s V&V activities, or within the
system safety activities. The recommended analyses
are asfollows:

e Criticality Analysis determines which software
requirements are safety critical.

e System Analysis determines that all system
requirements have been correctly allocated.

e Specification Analysis determines that each
software safety function and requirement is
correctly and consistently implemented with the
other functions and requirements in the
requirements documentation.

e Timing and Sizing Analysis determines that there
will be sufficient resources to accomplish safety-
critical requirements.

One viewpoint of requirements safety analysisis given
in Lee 1992. Thisis not the only possible approach.
The discussion hereis based on that document, and is
limited to the objectives of the various analyses.

Criticality Analysiswill identify those software
requirements that have safety implications so that
analysis efforts can be focused on the most critical
requirements. The analysis must consider each
software requirement and determine its potential
impact on safety. For areactor protection system,
requirements will be classified as critical or non-
critical, depending on their impact on safety.
Requirements that are determined to be critical must be
delineated in some way to be sure that they receive
sufficient attention during software design, verification
and validation, testing, and later safety analyses.

System Analysis matches the software requirements to
the overall system requirements. Softwareisa
component of a system that is made up of hardware,
instrumentation, and other software. The objective of
system analysisis to ensure that the software
component reguirements are complete and traceable to
the system level requirements and are complementary
to the requirements for other parts of the protection
system. This analysis ensures that the software
component regquirements include all necessary

44

functions and constraints and no unintended ones. This
same criteria should be applied to the software
component interface specifications. The result of the
system analysisis an identification of incomplete,
missing, and incorrectly allocated requirements.

Specification Analysis evaluates the compl eteness,
correctness, consistency, and testability of software
safety requirements. Well-defined requirements are a
strong standard by which to evaluate a software
component. Specification analysis should evaluate
each requirement singularly and all requirements as a
set. Among the techniques used to perform
specification analysis are hierarchy analysis, control
flow analysis, information flow analysis, and
functional simulation. Hierarchy analysisidentifies
missing and incompl ete requirements and requirements
for functions that are never used. Control flow analysis
examines the order in which software functions will be
performed and identifies missing and inconsistently
specified functions. Information flow analysis
examines the relationship between functions and data
to identify incorrect, missing, and inconsistent
input/output specifications. Functional simulation
models the characteristics of a software component to
predict performance, check human understanding of
system characteristics, and assess feasibility.

Timing and Sizing Analysis evaluates software
requirements that relate to execution time and memory
allocation. Timing and sizing analysis focuses on
program constraints. The types of constraint
reguirements are maximum execution time, time to
execute critical functions, and maximum memory
usage. The analysis should evaluate the adequacy and
feasibility of timing and sizing requirements,
particularly under stress conditions.

3.3. Design Activities

The next logical activity after the software
requirements have been determined isto design the
software system. The life cycle being used by the
development organization will determine whether or
not all requirements activities are really completed
before the design is begun. However, there are certain
activities that can be considered design, as opposed to
requirements and implementation, no matter what life
cycleisused. These activities are the topic of this
section.

In the discussion here, five documents are described.
Together, they span the documentation, analysis, and
review of the various software design activities. The

development organization may choose to combine
some of the documents, or to have additional
documents. Thisis not of great importance aslong as
the information discussed below isincluded in some
document. The documents are;

» Hardware and Software Architecture.

e Software Design Specification.

e Software Design Safety Analysis.

e V&V Design Analysis Report.

e CM Design Report.

The V&V and CM reports are described in the V&V

and CM plans, so are not discussed here.

3.3.1. Hardware and Software
Architecture

The design architecture consists of a description of the
hardware and software elements, and the mapping of
the software into the hardware. The hardware
architecture will show the various hardware items—
computers, file systems, I/O devices (such as sensors,

actuators, and terminals) and communication networks.

This provides a physical view of where computation
can take place, how information is physically stored
and displayed, and how information is physically
routed from one device to another.

The software architecture will show the various
software processes, databases, files, messages, and
screen designs. This architecture shows the logical
view of where computations take place, where
information islogically stored and displayed, and how
information moves logically from one process, data
store, or input device to another process, data store, or
output device.

Finally, the mapping shows the connections between
the software and the hardware. Each process must run
on acomputer, each data store must reside on one or
more physical storage media, each screen display must
be shown on areal terminal, and information must
move over physical communication linesin order to
carry out logical communication between processes
and 1/0O devices.

The architecture description will probably consist of a
set of drawings, possibly within a CASE tool. For this
reason, no suggestion is made here for a document
table of contents.

45

Section 3. Activities

3.3.2. Software Design Specification

The software design specification shows exactly how
the software requirements will be implemented in
software modules and processes. The term “module” is
used here to mean a collection of programming
language statements, possibly including subroutines,
which is compiled as a unit. An (executable) load
moduleis a collection of one or more modules,
including both application modules and operating
system library modules, that is capable of independent
execution in a computer. The term “process’ is used to
mean the execution of aload module on a computer.
Multiple copies of aload module might be running on
the same or different computers at the same time, each
asan individual identifiable process.

Many different design techniques are available. While
aformal design technique is preferred for reactor
protection systems, other alternatives do exist. Some
are described in Pressman 1987. One technique for
real-time systemsis given in Hatley 1987. Object-
oriented design techniques are popular in some
quarters (Rumbaugh 1991). An automated or semi-
automated design system is recommended; a CASE
tool isan example. It isbest if this design system is
directly linked to the requirements tracking system.

Because of the many design techniques that might be
used, plus the desire to use automated design systems,
no attempt is made here to describe atable of contents
for a design document. Certain requirements can be
placed on the design; these are listed next. Thislist is
derived from |EEE Standard 1016, Software Design
Descriptions.

1. Whatever technique is used, the software design
should result in a hierarchical decomposition into
layers of design elements. IEEE 1016 definesa
design element as a component “that is
structurally and functionally distinct from other
elements and that is separately named and
referenced.”

2. A design element may be a software system,
subsystem, or module; database, file, data
structure, or other data store; message; program or
process.

3. Each design element should be placed in the
configuration management system asa
configuration item.

4. Each design element must have a number of
attributes. The following list is meant to be

Section 3. Activities

representative. The designer may have additional
attributes. The description of the attributes should
be as clear as possible. This may, for example,
imply that attributes for many elements are
described together. For example, an entity-
relationship diagram may be used to describe the
structure of several design elements at once. A
state-transition diagram can be used to explain the
interactions of several process design elements.
Theintent isto include all necessary design
information in away that can be implemented
correctly and understood by the assessor.

— The name of the design element.

— Thetype of the design element, which could
include the system, subsystem, module,
database, file, data structure, screen display,
message, program, and process.

— The purpose of the design element. That s,
why the element existsin the design.

— Thefunction of the design element. That is,
what it does.

— |If the element has subordinate elementsin the
hierarchical decomposition, list them. A
diagram can be quite helpful for this purpose.

— List al elements with which this element
interacts. This could be done using an entity-
relationship diagram (for databases and data
structures), data flow diagram (for processes),
finite state diagram (for understanding
control), structure chart (for aprogram), a
transaction diagram (for messages), or
whatever best shows the interactions. The
interaction description should include timing,
triggering events, order of execution, data
sharing, and any other factor that affects
interaction.

— Provide detailed descriptions of the waysin
which the design element interacts with other
design elements. This description includes
both the methods of interaction and the rules
governing the interactions. Methods include
the mechanisms for invoking the design
element, input and output parameters or
messages, and shared data. Rules include
communications protocols, data format, range
of values of parameters, and the meaning of
each parameter or message.

— Describe all resources required by the design
element for it to perform its function. This can
include CPUs, printers, terminals, disk space,

46

communication lines, math libraries,
operating system services, memory, and
buffer space.

If the element does any processing, describe
the method by which the element carries out
its function. This can include a description of
algorithms, sequencing of events or processes,
triggering events for processinitiation,
priority of events, actual process steps,
process termination conditions, contingency
processing, and error handling. A formal
description of the design processing is
strongly encouraged. Diagrams are
encouraged; this can include data flow
diagrams, control flow diagrams, Warnier-Orr
diagrams, Jackson diagrams, decision tables,
finite state diagrams, and others. See
Pressman 1987.

If the element is a data store, message, or
screen display, describe its structure. This can
include the method of representation, initial
values, permitted ranges of values, use,
semantics, format, and appearance. The
description should discuss whether the
element is static or dynamic, whether it is
shared by several processes or transactions,
whether it is used for control or value, and
how it isvalidated. A formal description of
the structure of the design element is strongly
encouraged. An entity-relationship diagram
can be helpful to understanding.

Include alist of al requirements implemented
by this element. Thisis used to verify that the
design implements the requirements, and only
the requirements. Some elements may
implement more than one requirements, while
some requirements may need several elements
for a successful implementation. A cross
reference table can be used here.

List all implementation concernsthat are
determined as part of the design. This can
include programming language, use of
operating system privileges, hardware
requirements, error lists, error code lists,
standards and regul ations that must be
followed, accuracy, performance
considerations, and reliability considerations.

List all hazards that may be affected by this
design element, or that may affect theway in
which the element isimplemented.

3.3.3. Software Design Safety Analysis

A safety analysis should be performed on the software
design of any computer-controlled reactor protection
system. The purpose of the analysisisto verify that the
design correctly and consistently incorporates the
system safety requirements and identifies safety-
critical software design elements and detects errors that
might result in violations of the system safety
requirements. Four new analyses are recommended
here, and one requirement safety analysis should be
reviewed. Additional analyses may be required by the
developer or the assessor, depending on the nature and
sensitivity of the application. The results of the design
safety analysis should be documented. The
recommended analyses are as follows:

» Design Logic Analysis determines whether the
software design equations, algorithms, and control
logic correctly implement the safety requirements.

» Design Data Analysis determines whether the
data-related design elements are consistent with
the software requirements and do not violate
system safety requirements.

» Design Interface Analysis determines that the
interfaces among the design elements have been
properly designed, and do not create a safety
hazard.

» Design Constraint Analysis evaluates any
restrictions imposed on the software requirements
by real-world limitations and the design of the
software system, and determines that no new
safety hazards have been created.

* TheTiming and Sizing Analysis performed as part
of the Requirements Safety Analysis (Section
3.2.2) should be reviewed. If the results of that
analysis have changed due to the completion of
the software design, the analysis should be
revised. New information on timing and sizing
generally becomes available during the design
activities, and may change previous conclusions.

Design L ogic Analysis evaluates the equations,
algorithms, and control logic of the software design.
Logic analysis examines the safety-critical areas of
each software module. Thisis done by determining
whether the module implements any of the safety-
critical requirements. The interaction between safety
critical and non-safety critical components should be
identified. Components that generate outputs used by
critical components should also be considered critical.

47

Section 3. Activities

The control logic used to invoke the program tasks
should be considered critical .

The design must be traceable to the requirements. The
analysis should ensure that all safety critical
requirements have been included in the design. It
should also ensure that no new design features are
developed that have no basis in the requirements.

During logic analysis, the design descriptions, control
flows, and detail design are analyzed to ensure they
completely and correctly implement the requirements.
Specia emphasis should be placed on logic to handle
error conditions and high data rate conditions. The
analysis should identify any conditions that would
prevent safety-critical processing from being
accomplished.

Design Data Analysis evaluates the description and
intended use of each dataitem in the software. Data
analysis ensures that the structure and intended usage
of datawill not violate a safety requirement. The
analysis ensures that all critical dataitem definitions
are consistent with the software requirements. This
includes the range and accuracy of the dataitem, and
the insertion of the proper values into constants. The
analysis should determine that the precision of
intermediate variablesis sufficient to support the final
output accuracy requirements. The use of each data
itemin the design logic is also evaluated. Thisincludes
the order of use and the correct use. The usage must be
consistent with the structure, the accuracy, and the
range of the data. The analysis should also focus on
unintentional use or setting of the safety-critical data
by non-safety-critical logic.

Design Interface Analysis verifies the proper design
of asafety-critical software component's interfaces
with other components of the system. This includes
other software components and interfacing software
programs, and hardware components. Thisanalysis
will verify that the software component's interfaces
have been properly designed and do not introduce a
hazard. Design interface analysis will verify that
control and data linkages between interfacing
components have been properly designed. This
includes evaluation of the description of parameters
passed, data items passed and returned, direction of
control, and the form of data. The definition and typing
of parameters must be consistent and compatible. The
evaluation includes the interfaces for safety-critical
components to both critical and non-safety-critical
components.

Section 3. Activities

Design Constraint Analysis evaluates restrictions
imposed by requirements, by real-world limitations,
and by the design solution. The design materials
describe any known or anticipated restrictions on the
software components. These restrictions may include
timing and sizing constraints, equation and algorithm
limitations, input and output data limitations, and
design solution limitations. Design constraint analysis
evaluates the feasihility of the safety-critical software
based on these constraints.

The design safety analysis should also identify any
additional risks that may arise due to the use of
particular tools, methods, programming languages, or
design approaches. For example, errorsin compilers
can create new and unexpected hazards.

3.4. Implementation Activities

Implementation consists of the trandlation of the
software design into actual code. This code will exist
in some form, such as a programming language, a
database an implementation language, or a screen
design language. Many such languages exist, varying
from assembler (second generation) languages through
procedure-oriented programming (third generation)
languages to high-level block (fourth generation)
languages.

The discussion here calls for four documents, where
the code listings are considered a single document.
Taken together, they cover the documentation, analysis
and review of the various software implementation
activities. The development organization may choose
to have additional documents.

e CodelListings.

» Code Safety Analysis.

V&V Implementation Analysis and Test Report.
e CM Implementation Analysis.

The V&V and CM reports and described inthe V&V
and CM plans, so are not discussed here. Thereislittle
to say about code listings, other than they must exist,
so that is not discussed either.

3.4.1. Code Safety Analysis

A safety analysis should be performed on the actual
software that is developed for any computer-controlled
reactor protection system. The purpose of the analysis
isto verify that the implementation correctly and
consistently incorporates the system safety

48

requirements, identifies safety-critical software
modules and data structures, and detects errors that
might result in violations of the system safety
requirements. Four new analyses are recommended
here, and one requirement safety analysis should be
reviewed; additional analyses may be required by the
developer or the assessor, depending on the nature and
sensitivity of the application. The results of the design
safety analysis should be documented. The
recommended analyses are as follows:

e Code Logic Analysis determines whether the
software correctly implements the software
design.

e Code Data Analysis determines whether the data
structures correctly implement the data structure
design.

e Code Interface Analysis verifies the compatibility
of internal and externa interfaces between
software components and other system
components.

e Code Constraint Analysis ensures that the program
operates within the constraints imposed by the
requirements, the design and the target computer
system.

e TheTiming and Sizing Analysis performed as part
of the design safety analysis should be reviewed.
If the results of that analysis have changed due to
the completion of the software implementation,
the analysis should be revised. New information
on timing and sizing generally becomes available
during the implementation activities, and may
change previous conclusions.

Code L ogic Analysis evaluates the sequence of
operations represented by the coded program. The
logic analysis will detect logic errorsin the coded
software. This analysis evaluates the branching,
looping, and interrupt processing of the software
components. The analysis also should ensure that code
that has no basisin the design is not implemented.
Logic reconstruction entails the preparation of
flowcharts or other graphical representations from the
code and comparing them to the design material
descriptions. This analysis verifies the consistency and
correctness of the code with respect to the detailed
design. As part of this process, equations are
reconstructed and compared to the requirements and
design.

Code Data Analysis concentrates on data structure
and usage in the coded software. Data analysis focuses

on how data items are defined and organized to be sure
the design is correctly implemented. The data analysis
compares the usage and value of al dataitemsin the
code with the descriptions provided in the design
materials to ensure consistency with the design. This
analysis verifies the correct type has been used for
each dataitem, such as floating point, integer, or array.
Thisanalysis will ensure that data structures are not
used in such away as to create a potential hazard.
Specia attention is applied to accessing arraysto
ensure that code will not access arrays outside their
bounds and destroy safety-critical data.

Code I nterface Analysis verifies the compatibility of
internal and externa interfaces of a software
component. Interface analysis is designed to verify that
the interfaces have been implemented properly. The
analysis will ensure that the interfaces are consi stent
and do not create a potential hazard. At least four types
of interfaces are evaluated: subroutine calls to other
software components, parameters passed through
common or global data, messages passed through
communication systems, and external hardware
interfaces.

Code Constraint Analysis ensures that the program
operates within the constraints imposed on it by the
requirements, the design, and the target computer
system. The constraints imposed include physical,
mathematical, accuracy, speed, and size.

The code safety analysis should also identify any
additional risks that may arise due to the use of
particular tools, methods, programming languages or
implementation approaches. Thisisin addition to the
similar analysis performed as part of the design safety
analysis.

3.5. Integration Activities

Integration consists of the activities that are required in
order to combine the various software programs and
hardware items into a single system. The various
hardware modules must be assembled and wired
together according to the hardware design
specifications. The various software modules are
linked together to form executable programs. The
software is then loaded into the hardware. Finally, the
entire combination is tested to be sure that all internal
and external interface specifications have been
satisfied. and that the software will actually operate on
that particular hardware.

49

Section 3. Activities

Theintegration activities are governed by the
Integration Plan, discussed abovein Section 3.1.7.
Integration testing is described in a separate testing
report (Barter 1993), and follows the Software
Verification and Validation Plan described in Section
3.1.4. The Integration Safety Analysisis carried out
according to the Software Safety Plan described in
Section 3.1.5.

3.5.1. System Build Documents

The Integration Plan describes the various steps that
will be carried out during the integration process. One
of these is the actual construction of the software
programs from modules and libraries. The exact
procedure for doing this is documented in the System
Build Specification. There will be one such
specification for each program that must be created.
The developer may have a separate build document for
each program, or combine the specificationsinto a
single document.

The System Build Specification provides the exact
steps taken to build the program. This includes names
of modules and files, names of libraries, and job
control language used to build the program. This
specification must be in sufficient detail to permit the
build to be carried out without ambiguity.

No attempt is made here to provide an outline for the
System Build Specification. It must be tailored to the
particular development process being used, the nature
of the operating system and programming language
being used, and the nature of the hardware upon which
the program will run.

3.5.2. Integration Safety Analysis

The Integration Safety Analysiswill ensure that no
hazards have been introduced during the integration
activities. The method of doing thisis not specified
here. It isthe responsibility of the developer, the V&V
organization, and the software safety organization to
make sure that all safety concerns have been addressed
during the integration process.

3.6. Validation Activities

Validation isthe set of activities that ensure that the
protection system, as actually implemented, satisfied
the original externally-imposed requirements. In
particular, it is necessary to guarantee that the system
safety requirements are all met. Validation consists of
amixture of inspections, analyses and tests. The

Section 3. Activities

inspection and test aspects are discussed in Barter
1993. Safety analysis is described here.

Vadlidation is carried out according to the Software
Verification and Validation Plan described in Section
3.1.4. The Validation Safety Analysisis carried out
according to the Software Safety Plan described in
Section 3.1.5.

3.6.1. Validation Safety Analysis

The Validation Safety Analysiswill examine the entire
system and the process of developing the system, to
ensure that all system safety considerations have been
correctly implemented in the protection system and
that no new system hazards have been created due to
any actions of the protection system. This analysis will
review all previous analyses and ensure that no actions
have taken place to invalidate their results.

The method of performing this analysisis not specified
here. It isthe responsibility of the software safety
organization, possibly with the assistance of the V&V
organization and the system safety organization, to
ensure that the Validation Safety Analysisis properly
carried out.

3.7. Installation Activities

Installation is the process of moving the complete
system from the devel oper’ s site to the operational site.
The nature of reactor construction is such that there
may be considerable time delays between the
completion of the protection computer system by the
developer and the installation of that system in an
actual reactor. The documents discussed here should
provide sufficient information to permit the installation
to take place correctly, and for the protection system to
operate correctly.

Installation is carried out according to the Software
Installation Plan described in Section 3.1.8. The
Installation Safety Analysisis carried out according to
the Software Safety Plan described in Section 3.1.5.

3.7.1. OperationsManual

The Operations Manual provides al of the information
necessary for the correct operation of the reactor
protection system. This includes normal operation, off-
normal operation, and emergency operation. Start-up
and shut-down of the computer system should be
discussed. All communications between the computer
system and the operator should be described, including

50

the time sequencing of any extended conversations. All
error messages should be listed, together with their
meaning and corrective action by the operator.

The Operations Manual structure is dependent on the
actual characteristics of the particular computer
system. No suggestion is given here asto apossible
table of contents.

3.7.2. Ingtallation Configuration Tables

Real-time systems frequently require tables of
information that tailor the system to the operational
environment. These tables indicate 1/0 channel
numbers, sensor and actuator connections and names,
and other installation-specific quantities. If this
particular protection system requires such atable, the
developer should prepare a document that describes all
the configuration information that must be provided
and how the system isto be informed of the
configuration information. The actual configuration
tables should created as part of the installation activity.
They should be fully documented.

3.7.3. Training Manuals

An operator training program should be required so
that the operators may learn the correct way to use the
protection system. The Training Manual isan
important part of the training program. It may be
provided by the system devel oper or the customer

(utility).
No further information on training is provided here.

3.7.4. Maintenance Manuals

The Maintenance Manual will describe the procedures
to be followed when the operational software must be
changed. The manua may be prepared by the
development organization or by the maintenance
organization. The manual will completely describe all
of the steps that must be carried out to change the
program, validate the changes, prepare new releases,
install the new releases, and validate the installation.

3.7.5. Ingtallation Safety Analysis

Once the computer system has been installed in the
operational setting, afinal safety analysiswill be
performed. Thiswill verify that all system safety
requirements are implemented in the installation, that
no safety-related errors have occurred during
installation, and that no hazards have been introduced
during installation.

3.8. Operationsand Maintenance
Activities—Change Safety Analysis

Changes may be categorized in three separate areas:
software requirement changes; implementation
changes to change the design and code to be compliant
with software or safety requirements; and constraint
changes, such as changes in equipment, assumptions,
or operating procedures.

When software requirement changes are
recommended, the safety activity should analyze those
changes for safety impact. Asin requirements analysis,
the analyst should identify safety-critical requirements
and determine their criticality. The analyst should also
identify any safety impacts on system operation,
operating procedures, and the safety analysis activity.
Impacts to the safety activity include the ability to
verify or test the change. The analysis should also
ensure that the change does not make any existing
hazards more severe. Once the requirements change
has been approved, the safety activity should analyze
and test the changes using the methods defined in the
previous sections of this document.

Implementation changes to design or code are analyzed
to identify any safety-critical software components that
are changed and to ensure that only the required
components are changed. Changes to non-critical code
should be analyzed to ensure they do not affect safety-

51

Section 3. Activities

critical software. The design and code should be
analyzed and tested using the methods defined in the
previous sections of this document.

For constraint changes, the analysis must evaluate the
impact on software safety. The operational changes are
evaluated for changes to operator interfaces or
additional administrative procedures that may result in
ahazard. The change may also affect planned safety
test procedures. Hardware changes are evaluated for
new fault paths that may be introduced or for deletion
of required interlocks. All changes to assumptions
should be evaluated for their impact. The safety
activity may recommend additional software
requirements or design changes based on this analysis.

A safety change database should be devel oped to track
the status of all changes. The database should include a
tracking number for each change, the level of software
affected (e.g., requirements, design, or code), the
identification and version of the affected component,
safety impact (e.g., none, high, medium, or low), the
development status of the change (e.g., requirements,
design, code, or test), and the safety analysis and
approval status.

Section 4. Recommendations

4. RECOMMENDATIONS, GUIDELINES, AND ASSESSMENT

This section is directed especially at theinternal or
external assessor. Thelife cycle tasks described in
Section 3 are revisited, the reliability and safety risks
associated with each task are discussed,
recommendations for preventing and decreasing these
risks are explored, and guidelines for using best
engineering judgment to implement the tasks are
described. Finally, this section presents alist of
guestions that can be used by the assessor when
assessing the work products, processes, and the
development organization’s ability to produce a safe
reactor protection system.

A recommendation is a suggestion that isimportant to
the safety of the system. A guidelineisagood
engineering practice that should be followed to
improve the overall quality, reliability, or
comprehensibility of the system. An assessment
guestion suggests factors that an assessor should
investigate in order to verify the acceptability of the
task solution.

The assessor may wish to ask additional questions;
nothing written here is meant to imply that assessors
should be restricted to the questions listed here. The
guestions are generally phrased in such away that an
affirmative answer isthe preferred answer; anegative
answer may be acceptable, but requires justification.
Many questions ask about the existence of some item;
these should be read as containing an implied question
that the underlying concept is satisfactory to the
assessor. For example, the question “ Are general report
formats known?’ should be read as implying that the
formats are sufficient to provide the information
needed.

4.1. Planning Activities

Planning activities are basic to the entire development
effort. There will be at |east one plan; the question is
how many plan or planswill there be, who will creates
the plan(s), and who follows the plan(s). If the project
management team does not create the plans, or at least
oversee and coordinate their creation, someone else
will. In the worst case, each member of the
development team acts according to the developer’s
own plan. Different team members will be “marching
to different drummers.” Such chaotic activity is
generaly not conducive to safety.

53

4.1.1. Software Project Management Plan

The Software Project Management Plan (SPMP) isthe
basic governing document for the entire devel opment
effort. Project oversight, control, reporting, review, and
assessment are al carried out within the scope of this
plan.

Without an SPMP, the praobability is high that some
safety concerns will be overlooked at some point in the
project development period, that misassignment of
resources will cause safety concerns to be ignored as
deadlines approach and funds expire, and that testing
will be inadequate. Confusion among project
development team members can lead to a confused,
complex, inconsistent software product whose safety
cannot be assured.

4.1.1.1. Recommendation

A safety-related software project should have an
SPMP. The size, scope, and contents of this plan
should be appropriate to the size, complexity, and
safety-critical nature of the project. Detailed
requirements for a SPMP are provided in Section 3.1.1.
The plan should be under configuration control.

4.1.1.2. Guid€dline

The SPMP may be organized according to |EEE
Standard 1058, as shown in Figure 3-2.

4.1.1.3. Assessment Questions

Process Model Questions.

a. Isthetiming of project milestonesrealistic?

b. Isthere sufficient time between milestonesto
accomplish the needed work?

c. Issufficient time allotted for review and
audit?

d. Istheretimeto integrate the software into the
complete protection computer system, and to
integrate that into the reactor protection

system?

e. Istheretimeto recover from unanticipated
problems?

f. Areproject work products and deliverables
well defined?

0. Isit known who will be responsible for each
product and deliverable?

Section 4. Recommendations

h. Do adequate resources exist to produce the
products and deliverables?

2. Organizational Structure Questions.

a. Isthe project organization structure well
defined?
Are responsibilities known and documented?

Does a management structure exist to keep
the SPMP up to date?

d. Isthe SPMP under configuration control?
3. Organizational Boundary and Interface Questions.

a. Aretheboundaries of the development
organization well defined?

Are reporting channels clear?

Does aformal communication channel exist
between the software development
organization and the regulator or assessor?

4. Project Responsibility Questions.
a Doesthe SPMP state that safety isthe
primary concern, over budget and schedule?
b. Do management mechanisms exist to enforce
this?
5. Project Priorities Questions.

a. Doesthe SPMP require that safety is the top
priority, over budget and schedule?

b. Doesamechanism exist for ensuring this?

6. Assumptions, Dependencies, and Constraint
Questions.

a. Arethe assumptions that may have an impact
on safety documented in the SPMP?

b. Areexternal events upon which the project
depends documented?

c. Areproject constraints that may have an
impact on safety identified and documented in
the SPMP?

7. Risk Management Questions.

a. Areknown risk factorsidentified?
b. Isthe potential impact of each risk factor on
safety described?
c. Doesamethod exist for managing each risk
that may impact safety?
8. Monitoring and Controlling Mechanism
Questions.

a. Arerequired reports identified?
b. Aregeneral formats known?

c. Do theformats provide the information
required by the recipient of the report?

9. Staffing Questions.

54

a. Arenecessary special skill needs identified?

b. Do management mechanismsexist in the
SPMP for obtaining people with the required
skillsin atimely manner?

c. Aretraining requirements known and
documented?

10. Technical Methods, Tools, and Techniques
Questions.

a. Arethe development computer systems
identified?
Do these systems exist?
Do they have sufficient resources for the
development work?
Are the development methods identified?

. Arethey few in number?

f. Arethey sufficiently formal to permit correct
specification and implementation of the
software system?

11. Software Documentation Questions.

a. Arerequired technical documents identified?

b. Areproduction dates given?

c. Aretheseredistic?

d. Areinterna review and audit processes
identified?

e. Aresufficient time and other resources
allocated to perform the reviews and audits?

f. Isaspecific person identified as responsible
for each document?

12. Project Support Function Questions.

a. Arethereferenced support functions defined
in other documents, or defined here? (In the
latter case, see the relevant assessment
checklists below.)

13. Follow-Through Questions.

a Doesevidence exist at each audit that the
SPMP is being followed?

4.1.2. Software Quality Assurance Plan

Software quality assurance (SQA) is the process by
which the overall quality of the software productsis
assessed.

Many aspects of software quality are described in the
various Plans recommended in this report. This
includes the Configuration Management Plan, the
Software Safety Plan, the Software Verification and
Vaidation Plan, and others. Without a single Software
Quality Assurance Plan governing these various

individual plans, it is possible that the various
individual plans many not be mutually consistent, and
that some aspects of software quality that are important
to safety may be overlooked.

4.1.2.1. Recommendation

A safety-related software project should have a
Software Quality Assurance Plan. The size, scope, and
contents of this plan should be appropriate to the size
and complexity of the software system and the risk that
can arise if the software system fails. Detailed
requirements for a Software Quality Assurance Plan
are given above, in Sections 3.1.2. The plan should be
under configuration control.

4.1.2.2. Guid€dline

The SQA Plan (SQAP) may be organized according to
|EEE Standard 730.1 as shown in Figure 3-3.

4.1.2.3. Assessment Questions

Many of the assessment questions that relate to the
SQAP are given later, in the sections that discuss
assessment of the other plans. In particular, see Section
4.1.4.

1. General Questions.

a. Doesthe SQAP specify which software
products are covered by the Plan?

b. Doesthe SQAP explain why it was written?
That is, what need does the SQAP satisfy?

c. Doesthe SQAP explain the standard that was
used to create the SQAP?

2. Management Questions.

a. |Iseach project element that interacts with the
SQA organization listed?

b. Isthe SQA organization independent of the
development organization? If not, is each
dependency clearly justified?

c. Arethelife cycle development phases that
will be subject to SQA oversight listed?

d. Arerequired SQA tasks listed and described?

Is the relationship between the SQAP and
other assurance plans described? Does a
method exist for delineating overlapping
responsibilities? Other plansinclude, but are
not limited to, the Configuration Management
Plan, the Software Safety Plan, and the V&V
Plan.

Section 4. Recommendations

f. Istherelationship between the SQA
organization and other assurance
organi zations described? Other organizations
include, but are not necessarily limited to, the
CM organization, the Safety organization and
the V&V organization.

0. Isthe person responsible for the SQAP
identified, by name and position?

h. Isthe person responsible for overall software
quality assurance identified, by name and
position?

i. Doesthe plan explain how conflicts between
the SQA organization and the development
organization will be resolved?

3. Document Questions.

a. Arerequired software documents listed?

b. Isit known how each document will be
reviewed by the SQA organization for
adequacy?

4. Genera Review and Audit Questions.

a. Arerequired reviews and audits listed?

b. Arethe methods by which each review and
audit will be carried out described?

5. Requirements Review Questions. Does the SQAP
require the following items:

a. Can each requirement be traced to the next
higher level specification? Example of such
specifications are system specifications and
user requirements specifications.

Can each derived requirement be justified?
Are algorithms and equations described
adequately and compl etely?

d. Arelogic descriptions correct?

e. Arehardware/software external interfaces
compatible?

f. Isthe description of and the approach to the
man-machine interface adequate?

0. Aresymbols used consistently in the SRS?

h. Iseach requirement testable?

i. Areverification and acceptance requirements
adequate and complete?

j- Areinterface specifications complete and
compatible?

k. Isthe SRS free from unwarranted design
detail?

6. Preliminary Design Review Questions. Does the
SQAP require the following items:

55

Section 4. Recommendations

a. Aredetaled functional interfaces between the
software system under development and other
software, hardware, and people fully defined?

b. Isthe software design, taken as awhole,
complete, consistent, and simple?

c. Can the design be shown to be compatible
with critical system timing requirements,
estimated running times and any other
performance requirements?

d. Isthedesign testable?

Can each element of the preliminary design
be traced to one or more specific
requirements?

f. Can each reguirement be traced to one or
more specific design elements?

7. Detailed Design Review Questions. Does the

SQAP require the following items:

a. Isthe design compatible with the SRS? That
is, can each requirement be traced to the
design, and can each design element be traced
to one or more requirements?

b. Areall logic diagrams, algorithms, storage
allocation charts, and detailed design
representations fully described?

c. Aretheinterfaces compatible?

d. Isthedesign testable?

Doesthefinal design include function flow,
timing, sizing, storage requirements, memory
maps, databases and files, and screen
formats?

8. Test Questions.

a. If the SQAP includes test requirements that
arenot inthe V&V Plan, areal such
requirements fully justified?

9. Problem Reporting and Corrective Action

Questions.

a. Doesthe SQAP include provisions to assure
that problems will be documented, corrected,
and not forgotten?

b. Doesthe SQAP require that problem reports
be assessed for validity?

c. Doesthe SQAP provide for feedback to the
developer and the user regarding problem
status?

d. Doesthe SQAP provide for the collection,
analysis and reporting of data that can be used
to measure and predict software quality and
reliability?

56

4.1.3. Software Configuration
Management Plan

Software configuration management (SCM) isthe
process by which changes to the products of the
software development effort are controlled. This
includes determining the configuration baseline and
controlling change to the baseline.

Without a Software Configuration Management Plan
(SCMP), it isdifficult or impossible to manage
configuration baseline change, or for software
developersto know which versions of the various
configuration items are current. Software modul es that
call other modules may be created using an incorrect
version of the latter; in the worst case, this might not
be discovered until operation under circumstances
when correct operation is absolutely necessary to
prevent an accident. This can occur if some functions
arerarely needed, so are inadequately tested or linked
into the final software product.

It isalso possible that several people will have
different understandings as to what changes have been
approved or implemented, resulting in an incorrect
final product.

4.1.3.1. Recommendation

A safety-related software project should have an
SCMP. The plan should provide for baseline
definition, change authorization, and change control.
Detailed requirements for an SCMP are provided in
Sections 3.1.3. The plan should be under configuration
control.

4.1.3.2. Guid€dline

The SCMP may be organized according to |IEEE
Standard 828 and | EEE Guide 1042, as shown in
Figure 3-4.

4.1.3.3. Assessment Questions

1. Organizational Questions.

a. Areproduct interfaces that have to be
supported within the project itself identified?
Software-software? Software-hardware?
Software maintained at multiple sites?
Software developed at different sites?
Dependence on support software?

b. Doesthe SCMP define the required
capabilities of the staff needed to perform
SCM activities?

Does the plan specify what organizational

responsibilities are likely to change during the

life of the SCMP?

Does the plan state who has the authority to

capture data and information and who has

authority to direct implementation of

changes?

Does the plan define the level of management

support that is needed to implement the SCM

process?

Does the plan define responsibilities for

processing baseline changes?

— Responsibility for originating changes.

— Responsibility for reviewing changes.

— Responsibility for approving changes.

— Responsibility for administrating the
change process.

— Responsibility for validating the changes.

— Responsibility for verifying change
completion.

Does the plan specify who has the authority to

release any software, data and documents?

Does the plan specify who is responsible for

each SCM activity?

— Ensuring the integrity of the software
system.

— Maintaining physical custody of the
product baselines.

— Performing product audits.

— Library management.

— Developing and maintaining specialized
SCM tooals.

Does the plan identify the person or persons

with authority to override normal SCM

procedures during exceptional situations?

Does the plan explain how any such overrides

will be reconciled with the product baselines,

so that inconsistencies and lost updates do not

occur?

2. SCM Responsibility Questions.

a

If the developer plansto use an existing CM
organization, are required specia procedures
identified?

Does the plan delineate the assumptions made
by the SCM group?

3. SCM Interface Control Questions.

a

Does the plan identify organizational
interfaces that affect the SCM process, or are
affected by the SCM process?

57

Section 4. Recommendations

Does the plan identify the important
interfaces between adjacent phases of the life
cycle?

Does the plan identify interfaces between
different software modules?

Doesthe plan identify interfaces between
computer hardware and software modules?
Between instrumentation and software?
Does the plan identify documents used in
interface control ? Where are these documents
defined? How are they maintained?

SCMP Implementation Questions.

a

Are the resources planned for SCM sufficient
to carry out the defined tasks? Do they take
into account the size, complexity, and
criticality of the software project?

Does the plan describe how SCM activities
will be coordinated with other project
activities?

Does the plan describe how phase-specific
SCM activitieswill be managed during the
different life cycle phases?

SCM Policy Questions.

a

Does the plan specify standard identification
procedures? Actual needsin this area are
specific to the project; audit procedures
should ensure that the plan is adequate to
prevent confusion. Unnecessary procedures
can actually interfere with understanding, so
naming policies should be adequately
justified. Policies can include:

— Standard labels for products.

— ldentification of the hierarchical structure
of computer programs.

— Component and unit naming conventions.
— Numbering or version level designations.
— Mediaidentification methods.

— Database identification methods.

— Documentation labeling and
identification methods.

Do specific procedures exist for interacting

with dynamic libraries? These procedures

may include the following:

— Promoting a software module from one
type of library to another. For example,
from adevelopment library to a
production library.

— Documentation releases.

— Computer program product releases.

Section 4. Recommendations

— Firmware releases.

Do specific procedures exist to manage the
change process? Thisincludes:

The handling of change requests.

Provision for accepting changesinto a
controlled library.

Processing problem reports.
Membership in the CCB.
Operation of the CCB.

Capturing the audit trail of important
changes to product baselines.

Do standard reporting procedures exist?
These include:

— Summarizing problem reports.

— Standard CM reports to management and
aSSessors.

Are audit procedures defined in the CM plan?

— Are procedures defined for performing
audits of the CM process?

— Are procedures defined for performing
physical audits of configuration items?

Do procedures exist for accessing and
controlling libraries? Thisincludes:

Security provisions.
Change processing.
Backups.
Long-term storage.

6. Configuration Identification Questions.

a

Does the configuration identification scheme
match the structure of the software product?
Does the plan specify when Clswill be given
identification numbers?

Does the plan specify which items will be
placed under configuration control (thus
becoming configuration items)?

|s a separate identification scheme required
for third-party software?

Does the plan explain how hardware and
software identification schemes are related
when the software is embedded in the
hardware? This applies to such things as
firmware, ROM code, and |oadable RAM
image code.

Doesthe plan explain if a specia schemeis
required for reusable software?

Does the plan explain how support software
will beidentified? Thisincludes:

— Language trand ators.

— Operating systems.

58

m.

— Loaders.

— Debuggers.

— Other support software.

Does the plan explain how test datawill be
identified?

Does the plan explain how databases (such as
installation configuration tables) will be
identified?

Does the plan explain how baselines are
verified?

Does the identification scheme provide for

identifying different versions and different
releases of the Cls?

Does the plan explain how physical media
will be identified?

Are naming conventions available for each
modifiable configuration item?

7. Configuration Control Questions.

a

Isthe level of authority described in the plan
consistent with the Clsidentified in the plan?

Does the plan require that each significant
change be under configuration control?

Does the plan fully describe the information
needed to approve a change request?

Does the plan fully describe CCB procedures
for approving change requests?

Does the plan require that safety-related
change requests be so identified, and made
known to the assessors during the next audit?
If different change procedures are required
during different life cycle phases, are these
differences fully described in the plan?

Does the plan fully describe procedures for
accessing software libraries and controlling
library interfaces? For ensuring that only one
person at atimeis able to change software
modul es?

Does the plan provide a method for
maintaining a change history for each CI?
Does the plan provide for library backup and
disaster recovery procedures? Are these
procedures sufficient to enable a change
history for each CI to be recovered if alibrary
islost?

Does the plan provide a method of associating
source code modules with their derived object
code modules and executable modules?

Does the plan provide procedures for keeping

data files synchronized with the programs that
use them?

I. Doesthe plan fully describe the authority of
the CCB? Is this authority sufficient to control
safety-related changes to the Cl baseline?

Does the plan require the CCB to assess the
safety impact of change requests?

n. Doesthe plan describe fully the proceduresto
be used by the configuration manager in order
to oversee changes authorized by the CCB?

0. Doesthe plan fully describe the authority of
the configuration manager? |s this authority
sufficient to ensure that unauthorized changes
do not take place? That authorized changes
have been fully tested, reviewed, or analyzed
for safety impact?

p. Isthereaclearly-stated method for recovering
an old version in the event that a newer
version has problemsin execution?

8. Configuration Status Accounting Questions.

a. Doesthe plan describe what information must
be made available for status reports?

b. Doesthe plan describe each safety-related
status report, including audience, content, and
format?

c. Doesthe plan provide a means of tracking
problem reports that relate to safety, and
making sure that each problem reported has
been correctly resolved?

9. Audit and Review Questions.

a. Doesthe plan provide for asingle, separate
audit trail for each Cl and for the personnel
working on each CI?

b. Doesthe plan make provisions for auditing
the SCM process?

c. Doesthe plan provide for periodic reviews
and audits of the configuration baseline,
including physical audits of the baseline?

d. Doesthe plan provide for audits of suppliers
and subcontractors, if such are used?

e. Doesthe plan make provisions to protect
records needed in order to audit and assess the
development process and devel opment
products?

10. Supplier Control Questions.

a. Doesthe plan require suppliers and
subcontractors to use a configuration
management system consistent with, and
equivalent to, that described for the
development organization itself?

b. Doesthe plan provide for periodic reviews of
subcontractor Cls, including physical audits?

59

Section 4. Recommendations

c. Doesthe plan explain whois responsible for
performing subcontractor reviews and audits?

11. Follow-Through Questions.

a Doesevidence exist at each audit that the
SCM plan is being followed?

4.1.4. Software Verification and
Validation Plan

Software V&V isdiscussed in a separate report (Barter
1993). The following recommendations, guidelines,
and assessment questions are taken from that report.

The software V&V plan is an essential element of the
V&YV process because it allows the devel oper, with
regulatory approval, to define the exact nature of the
process. Once defined, the V&V plan should be
viewed as a“ contract” between the developing
organization and the regulating organization.

Without a Software V&V Plan, it will be difficult or
impossible to be sure that the products of each phase of
the software life cycle have been adequately verified,
and that the final software system isa correct
implementation of the requirements imposed upon it
by the original system specifications.

4.1.4.1. Recommendation

A safety-related software project should have a
Software V&V Plan. The size, scope, and contents of
this plan should be appropriate to the size and
complexity of the software system and therisk that can
arise if the software system fails. Detailed
requirements for a Software V&V Plan are provided in
Section 3.1.4. The plan should be under configuration
control.

4.1.4.2. Guideline

The Software V&V Plan may be organized according
to |EEE Standard 1012, taking into account the
contents of ANS standards 7-4.3.2 (Appendix E) and
10.4.

4.1.4.3. Assessment Questions

The assessment questions listed below are from Barter
1993.
1. General Questions.

a. Doesthe V&YV plan reference a management
plan or aquality assurance plan?

Section 4. Recommendations

Are specific elements of the higher-level

plans addressed in the V&V plan?

Doesthe V&V plan identify the software that
isbeing placed under V&V?

Is the purpose of the protection system clearly
identified?

Isthe scope of the V&V effort defined?
Isaclear set of objectives defined and isthere
a sense that the objectives will support the
required level of safety?

2. V&V Overview Questions.

a

Isthe V&V organization defined, along with
its relationship to the development program?

* Doestheplancal foraV&Vv
organization that is independent from the
development organization?

* Istherelationship between the V&V
organization and other project elements
(project management, quality assurance,
configuration and data management)
defined?

* Arethelines of communication clearly
defined within the V&V organization?

Is a schedule defined that provides enough

timefor V&V activities to be effectively

carried out?

* Does the schedule define the expected
receipt dates for development products?

* Does the schedule define the time allotted
to perform V&V activities?

* Does the schedule define the expected
receipt dates for development products?

* Areredistic delivery dates set for V&V
reports?

* Arethe performing organizations defined
for each activity?

* Are dependencies on other events clearly
defined?

Are the resources needed to perform the V&V

activities in the time allotted defined?

* Arethe staffing levels defined and are
they realistic?

* Areresourceissues such asfacilities,
tools, finances, security, accessrights,
and documentation adequate addressed?

Are thetools, techniques, and methods to be

used in the V&V process defined? Adequate

consideration should be given to acquisition,
training, support, and qualification of each
tool, technique, and methodol ogy.

60

* Haseach tool been identified by name
along with a description, identification
number, qualification status, version, and
purposein each V&V activity?

* Hasadistinction been made between
existing tools and those that will have to
be developed (if any)?

For those tools that have to be developed, is

there an estimate of the time and resources

needed to develop and qualify the tools?

* Havetool development activities been
factored into the schedule?

* For existing tools, have the tools been
adequately qualified?

* For existing tools that have not been
adequately qualified, isthere an estimate
of the time and resources needed to
qualify the tool and have the qualification
activities been factored into the schedule?

Are techniques and methods defined with the

same level of detail astools?

* Has each technique and methodol ogy
been identified by name along with a
description, qualification status and
purpose in each V&V activity?

* Have the techniques and methods been
adequately qualified?

* For those techniques and methods that
have not been adequately qualified, is
there an estimate of the time and
resources needed to qualify them, and
have the qualification activities been
factored into the schedule?

* |sthere arequirement that the V&V staff
be trained in the techniques and
methodol ogies used as part of the
development effort?

* |sthere arequirement that at least one
member of the V&V staff be experienced
in using the techniques or
methodol ogies?

3. Software Life Cycle Management V&V
Questions.

a

Is each task identified and tied into the project

V&YV goals? There should be a sufficient mix

of tasks so as to completely support the

project V&V goals and only those tasks that

support the goal's should be included.

* Havethe tasks been clearly identified as
to devel opment materials to be evaluated,
activities to be performed, tools and

techniques to be used, security and
control procedures to be followed?
Areall of the tasksidentified in Table 1
of IEEE 1012 included?

If any of the taskslisted in Table 2 of
IEEE 1012 isidentified, isthere aclear
justification for their use?

Does each task identify the methods to be
used and the criteria to be applied to those
methods?

*

Are the methods identified for each task
consistent with the V&V overview with
respect to resources, qualification, and
schedule?

Isthe input required by each task and the
output from each task identified?

*

Are the development materialsto be
evaluated adequately identified?

In addition to specific reports identified
for each phase of testing, is output
identified for a summary of positive
findings, summary of discrepancies,
conclusions, and recommendations?

Is the method of handling anomalies
encountered during each activity identified?

*

Does the output tie into another activity
in such away as to make the output
meaningful ? (i.e., are discrepancies
reported to discrepancy tracking and
resolution activities or are they only
reported and then dropped?)

Is the content of a discrepancy report
defined?

Will discrepancy reportsinclude the
name of the document or program in
which the discrepancy was found?

Will discrepancy reports include a
description of the discrepancy in
sufficient detal so asto be
understandable by a person not familiar
with the original problem?

Will discrepancy reports include
assessments as to the severity of the
discrepancy and the impact of the
discrepancy?

Are V&V schedule and resource requirements
described in detail?

*

Have schedule and resources been
adequately defined so asto give afeeling
of confidence that the V&V effort will
not be unduly rushed in its activities?

61

Section 4. Recommendations

Are the planning assumptions for each V&V
task described? Assumptions about the state
of the development process may include
completion of prior activities, status of
previously identified discrepancies,
availability of resources, and scheduling of
tasks.

* Have the assumptions been identified and
are the assumptions consistent with the
project plan?

Doesthe V&V plan include a contingency

plan to identify risk factors that may cause the

V&YV activity to fail to perform its functions?

* Havetherisks been identified?

* Isthere acontingency plan identified for
each risk for each task?

* Are corrective procedures specified to
minimize disruption to the V&V process?

Doesthe V&V planidentify the

responsibilities of the V&V participants?

* Have organizationa elementsfor the
entire project been identified in the
project plan?

* Havethose organizational elements that
interface to the V&V effort been
identified in the project plan and in the
V&YV plan in a consistent manner?

* Have specific responsibilities for each
task been assigned to an organizational
unit?

* Havethe interfaces between the V&V
organization and the devel opment
organization and regulatory agency been
defined?

Doesthe V&V plan establish a method of

performing base line change assessments?

* |sthere adefined procedure for
evaluating proposed software changes
against V&V activitiesthat arein
progress or have been previously
completed?

* |sthere adefined procedure for updating
the V&V plan in the event that the
software changes require a change in
schedule and/or resources?

Doesthe V&V plan describe the means by

which management overview of the V&V

effort will be conducted?

* |sthe management structure defined?

* |sthere adefined procedure for
management review of the V&V process?

Section 4. Recommendations

* Doesthe V&YV plan state that
management is responsible for the
technical quality of the V&V process?

* Will management receive summary
reports of V&V process at each phase of
thelife cycle?

* |sthere aprocedure for the periodic
assessment and updating of the V&V
procedures, methods, and tools?

Doesthe V&V effort feed itsinformation

back into the overall development effort

through review support?

* |sthere adefined procedure for
correlating V&V results with
management and technical review
documents?

4. System Level V&V Questions.

a

Isthe V&V plan coordinated with project
planning documents to ensure that early
concept documents are available to the V&V
effort?

* Doesthe project plan call for the
identification of initiating documentation
(statement of need, project initiation
memo, or task statement), feasibility
studies, performance goals, preliminary
hazards analysis, and system definition
documentation prior to beginning the
V&V effort?

* Doesthe V&V plan require the
generation and dissemination of anomaly
reports?

Doesthe V&V plan explicitly define the

activities required before the requirements

development activities begin?

* Doesthe V&YV plan require an evaluation
of the system-level documentation to
determine if the proposed concept will
satisfy user needs and project objectives?

* Doesthe V&V plan require the
identification of interfacesto other
hardware and software systems along
with any constraints imposed by those
systems?

* Doesthe V&V plan require the
identification of any constraints or
limitation of the proposed approach?

* Doesthe V&YV plan require an
assessment of the hardware and software
allocations?

* Doesthe V&YV plan require the
assessment of the criticality of each
software item?

5. Requirements Activities V&V Questions.

a

Isthe V&V plan coordinated with other
project activities, especially those involving
safety?

* Doesthe project plan call for the
generation of concept documentation,
SRS, interface requirements, hazards
analysis, and user documentation prior to
beginning the V&V reguirements
analysis?

* Doesthe V&YV plan require the
generation and dissemination of anomaly
reports?

* Doesthe V&V plan define the method of
resolving anomalies?

Doesthe V&V plan explicitly define the

activities required during the requirements

analysis?

* Doesthe V&YV plan require the
performance of a software requirements
traceability analysis that traces elements
of the SRS to elements of the system
requirements?

* Does the trace go both from the SRS to
the system requirements and from the
system requirements to the SRS?

Doesthe V&V plan require a software

requirements evaluation to help ensure that

the SRS is both internally consistent and
consistent with system objectives?

* Doesthe V&YV plan require that the SRS
be evaluated for safety, correctness,
consistency, completeness, accuracy,
readability, and testability?

* |sthere a SRS standard and does the
V&YV plan require that the SRS conform
to that standard?

* Doesthe V&YV plan require that the SRS
be evaluated for how well the
specifications meet system objectives,
software system objectives and address
issues identified in the hazards analysis?

* Doesthe V&YV plan require that the SRS
be evaluated for performance issues?

Doesthe V&V plan require a software

requirements interface analysis to help ensure

that the software requirements correctly

define the interfaces to the software (both
hardware and software)?

* Doesthe V&V plan require that the SRS
be evaluated against hardware
requirements, user requirements, operator
requirements, and software requirements
documentation?

Doesthe V&V plan require a system test plan
and an acceptance test plan that will be used
for later testing?

* Doesthe V&YV plan require that a system
test plan and an acceptance test plan be
generated during the requirements phase?

* Doesthe V&V plan require that the plans
be defined in enough detail to support the
testing required?

6. Design ActivitiesV&V Questions.

a

Isthe V&V plan coordinated with other
project activities, especially those involving
safety?

* Doesthe project plan call for the
generation of an SRS, software design
documents, interface requirements,
interface designs, and user documentation
prior to beginning the design V&V
analysis?

* Doesthe V&V plan require the
generation and dissemination of anomaly
reports?

* Doesthe V&V plan define the method of
resolving anomalies?

Doesthe V&V plan explicitly define the

activities required during the design analysis?

* Doesthe V&V plan require the
performance of a design traceability
analysis that traces elements of the
software design document (SDD) to
elements of the software requirements?

* Does the trace go both from the SDD to
the SRS and from the SRS to the SDD?

Doesthe V&V plan require adesign
evaluation to help ensure that the software
design document isinternally consistent,
testable, and meets established standards,
practices, and conventions?

* Doesthe V&V plan require that the
software design document be evaluated
for correctness, consistency,
completeness, accuracy, readability, and
testability?

63

Section 4. Recommendations

* Doesthe V&YV plan require that the
software design document be assessed as
to the quality of the design?

* |sthere a software design documentation
standard, and does the V&V plan require
that the software design documents
conform to that standard?

Doesthe V&V plan require a design interface
analysis to help ensure that the software
design correctly meets the hardware, operator,
and software interface requirements?

* Doesthe V&YV plan require that the
software design document be evaluated
against hardware requirements, operator
requirements, and software interface
requirements documentation?

Doesthe V&V plan require a software
component test plan, an integration test plan,
and atest design be generated for use in later
testing?

* Doesthe V&YV plan require that a
software component test plan, an
integration test plan, and atest design be
generated during the design phase?

* Doesthe V&YV plan require that the plans
be defined in enough detail to support the
testing required?

7. Implementation Activities V&V Questions.

a

Isthe V&V plan coordinated with other
project activities, especially those involving
safety?

* Doesthe project plan call for the
generation of software design documents,
interface design documents, source code
listings, executable code at the software
unit level, and user documentation prior
to beginning the implementation V&V
analysis and testing?

* Doesthe V&YV plan require the
generation and dissemination of anomaly
reports?

* Doesthe V&V plan define the method of
resolving anomalies?

Doesthe V&V plan explicitly define the

activities required during the implementation

phase?

* Doesthe V&YV plan require the
performance of an implementation
traceability analysis that traces source
code to elements of the software design?

Section 4. Recommendations

* Does the trace go both from the code to
the design and from the design to the
code?

Doesthe V&V plan require a source code
evaluation to help ensure that the source code
isinternally consistent, testable, and meets
established standards, practices, and
conventions?

* Doesthe V&YV plan require that the
source code be evaluated for correctness,
consistency, completeness, accuracy,
readability, safety, and testability?

* Doesthe V&YV plan require that the
source code be assessed as to the quality
of the code?

* |sthere a software coding standard and
doesthe V&V plan require that the
source code conform to that standard?

* Doesthe V&YV plan require that the
source code be evaluated for adherence to
project coding standards?

Doesthe V&V plan require a source code

interface analysisto help ensure that the

source code correctly meets the hardware,
operator, and software design documentation?

* Doesthe V&V plan require that the
source code be evaluated against the
hardware design, operator interface
design, and software design
documentation?

Doesthe V&V plan require generation and
use of test casesto help ensure the adequacy
of test coverage? The test cases bridge the gap
between the test design and software design
documents and the actual test procedures.

* Doesthe V&YV plan require the
generation of test cases for software
component, integration, system, and
acceptance testing?

* Doesthe V&V plan require the
generation of test procedures for software
unit, integration and system testing?

* Doesthe V&V plan require the execution
of the test procedures for software
components?

Integration and Validation Activities V&V
Questions.

Isthe V&V plan coordinated with other
project activities, especialy those involving
safety?

* Doesthe project plan call for the
generation of software design documents,
interface design documents, source code
listings, executable code at the software
component level, and user documentation
prior to beginning the integration and
validation V&V analysis and testing?

* Doesthe V&V plan require the
generation and dissemination of anomaly
reports?

* Doesthe V&V plan define the method of
resolving anomalies?

Doesthe V&V plan explicitly define the

activities required during the integration and

validation analysis and testing?

* Doesthe V&V plan require the
performance of integration, system, and
acceptance testing?

* Arethetesting requirements sufficiently
detailed so asto ensure that thereis a
very low probability of error during
operation?

9. Installation Activities V&V Questions.

a

Isthe V&V plan coordinated with other
project activities, especialy those involving
safety?

* Doesthe project plan call for the
generation of an installation package and
previous phase summary reports prior to
beginning the installation and checkout
V&YV anaysis and testing?

* Doesthe V&YV plan require the
generation and dissemination of anomaly
reports?

* Doesthe V&V plan define the method of
resolving anomalies?

Doesthe V&V plan explicitly define the

activities required during the installation

analysis and testing?

* Doesthe V&YV plan require the
performance of an installation
configuration audit?

* Doesthe V&YV plan require the
generation of afinal report?

10. Operation and Maintenance ActivitiesV&V
Questions.

a

Isthe V&V plan coordinated with other
project activities, especially those involving
safety?

* Doesthe project plan require that
development schedules, concept
documentation, SRSs, interface
documents, software design documents,
source code listings, user documentation,
the installation package, and proposed
changes be available prior to beginning
the operation and maintenance V&V
analysis and testing?

* Doesthe V&V plan require the
generation and dissemination of anomaly
reports?

* Doesthe V&YV plan require that the
software V&V plan be updated in
response to changes?

* Doesthe V&YV plan require the
establishment of a system for evaluating
anomalies, ng proposed changes,
feeding information into the
configuration management process and
iterating the V&V process as necessary?

* Doesthe V&V plan define the method of
resolving anomalies?

4.1.5. Software Safety Plan

The Software Safety Plan is the basic document used
to make sure that system safety concerns are properly
considered during the software development.

Without a Software Safety Plan (SSP), it will be
difficult or impossible to be sure that safety concerns
have been sufficiently considered and resolved. Some
meatters are likely to be resolved by different peoplein
different inconsistent ways. Other matters are likely to
be overlooked, perhaps because people may assume
that others have accepted those responsibilities.

4.1.5.1. Recommendation

A safety-related software project should have a
Software Safety Plan. The size, scope, and contents of
this plan should be appropriate to the size and
complexity of the software system and the potential
risk should the software system fail. Detailed
requirements for a Software Safety Plan are provided
in Section 3.1.5. The plan should be under
configuration control.

4.1.5.2. Guideline

The SSP may be organized according to |EEE Draft
Standard 1228, as shown in Figure 3-7. The software
safety organization may be a separate organization, or

Section 4. Recommendations

may be part of the system safety or quality assurance
organizations. The important issue isits independence
from the devel opment organization.

4.1.5.3. Assessment Questions

1. Organization and Responsibility Questions.

a. Isthe software safety program organization
described? | s the organization structure
practical ? Can the organization successfully
manage the software safety program?

b. Arethelinesof communication between the
software safety organization, the project
management organi zation, the software
development team, and the regulators clear?

c. Istheauthority of the software safety
organization defined? Isit sufficient to
enforce compliance with safety requirements
and practices?

d. Isasingleindividual named as having overall
responsibility for the conduct of the software
safety program? Does this person have
adequate authority, training in management,
conflict resolution, and safety and software
engineering to actually carry out thisjob?

e. Doesthe manager of the software safety
organization, and the organization itself, have
sufficient autonomy from the devel opment
organization to ensure proper conduct of the
software safety program?

f. Does amechanism exist for any person
involved with the development project to
communicate safety concerns directly to the
software safety organization? Does the
mechanism protect such a person from
management reprisals?

2. Resource Questions.

a. Doesthe SSP identify the resources that will
be required to implement the plan? These
include:

— Financial resources.
— Schedule resources.
— Safety personnel.
— Other personnel.
— Computer and other equipment support.
— Tools.
b. Arethe resources adequate?
3. Staff Qualification and Training Questions.

Section 4. Recommendations

a. Doesthe SSP specify personnel qualifications
for personnel performing the following
safety-related tasks?

— Defining safety requirements.

— Performing software safety analysis
tasks.

— Testing safety-critical features of the
protection system.

— Auditing and certifying SSP
implementation.

— Performing process certification.

b. Arethe qualifications sufficient to ensure the
tasks are carried out correctly and that the
safety concerns are adequately addressed?

c. Doesthe SSP define on-going training
requirements for personnel with safety-related
responsibilities?

d. Doesthe SSP specify methods for
accomplishing these training objectives?

e. Arethetraining requirements sufficient to
ensure that these people have the knowledge
and ability to carry out their defined safety-
related activities?

4. Software Life Cycle Questions.

a. Doesthe SSPrelate safety activities to the
software development life cycle? (Note that
this question may be addressed in the
Software Development Plan rather than in the
SSP.)

b. Doesthe SSP provide a mechanism to ensure
that known safety concerns are adequately
addressed during the various life cycle
activities?

5. Documentation Questions.

a. Doesthe SSP describe what safety-related
documents will be produced during the
development life cycle?

b. Arethe contents of these documents
described, either here or in some other
development plan?

c. Arethe contents sufficient to ensure that
known safety concerns are addressed in the
appropriate places within the development life
cycle?

d. Isameans of document control described in
the SSP?

e. Isthe document control system sufficient to
ensure that required documents are preserved
for devel opment assessors?

6. Software Safety Program Records Questions.

66

Does the SSP identify the saf ety-related
records that will be generated, maintained,
and preserved?

Are these records sufficient to provide
adequate evidence that the software safety
program has been properly carried out during
each phase of the software life cycle?

Does the SSP identify a person responsible
for preserving software safety program
records?

Does the SSP specify the tracking system to

be used to monitor the status of safety-related
documents?

Software Configuration Management Questions.
(These questions could be addressed in the
Software Configuration Management Plan instead
of here))

a

Does the SSP describe the process by which
changes to safety-critical software items will
be authorized and controlled?

Does the SSP describe the role and
responsibility of the safety personnel in
change evaluation, change approva and
change verification?

Isthis sufficient to ensure that no new hazards
are introduced into the protection system
through changes to the protection software?

Does the SSP describe how configuration
management requirements will be met for
software development tools, previously
developed software, purchased software, and
subcontractor-devel oped software?

Software Quality Assurance Questions.

a

Does the SSP describe the interactions
between the software safety organization and
the quality assurance organization?

Does the SSP require that the software saf ety
organization have primary responsibility for
ensuring safety, not the quality assurance
organization?

Tool Support and Approval Questions.

a

Does the SSP specify the process of
approving and controlling software tool use?

Does this process provide a means to ensure
that tool use is appropriate during the
different development life cycle activities?
Does the SSP specify the process of obtaining
approval for tool use, for installing approved
tools, and for withdrawing tools?

Does the person or persons who have
authority to approve tool use, install tools, and
withdraw tools have adequate knowledge to
make approval decisionsin such away that
safety will not be compromised?

Does the person with this authority have an
enforcement mechanism to ensure that
limitations imposed on tool use are followed
by the development team?

10. Previously Developed or Purchased (PDP)
Software Questions.

a

Does the SSP define the role of the software
safety organization in approving PDP
software?

Does the software safety organization have
authority to approve or disapprove the
acquisition or use of PDP software?

Does the SSP define an approval process for
obtaining PDP software?

Does this approval processinclude the
following steps?

Determine the interfaces to and
functionality of the PDP software.

| dentify relevant documents that are
available to the obtaining organization,
and determine their status.

Determine the conformance of the PDP
software to published specifications.

I dentify the capabilities and limitations of
the PDP software with respect to the
safety requirements of the development
project.

Using an approved test plan, test the
safety-critical features of the PDP
software in isolation from any other
software.

Using an approved test plan, test the
safety-critical features of the PDP
software in conjunction with other
software with which it interacts.

Perform arisk assessment to determine if
the use of the PDP software will result in
undertaking an acceptable level of risk
even if unforeseen hazards result in a
failure.

Does the SSP provide a means to ensure that
PDP software will not be used in a safety-
critical product if (1) it cannot be adequately
tested, (2) it presents significant risk of
hazardous failure, (3) it can become unsafein
the context of its planned use or (4) it

67

Section 4. Recommendations

represents significant adverse consequence in
the event of failure?

If the answer to the previous question is “no,”
do equivalent analyses, test, and
demonstrations by the vendor of the PDP
software exist that show its adequacy for use
in a safety-critical application?

11. Subcontract Management Questions.

a

Does the SSP provide a means to ensure that
safety-critical software developed by a
subcontractor meets the requirements of the
software safety program?

Does the SSP provide a means to ensure that
the subcontractor is capable of developing
safety-critical software?

Does the SSP provide a means to monitor the
adherence of the subcontractor to the
requirements of the SSP?

Does the SSP provide a process for assigning
responsibility for, and tracking the status of,
unresolved hazards identified or impacting the
subcontractor.

I's the subcontractor required to prepare and
implement a SSP that is consistent with this
SSP, and obey it?

12. Process Certification Questions. (This applies only
if the software product isto be certified.)

a

Does the SSP provide a method for certifying
that the software product was produced in
accordance with the processes specified in the
SSP?

13. Follow-Through Questions.

a

14.

Does evidence exist at each audit that the SSP
is being followed?

Safety Analysis Questions. Assessment questions

relating to safety analyses are discussed below, in
sections4.2.2,4.3.3,4.4.2,45.2,4.6.1, and 4.7.1.

4.1.6. Software Development Plan

The Software Development Plan is the plan that guides
the technical aspects of the development project. It will
specify the life cycle that will be used, and the various
technical activities that take place during that life
cycle. Methods, tools, and techniques that are required
in order to perform the technical activitieswill be
identified.

Without a development plan, thereislikely to be
confusion about when the various technical
development activities will take place and how they

Section 4. Recommendations

will be connected to other development activities. The
probability is high that the different team members will
make different assumptions about the life cycle that is
being used, about what is required for each life cycle
phase, and about what methods, tools, and techniques
are permitted, required, or forbidden.

The differences among the members of the project
technical team can result in a confused, inconsistent,
and incompl ete software product whose safety cannot
be assured, and may not be determinable.

4.1.6.1. Recommendation

A safety-related project should have a Software
Development Plan. The plan should describe the
processes to take place during the development life
cycle, and should describe the methods, tools, and
techniques that will be used to carry out the
development processes. Detailed requirements for a
Software Development Plan are provided in Section
3.1.6. The plan should be under configuration control.

4.1.6.2. Guid€line

The Software Development Plan may be organized as
shown in Figure 3-8.

4.1.6.3. Assessment Questions

1. Life Cycle Process Questions.

a. Isasoftwarelife cycle defined?

b. Arethe defined life cycle processes sufficient
to provide confidence that a safe and adequate
product will be produced?

c. Aretheinputs and outputs defined for each
life cycle process?

d. Isthe source of each life cycle process input
specified?

e. Isthe destination of each life cycle process
output specified?

f. Does each life cycle phase require a safety
analysis?

g. Doeseach lifecycle phaseincludea
requirement for an audit at the end of the
phase?

2. Methods, Tools, and Techniques Questions.

a. Aremethods specified for each life cycle
phase?

b. Isanautomated or semi-automated
requirements tracking tool specified?

c. Areformal requirements and design and
implementation methods required?

d. Isone specific programming language
required?

e. |f morethan one languageis permitted, does
the plan specify a method for choosing which
language to use for each program module?
Does the plan give atechnical justification for
permitting more than one programming
language to be used?

f. Doesthe plan specify what computers,
compilers, libraries, and linkers will be used
in the software development?

0. Isaprogramming style guide specified?

3. Standards Questions.

a Arethetechnical standards that will be
followed listed in the plan?

4. Schedule Questions.

a. Arethetechnical milestoneslisted in the
plan?
b. Arethe milestones consistent with the
schedule given in the SPMP?
5. Technica Documentation Questions.

a. Arethetechnical documentsthat must be
produced listed?

b. Arethese documents consistent with those
listed in the SPMP?

c. Isaprincipal author listed for each document?

d. Aremilestones, baselines, reviews, and sign-
offslisted for each document?

6. Follow-Through Questions.

a Doesevidence exist at each audit that the
Software Development Plan is being
followed?

4.1.7. Software Integration Plan

The Software Integration Plan describes the general
strategy for integrating the software modules together
into one or more programs, and integrating those
programs with the hardware.

Without a Software Integration Plan, it is possible that
the complete computer system will lack important
elements, or that some integration steps will be
omitted.

4.1.7.1. Recommendation

A safety-related software project should have a
Software Integration Plan. The size, scope, and
contents of this plan should be appropriate to the size,
complexity, and safety-critical nature of the project.
Detailed requirements for a Software Integration Plan
are provided in Section 3.1.7. The plan should be
under configuration control.

4.1.7.2. Guid€dline

The Software Integration Plan may be organized as
shown in Figure 3.9.

4.1.7.3. Assessment Questions

1. Integration Process Questions.

a. Doesthe Integration Plan specify the levels of
integration required? Is this consistent with
the software design specification?

b. Doesthe Integration Plan specify what
objects will be included at each level? These
may include:

Hardware.

Software.

Instrumentation.

Data.

c. Doesthe Integration Plan describe each step
of the integration process?

d. Doesthe Integration Plan describe the
integration strategy to be used for each
integration step?

2. Margina Conditions Questions.

a. Doesthe Integration Plan describe the
environment that will be used to perform and
test each integration step?

b. Are software and hardware tools that will be
used to integrate the computer system listed
and described?

c. Isthereapriority-based list of the various
integration steps?

d. Wasarisk anaysis performed?

If risks were identified, are preventive
measures identified to avoid or lessen the
risks?

3. Integration Organization Questions.

a. Aretheintegration steps ordered in time?

b. Are personne who will beinvolved in the
integration activity listed?

c. Isthislist upto date?

69

Section 4. Recommendations

d. Doesamechanism exist to keep the list up-to-
date?

4. Integration Procedure Questions.

a. Arethe products of each integration step
known?

b. Arethere complete instructions on how to
carry out each integration step?

c. Isthereacontingency planin casethe
integration fails?

d. Istherearequirement that the completed
product be placed under configuration
control ?

e. Isthereaprocedure for delivering the product
to the configuration management
organization?

f. Isthere aprocedure for delivering the product
tothe V&V organization for integration
testing?

5. Follow-Through Questions.

a. Wasthe Integration Plan followed?

4.1.8. Software Installation Plan

The Software Installation Plan governs the process of
installing the completed software product into the
production environment. There may be a considerable
delay between the time the software product is finished
and thetime it is delivered to the utility for installation.

Without an Installation Plan, the installation may be
performed incorrectly, which may remain undetected
until an emergency is encountered. If thereisalong
delay between the completion of the development and
the delivery of the software to the utility, the
development people who know how to install the
software may no longer be available.

4.1.8.1. Recommendation

A safety-related software project should have a
Software Installation Plan. The size, scope, and
contents of this plan should be appropriate to the size,
complexity, and safety-critical nature of the project.
Detailed requirements for a Software I nstallation Plan
are provided in Section 3.1.8. The plan should be
under configuration control.

4.1.8.2. Guideline

The Software Installation Plan may be organized as
shown in Figure 3-10.

Section 4. Recommendations

4.1.8.3. Assessment Questions

1. Installation Environment Questions.

a Isthe environment within which the software
will operate fully described?

2. Installation Package Questions.

a. Arematerialsthat are required for a
successful integration listed?

3. Installation Procedures Questions.

a. Does astep-by-step procedure exist for
installing the computer system in the
operational environment?

Isthis procedure complete?

Does each step describe what installation
items are required, and what is to be done
with each installation item?

d. Isthe expected results from each installation
step described? That is, how can the installer
know that a step has been successfully
completed?

e. Areknowninstallation error conditions
described, and are recovery procedures fully
described?

4. Follow-Through Questions.

a Wasthe Installation Plan fully tested?

4.1.9. Software M aintenance Plan

The Software Maintenance Plan control s the process of
making changes to the completed software product.
There may be a considerable delay between the
completion of the development project and changing
the product. An organization other than the
development organization, termed the maintenance
organization here, may actually do the maintenance.

Without a Maintenance Plan, it is not easy to know
how the product may be changed, and what procedures
arerequired in order to make changes. Inconsistencies
and faults may be inserted into the product during
maintenance changes, and this may not become known
until the software needs to react to an emergency. In
the worst case, maintenance that is carried out in order
to improve the reliability of the software product may
actually lessen itsreliability.

4.1.9.1. Recommendation

A safety-related software project should have a
Software Maintenance Plan. The size, scope, and
contents of this plan should be appropriate to the size,

70

complexity, and safety-critical nature of the project.
The Plan should assume that maintenance will be
carried out by some organization other than the
development organization, and that development
personnel will not be available to answer questions.
Detailed requirements for a Software Maintenance
Plan are provided in Section 3.1.9. The plan should be
under configuration control.

4.1.9.2. Guideline

The Software Maintenance Plan may be organized as
shown in Figure 3-11.

4.1.9.3. Assessment Questions

1. Failure Reporting Questions.

a. Does aprocedure exist for collecting
operationa failure data from the utilities that
are using the software product?

b. Doesthis procedure ensure that operational
failures are documented?

c. Doesthis procedure ensure that failure reports
are delivered to the maintenance
organization?

d. Does the maintenance organization have a
procedure to ensure that failure reports are
maintained under configuration control ?

e. Does the maintenance organization have a
procedure to ensure that each failure report is
assigned to one individual who isresponsible
for analyzing the failure and determining the
underlying fault that caused the failure?

f. Can the maintenance organization
management and the assessors always
discover the status of each failure report?

2. Fault Correction Questions.

a. Does the maintenance organization have a
procedure in place to ensure that faults are
corrected, or determined not to require
correction?

b. Doesthis procedure ensure that the
documentation related to the fault will be
corrected, if thisis necessary?

c. If thefault does not require correction, are the
reasons for this fully documented?

d. If thefault does not require correction, was a
risk analysis performed to be sure that the
fault cannot affect safety in any way?

e. Doesthe procedure require that acceptance
test cases be created to test for the previously-
undetected fault?

f. Doesthe procedure require that regression
testing take place before a new release of the
software is created?

3. Re-Release Questions.

a. Do procedures exist to build and test new
releases of the software?

b. Do these procedures identify the events that
may trigger the creation of a new release?

c. Do these procedures require that the new
release be fully tested before release to the
utilities?

d. Isthere-installation procedure fully
documented?

4. Follow-Through Questions.

a. Isthereevidence, during periodic operationa
audits, that maintenance procedures are being
followed by the utility and the maintenance
organization?

4.2. RequirementsActivities

The activities associated with the requirements stage
result in a complete description of what the software
system must accomplish as part of the reactor
protection system.

There are a number of risksto not documenting the
software requirements. Some requirements might be
omitted from the design and implementation. Some
requirements might be misunderstood, or interpreted
differently by different members of the development
team. Some hazards might not be covered by the
requirements.

If aparticular requirement is omitted, but is necessary
to the design, then the designers or programmers are
likely to explicitly or implicitly invent a requirement.
An example of thisisamissing timing requirement—
say, that a pump must be turned on within two seconds
of aparticular signal being received from a sensor. If
this requirement is not specified, the programmer
might implicitly assume that thereis no real timing
issue here, and write the code in such away that it
takes five seconds to start the pump. This would be
unacceptable, but would still meet the written
requirement.

4.2.1. Software Requirements
Specification

The Software Requirements Specification (SRS)
documents the software requirements. These come

71

Section 4. Recommendations

from the protection system design and the protection
system hazard analysis.

4.2.1.1. Recommendation

An SRS should be written for areactor protection
computer system. It should be correct, consistent,
unambiguous, verifiable, and auditable. Each
requirement should be separately identified. Each
requirement should be traceable to the overall system
design. Detailed requirements for a SRS are provided
in Section 3.2.1.

4.2.1.2. Guid€dline

The SRS may be organized as shown in Figure 3-12. If
available, an automated or semi-automated
requirements tracking system should be used so that
the software reguirements can be traced through the
design, implementation, integration, and validation
stages of the development project. The use of a CASE
tool to document the requirements is recommended.
The use of aformal mathematics-based requirements
specification language is recommended for the
functional, performance, reliability, and security
requirements.

4.2.1.3. Assessment Questions

In addition to the list of questions given here, the
assessor may wish to consult other lists. In particular,
IEC 880, Appendix A, contains alist of requirements
characteristics, and Redmill 1989 contains assessment
questions.

1. User Characteristics Questions.

a. Iseach category of user identified in the SRS?
b. Isthe expected experience level of each
category of user defined?
c. Arethetraining requirements for each
category of user defined?
2. Genera Constraint Questions.

a. Areknown legal restrictions placed on the
software development either described fully
inthe SRS, or referenced in the SRS?

b. Areknown hardware limitations described in
the SRS?

c. Arethe SRS audit requirements specified?

d. If special support softwareisrequired (such
as operating systems, compilers,
programming languages, or libraries), isthe
support software fully described?

Section 4. Recommendations

e. Areany required communications protocols
defined?

f. Arethecritical safety considerations listed?

g. Arethecritica security considerations listed?

Assumptions and Dependency Questions.

a. Do any assumptions exist that are not listed in
the SRS?

Impact Questions.

a. If changes are required to existing hardware
or buildings, are these documented in the
SRS?

b. If the system described in the SRS must be
used with an existing system, are any required
changes to that existing system fully
documented?

c. If the system will be deployed in an existing
reactor, are known organizational and
operational impacts described?

Functional Requirement Questions.

a. Arethefunctional requirementsindividually
identified?

I's each regquirement unambiguously stated?
Do the functional requirements, taken as a
whole, completely specify what the software
must do?

d. Do thefunctional requirements specify what
the software must not do?

e. Arethefunctional requirements, taken asa
whole, mutually consistent?

f. Iseach functional requirement verifiable,
either through inspection or testing of the
completed software product?

g. Can each requirement imposed by the
protection system design be traced to a
software requirement?

h. Arethefunctional requirements complete?

Operator Interface Questions.

a. Isevery interaction between an operator and
the software system fully defined?

b. Arerequirementsfor control panel and
display layouts described?

c. Arerequirementsfor human reactionsto
software-generated messages described,
including the amount of time available for
making decisions?

d. Areerror messages described, with corrective
actions that should be taken?

Instrumentation Interface Questions.

72

a. Isthe possibleinput from each sensor fully
described? This can include:

— Type of sensor (analog, digital).
— Possible range of values.

— Units of measurement.

— Resolution of measurement.

— Error bounds on measurements for the
range of measurement.

— Instrument calibration.
— Conversion algorithms—analog/digital or
physical units.
b. Isthe possible output to each actuator fully
described? This can include:
— Type of actuator (analog, digital).
— Possible range of values and units.
— Units of measurement.
— Resolution of measurement, if analog.
— Cadlibration requirements.
— Conversion agorithms.
— Any error responses.

Computer System Interface Questions. (Applies
only if the protection system software must
communicate with other software systems.)

a. Aretheinterfaces between software systems
fully defined?

b. Istheform of each interface described—
subroutine call, remote procedure call,
communication channel ?

c. Iseachinterface message format and content
defined?

d. Isthetransmission method and medium
defined for each message?

e. Areerror detection methods defined for
communication lines?

f. Are communication protocols defined?
Performance Requirements Questions.

a. Arethe static performance requirements fully
described?

b. Arethe protection system timing
requirements included in the SRS?

c. Arethetiming requirements specified
numericaly?

d. Aretiming requirements expressed for each
mode of operation?

e. Arethe performance requirements
individually identified?

f. Arethe performance requirements, taken as a
whole, mutually consistent?

g. Iseach performance requirement testable?
10. Réliahility and Safety Questions.

a. Iseachreliability and safety requirement
individually identified?

b. Can each hazard identified in the system
hazard analysis be traced to one or more
software requirements that will prevent,
contain, or mitigate the hazard?

c. Arebackup, restart, and recovery
requirements fully defined?

d. If the software must continue to operatein the
presence of faults, are the fault tolerance
requirements fully defined?

e. Arerdliability and safety requirements
specified for each possible mode of
operation?

f. Arereliability requirements specified
numericaly?

0. If the software isrequired to diagnose
hardware or software failures, are the classes
of failuresthat will be detected identified?

h. Istherequired response to any identified
hardware or software failure described?

i. If the softwareisrequired to recover from
hardware or software failures, are the
recovery requirements fully described?

j- Arethereliability and safety requirements,
taken as awhole, mutually consistent?

k. Iseach reliability and safety requirement
verifiable, either through inspection, analysis
or testing of the completed software product?

11. Security Questions.

a. Arethe access restrictions imposed on
operators, managers, and other personnel fully
defined?

b. Do requirements exist to prevent unauthorized
personnel from interacting with the software
system?

c. Do reguirements exist to prevent unauthorized
changes to the software system?

d. Arethe security requirementsindividually
identified?

e. Can each security requirement be verified,
either through inspection, analysis or test of
the completed software product?

f. Arethe security requirements, taken as a
whole, mutually consistent?

73

Section 4. Recommendations

4.2.2. Requirements Safety Analysis

The purpose of the safety analysisisto identify any
errors or deficiencies that could contribute to a hazard
and to identify system safety considerations not
addressed in the SRS.

Therisk of not performing a safety analysisis that
some hazards may be overlooked in the SRS, and that
additional hazards may be added.

4.2.2.1. Recommendation

A Requirements Safety Analysis should be performed
and documented. The analysis should determine which
software requirements are critical to system safety, that
all safety requirements imposed by the protection
system design have been correctly addressed in the
SRS, and that no additional hazards have been created
by the requirements specification.

4.2.2.2. Guid€dline

The four analyses recommended in Section 3.2.2 may
be performed.

4.2.2.3. Assessment Questions

1. General Question.

a. Doesthe safety analysis present a convincing
argument that the system safety requirements
are correctly included in the SRS, and that no
new hazards have been introduced?

2. Criticality Questions.

a. Havetherequirements that can affect safety
been identified?

b. Isthere convincing evidence that the
remaining requirements (if any) have no
effect on safety?

3. Requirements Tracing Questions.

a. Can each system safety requirement be traced
to one or more software requirements?

b. Can each software requirement be traced to
one or more system requirements?

c. Istherearequirement that the software not
execute any unintended function? (Note: this
may be very difficult to verify.)

4. Specification Questions.

a. Isthere convincing evidence that there are no
missing or inconsistently specified functions?

Section 4. Recommendations

b. Isthere convincing evidence that there are no
incorrect, missing, or inconsistent input or
output specifications?

c. Cantiming and sizing requirements be met
under normal, off-normal, and emergency
operating conditions?

4.3. Design Activities

The software design activities trand ate the software
requirements specifications into a hardware/software
architecture specification and a software design
specification.

The primary risks of not creating and documenting a
formal software design are that it may be impossible to
be sure that all requirements have been implemented in
the design, and that no design elements exist that are
not required. Either of these cases can create a hazard.

4.3.1. Hardware/Software Architecture
Specification

The design architecture will show a hardware
architecture, a software architecture, and a mapping
between them. The hardware architecture shows the
various hardware devices and the ways in which they
are connected. The software architecture shows the
executable software processes and logical
communication paths between them. The mapping
shows which processes operate in which hardware
devices, and how the logical communication paths are
implemented in the hardware communication paths.

It may happen that the design architecture cannot be
completed until the software design, hardware design,
and system design have been completed. The relative
timing and overlap among these design descriptionsis
not specified here; that is the developer’s
responsibility.

4.3.1.1. Recommendation

A hardware/software architecture description should be
prepared. It should be correct, consistent,

unambiguous, verifiable, testable, and implementable.
All major hardware devices and all major software
processes should be included in the description. A
mapping of software to hardware should be provided.
A mapping of logical communication paths to physical
communication paths should be provided.

74

4.3.1.2. Assessment Questions

1. Hardware Questions.

a. Areknown major hardware elements shown
in the design architecture? This includes:

Computers.

File systems.

Sensors and actuators.
Terminals.
Communication networks.

b. Doesthe design architecture show how the
various hardware el ements are connected
together?

2. Software Questions.

a Areknown independent software elements
shown in the design architecture? This
includes:

— Processes, which perform computations.

Files and databases, which store

information.

Input and output messages, which receive

and transmit information.

Screen, which display information.

Communication, which moves

information among processes, files and

databases, input and output channels, and

screens.

b. Doesthe design architecture show how the
various software elements are logically
connected together?

3. Software to Hardware Mapping Questions.

a. Doesthe design architecture show how each
software element is mapped to a hardware
element?

4.3.2. Software Design Specification

The Software Design Specification shows exactly how
the software requirements are implemented in the
software modules and programs.

4.3.2.1. Recommendation

A formal software design specification should be
developed and documented. It should be correct,
complete, internally consistent, consistent with the
software requirements, unambiguous, verifiable,
testable, and implementable. Each design element
should be traceable to one or more specific
requirements, and each software requirement should be
traceable to one or more design elements.

4.3.2.2. Guideline

The use of a CASE system to document the design and
the use of aformal mathematics-based design
specification language is recommended. The use of an
automated or semi-automated requirements tracking
system is also recommended so that the software
requirements can be traced through the design to the
implementation stage of the development project.

4.3.2.3. Assessment Questions

In addition to the list of questions given here, the
assessor may wish to consult other lists. In particular,
|EC 880, Appendix B, contains alist of design
characteristics, and Redmill 1989 contains assessment
guestions.

Some of the assessment questions listed here should
also be asked of the implemented system (code and
data).

1. General Questions.

a. Can every requirement given in the SRS be
traced to one or more specific design elements
that implement the requirement?

b. Can every design element be traced to one or
more specific requirements that the design
element implements?

c. Istheresufficient evidence to demonstrate
that there are no unintended functionsin the
design?

d. Isthe design complete, consistent, correct,
unambiguous, and simple?

2. Software Structure Questions.

a. Arethe static and dynamic structures simple,
with minimal connections between design
elements?

b. Isthe software structure hierarchical in
nature?

c. If stepwiserefinement is used to create the
software structure, is each level of the
refinement complete, internally consistent,
and consistent with the immediately higher
level (if any)?

d. Isthedesign such that safety-critical
functions are separated from normal operating
functions, with well-defined interfaces
between them?

3. Design Element Questions.

75

Section 4. Recommendations

a. If any of thefollowing concepts are used in
the design, is adequate justification given for
their use?

Floating point arithmetic.

Recursion.

Interrupts, except for periodic timer
interrupts.

Multi-processing on a single processor.

Dynamic memory management.

Event-driven communications between

processes.

b. If more than one formal design method is
used, are they mutually consistent?

c. Istheinput to each modules checked for
validity?

4.3.3. Design Safety Analysis

The purpose of the safety analysisisto identify any
errors or deficienciesin the design that could
contribute to a hazard.

Therisk of not performing a safety analysisis that
some hazards that were identified in the requirements
specification may be overlooked in the design, and that
additi